TPTP Problem File: ALG298^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG298^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : General Algebra
% Problem : TPS problem THM270
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0400 [Bro09]
% : THM270 [TPS]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.33 v7.3.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 6 typ; 0 def)
% Number of atoms : 5 ( 5 equ; 0 cnn)
% Maximal formula atoms : 5 ( 5 avg)
% Number of connectives : 29 ( 0 ~; 0 |; 3 &; 25 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 10 avg)
% Number of types : 3 ( 3 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 0 con; 2-2 aty)
% Number of variables : 12 ( 0 ^; 11 !; 1 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(c_type,type,
c: $tType ).
thf(b_type,type,
b: $tType ).
thf(a_type,type,
a: $tType ).
thf(c_starc,type,
c_starc: c > c > c ).
thf(c_starb,type,
c_starb: b > b > b ).
thf(c_stara,type,
c_stara: a > a > a ).
thf(cTHM270_pme,conjecture,
! [Xf: a > b,Xg: a > c,Xh: b > c] :
( ( ! [Xx: a] :
( ( Xh @ ( Xf @ Xx ) )
= ( Xg @ Xx ) )
& ! [Xy: b] :
? [Xx: a] :
( ( Xf @ Xx )
= Xy )
& ! [Xx: a,Xy: a] :
( ( Xf @ ( c_stara @ Xx @ Xy ) )
= ( c_starb @ ( Xf @ Xx ) @ ( Xf @ Xy ) ) )
& ! [Xx: a,Xy: a] :
( ( Xg @ ( c_stara @ Xx @ Xy ) )
= ( c_starc @ ( Xg @ Xx ) @ ( Xg @ Xy ) ) ) )
=> ! [Xx: b,Xy: b] :
( ( Xh @ ( c_starb @ Xx @ Xy ) )
= ( c_starc @ ( Xh @ Xx ) @ ( Xh @ Xy ) ) ) ) ).
%------------------------------------------------------------------------------