TPTP Problem File: ANA034-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA034-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Problem about Big-O notation
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.32 v8.2.0, 0.33 v8.1.0, 0.25 v7.5.0, 0.42 v7.4.0, 0.43 v7.3.0
% Syntax : Number of clauses : 17 ( 17 unt; 0 nHn; 6 RR)
% Number of literals : 17 ( 17 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 21 ( 21 usr; 6 con; 0-4 aty)
% Number of variables : 26 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from ANA034-2 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq(A,A,B,C) = B ).
cnf(cls_Ring__and__Field_Oabs__mult_0,axiom,
ifeq2(class_Ring__and__Field_Oordered__idom(T_a),true,c_times(c_HOL_Oabs(V_a,T_a),c_HOL_Oabs(V_b,T_a),T_a),c_HOL_Oabs(c_times(V_a,V_b,T_a),T_a)) = c_HOL_Oabs(c_times(V_a,V_b,T_a),T_a) ).
cnf(cls_Ring__and__Field_Omult__mono_0,axiom,
ifeq(c_lessequals(c_0,V_b,T_a),true,ifeq(c_lessequals(c_0,V_c,T_a),true,ifeq(c_lessequals(V_a,V_b,T_a),true,ifeq(c_lessequals(V_c,V_d,T_a),true,ifeq(class_Ring__and__Field_Opordered__semiring(T_a),true,c_lessequals(c_times(V_a,V_c,T_a),c_times(V_b,V_d,T_a),T_a),true),true),true),true),true) = true ).
cnf(cls_Ring__and__Field_Omult__nonneg__nonneg_0,axiom,
ifeq(class_Ring__and__Field_Opordered__cancel__semiring(T_a),true,ifeq(c_lessequals(c_0,V_a,T_a),true,ifeq(c_lessequals(c_0,V_b,T_a),true,c_lessequals(c_0,c_times(V_a,V_b,T_a),T_a),true),true),true) = true ).
cnf(cls_Orderings_Oorder__less__imp__le_0,axiom,
ifeq(c_less(V_x,V_y,T_a),true,ifeq(class_Orderings_Oorder(T_a),true,c_lessequals(V_x,V_y,T_a),true),true) = true ).
cnf(cls_OrderedGroup_Oabs__ge__zero_0,axiom,
ifeq(class_OrderedGroup_Olordered__ab__group__abs(T_a),true,c_lessequals(c_0,c_HOL_Oabs(V_a,T_a),T_a),true) = true ).
cnf(cls_conjecture_0,negated_conjecture,
c_less(c_0,v_c,t_b) = true ).
cnf(cls_conjecture_2,negated_conjecture,
c_lessequals(c_HOL_Oabs(v_a(v_x),t_b),c_times(v_c,c_HOL_Oabs(v_f(v_x),t_b),t_b),t_b) = true ).
cnf(cls_conjecture_3,negated_conjecture,
c_lessequals(c_HOL_Oabs(v_b(v_x),t_b),c_times(v_ca,c_HOL_Oabs(v_g(v_x),t_b),t_b),t_b) = true ).
cnf(cls_conjecture_4,negated_conjecture,
c_times(c_times(v_c,v_ca,t_b),c_HOL_Oabs(c_times(v_f(v_x),v_g(v_x),t_b),t_b),t_b) = c_times(c_times(v_c,c_HOL_Oabs(v_f(v_x),t_b),t_b),c_times(v_ca,c_HOL_Oabs(v_g(v_x),t_b),t_b),t_b) ).
cnf(cls_conjecture_5,negated_conjecture,
c_lessequals(c_HOL_Oabs(c_times(v_a(v_x),v_b(v_x),t_b),t_b),c_times(c_times(v_c,v_ca,t_b),c_HOL_Oabs(c_times(v_f(v_x),v_g(v_x),t_b),t_b),t_b),t_b) != true ).
cnf(tfree_tcs,negated_conjecture,
class_Ring__and__Field_Oordered__idom(t_b) = true ).
cnf(clsrel_OrderedGroup_Olordered__ab__group__abs_17,axiom,
ifeq(class_OrderedGroup_Olordered__ab__group__abs(T),true,class_Orderings_Oorder(T),true) = true ).
cnf(clsrel_Ring__and__Field_Oordered__idom_40,axiom,
ifeq(class_Ring__and__Field_Oordered__idom(T),true,class_Ring__and__Field_Opordered__cancel__semiring(T),true) = true ).
cnf(clsrel_Ring__and__Field_Oordered__idom_42,axiom,
ifeq(class_Ring__and__Field_Oordered__idom(T),true,class_Ring__and__Field_Opordered__semiring(T),true) = true ).
cnf(clsrel_Ring__and__Field_Oordered__idom_50,axiom,
ifeq(class_Ring__and__Field_Oordered__idom(T),true,class_OrderedGroup_Olordered__ab__group__abs(T),true) = true ).
%------------------------------------------------------------------------------