TPTP Problem File: ARI596_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI596_1 : TPTP v9.0.0. Released v5.1.0.
% Domain : Arithmetic
% Problem : There is a number in {a,a+1,a-1} that is divisible by 3
% Version : Especial.
% English :
% Refs : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names :
% Status : Theorem
% Rating : 0.60 v9.0.0, 0.50 v8.2.0, 0.67 v7.5.0, 0.60 v7.4.0, 0.67 v7.3.0, 0.75 v7.1.0, 0.67 v7.0.0, 0.50 v6.4.0, 0.33 v6.3.0, 0.50 v6.2.0, 0.80 v6.1.0, 0.89 v6.0.0, 0.88 v5.4.0, 1.00 v5.1.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 4 ( 0 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 7 ( 0 atm; 3 fun; 3 num; 1 var)
% Number of types : 2 ( 0 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 6 ( 1 usr; 3 con; 0-2 aty)
% Number of variables : 1 ( 0 !; 1 ?; 1 :)
% SPC : TF0_THM_NEQ_ARI
% Comments : Also a theorem for $rat and $real, but much easier
%------------------------------------------------------------------------------
tff(p_type,type,
p: $int > $o ).
tff(a_type,type,
a: $int ).
tff(exists_X_in_a_aplus1_aminus1_div_3,conjecture,
( ( p(a)
& p($sum(a,1))
& p($difference(a,1)) )
=> ? [X: $int] : p($product(3,X)) ) ).
%------------------------------------------------------------------------------