TPTP Problem File: ALG245-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG245-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Algebra (Non-associative)
% Problem : Idempotent selfdistributive groupoids are symmetric-by-medial - 4
% Version : Especial.
% English :
% Refs : [PS08] Phillips & Stanovsky (2008), Using Automated Theorem P
% : [Sta08a] Stanovsky (2008), Distributive Groupoids are Symmetri
% : [Sta08b] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08b]
% Names : S08_9 [Sta08b]
% Status : Unsatisfiable
% Rating : 0.23 v9.0.0, 0.27 v8.2.0, 0.29 v8.1.0, 0.25 v7.5.0, 0.42 v7.4.0, 0.39 v7.3.0, 0.37 v7.1.0, 0.44 v7.0.0, 0.47 v6.3.0, 0.53 v6.2.0, 0.50 v6.1.0, 0.56 v6.0.0, 0.67 v5.5.0, 0.68 v5.4.0, 0.60 v5.3.0, 0.58 v5.2.0, 0.57 v5.1.0, 0.60 v5.0.0, 0.57 v4.1.0, 0.45 v4.0.1, 0.57 v4.0.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 15 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,mult(B,C)) = mult(mult(A,B),mult(A,C)) ).
cnf(c02,axiom,
mult(mult(A,B),C) = mult(mult(A,C),mult(B,C)) ).
cnf(c03,axiom,
mult(mult(mult(A,B),mult(C,D)),mult(mult(mult(A,B),mult(C,D)),mult(mult(A,C),mult(B,D)))) = mult(mult(A,C),mult(B,D)) ).
cnf(c04,axiom,
mult(mult(mult(mult(A,B),mult(C,D)),mult(mult(A,C),mult(B,D))),mult(mult(A,C),mult(B,D))) = mult(mult(A,B),mult(C,D)) ).
cnf(c05,axiom,
mult(A,A) = A ).
cnf(goals,negated_conjecture,
mult(mult(mult(a,b),mult(c,d)),mult(mult(a,c),mult(b,d))) != mult(mult(mult(a,c),mult(b,d)),mult(mult(a,b),mult(c,d))) ).
%------------------------------------------------------------------------------