TPTP Problem File: ARI642_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI642_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Example 23
% Version : Especial.
% English :
% Refs : [ALR14] Avigad et al. (2014), A Heuristic Prover for Real Ineq
% : [LAR14] Lewis et al. (2014), A Heuristic Prover for Real Inequ
% : [Lew14] Lewis (2014), Email to Geoff Sutcliffe
% Source : [Lew14]
% Names : Example 23 [Lew14]
% Status : Theorem
% Rating : 0.80 v9.0.0, 0.75 v8.2.0, 0.83 v7.5.0, 1.00 v7.4.0, 0.67 v7.3.0, 0.75 v7.1.0, 0.67 v7.0.0, 1.00 v6.3.0
% Syntax : Number of formulae : 10 ( 4 unt; 5 typ; 0 def)
% Number of atoms : 6 ( 0 equ)
% Maximal formula atoms : 2 ( 0 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number arithmetic : 27 ( 6 atm; 14 fun; 6 num; 1 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 5 usr; 7 con; 0-2 aty)
% Number of variables : 1 ( 1 !; 0 ?; 1 :)
% SPC : TF0_THM_NEQ_ARI
% Comments :
%------------------------------------------------------------------------------
%----Should be known property Axiom: Forall([x], ceil(x) >= x)
tff(m_type,type,
m: $real ).
tff(x_type,type,
x: $real ).
tff(a_type,type,
a: $real ).
tff(b_type,type,
b: $real ).
tff(f_type,type,
f: $real > $real ).
tff(ceiling_property,axiom,
! [M: $real] :
( $greater(M,0.0)
=> $less(f($ceiling(M)),$sum(a,$product($quotient(1.0,$ceiling(M)),$sum($product(-1.0,a),b)))) ) ).
tff(hypothesis,hypothesis,
$less(a,b) ).
tff(hypothesis_01,hypothesis,
$greater(x,a) ).
tff(hypothesis_02,hypothesis,
$greatereq(m,$product($quotient(1.0,$sum($product(-1.0,a),x)),$sum($product(-1.0,a),b))) ).
tff(conclusion,conjecture,
$less(f($ceiling(m)),x) ).
%------------------------------------------------------------------------------