TPTP Problem File: ARI614_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI614_1 : TPTP v9.0.0. Released v5.1.0.
% Domain : Arithmetic
% Problem : There is an X>a and a Y<1 whose sum is 0 (X = max(a+1,0), Y = -X)
% Version : Especial.
% English :
% Refs : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names :
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.25 v7.5.0, 0.40 v7.4.0, 0.25 v7.3.0, 0.17 v7.0.0, 0.00 v6.4.0, 0.67 v6.3.0, 0.29 v6.2.0, 0.62 v6.1.0, 0.78 v6.0.0, 0.71 v5.5.0, 0.67 v5.4.0, 0.75 v5.3.0, 0.90 v5.2.0, 0.83 v5.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 7 ( 1 equ)
% Maximal formula atoms : 7 ( 1 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 3 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 9 ( 2 atm; 1 fun; 2 num; 4 var)
% Number of types : 2 ( 0 usr; 1 ari)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of predicates : 4 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 1 usr; 2 con; 0-2 aty)
% Number of variables : 4 ( 2 !; 2 ?; 4 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(p_type,type,
p: $int > $o ).
tff(q_type,type,
q: $int > $o ).
tff(a_type,type,
a: $int ).
tff(interv_a_infty_and_neginfty_1_contain_compl,conjecture,
( ( ! [X: $int] :
( $less(a,X)
=> p(X) )
& ! [X: $int] :
( $less(X,0)
=> q(X) ) )
=> ? [X: $int,Y: $int] :
( p(X)
& q(Y)
& ( $sum(X,Y) = 0 ) ) ) ).
%------------------------------------------------------------------------------