TPTP Problem File: ARI643_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI643_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Prove that a != 0 implies 0 / a = 0
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : inequations0.pri [BHS07]
% : division1.p [Rue14]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.25 v8.2.0, 0.38 v7.5.0, 0.40 v7.4.0, 0.38 v7.3.0, 0.33 v7.0.0, 0.57 v6.4.0, 1.00 v6.3.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 2 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 2 ( 1 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 4 ( 0 atm; 1 fun; 3 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 1 usr; 2 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_EQU_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(a_type,type,
a: $int ).
tff(conj,conjecture,
( ( a != 0 )
=> ( $quotient_e(0,a) = 0 ) ) ).
%------------------------------------------------------------------------------