TPTP Problem File: ALG224+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ALG224+1 : TPTP v8.2.0. Released v3.4.0.
% Domain   : General Algebra
% Problem  : Algebraic Operation on Subsets of Many Sorted Sets T05
% Version  : [Urb08] axioms : Especial.
% English  :

% Refs     : [Mar97] Marasik (1997), Algebraic Operation on Subsets of Many
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : t5_closure3 [Urb08]

% Status   : Theorem
% Rating   : 0.50 v8.2.0, 0.64 v8.1.0, 0.56 v7.5.0, 0.62 v7.4.0, 0.53 v7.3.0, 0.62 v7.2.0, 0.59 v7.1.0, 0.43 v7.0.0, 0.47 v6.4.0, 0.50 v6.3.0, 0.54 v6.2.0, 0.56 v6.1.0, 0.70 v6.0.0, 0.74 v5.5.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.85 v5.2.0, 0.75 v5.1.0, 0.76 v5.0.0, 0.88 v4.1.0, 0.78 v4.0.0, 0.79 v3.7.0, 0.75 v3.5.0, 0.79 v3.4.0
% Syntax   : Number of formulae    :   42 (  11 unt;   0 def)
%            Number of atoms       :  118 (   2 equ)
%            Maximal formula atoms :    8 (   2 avg)
%            Number of connectives :   94 (  18   ~;   1   |;  45   &)
%                                         (   2 <=>;  28  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   15 (   5 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   14 (  12 usr;   1 prp; 0-4 aty)
%            Number of functors    :    3 (   3 usr;   1 con; 0-2 aty)
%            Number of variables   :   75 (  60   !;  15   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Normal version: includes the axioms (which may be theorems from
%            other articles) and background that are possibly necessary.
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t5_closure3,conjecture,
    ! [A,B] :
      ( m1_pboole(B,A)
     => ! [C] :
          ( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
         => ! [D] :
              ( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
             => ! [E] :
                  ( m1_subset_1(E,k1_zfmisc_1(k1_closure2(A,B)))
                 => ( ( r2_closure3(A,B,C,D)
                      & r2_closure3(A,B,D,E) )
                   => r2_closure3(A,B,C,E) ) ) ) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => ~ r2_hidden(B,A) ) ).

fof(cc1_closure2,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => v1_fraenkel(A) ) ).

fof(cc1_finset_1,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => v1_finset_1(A) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => v1_funct_1(A) ) ).

fof(cc2_finset_1,axiom,
    ! [A] :
      ( v1_finset_1(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
         => v1_finset_1(B) ) ) ).

fof(cc2_funct_1,axiom,
    ! [A] :
      ( ( v1_relat_1(A)
        & v1_xboole_0(A)
        & v1_funct_1(A) )
     => ( v1_relat_1(A)
        & v1_funct_1(A)
        & v2_funct_1(A) ) ) ).

fof(d2_closure3,axiom,
    ! [A,B] :
      ( m1_pboole(B,A)
     => ! [C] :
          ( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
         => ! [D] :
              ( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
             => ( r2_closure3(A,B,C,D)
              <=> ! [E] :
                    ~ ( r2_hidden(E,C)
                      & ! [F] :
                          ~ ( r2_hidden(F,D)
                            & r1_tarski(F,E) ) ) ) ) ) ) ).

fof(dt_k1_closure2,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_m1_pboole,axiom,
    ! [A,B] :
      ( m1_pboole(B,A)
     => ( v1_relat_1(B)
        & v1_funct_1(B) ) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(existence_m1_pboole,axiom,
    ! [A] :
    ? [B] : m1_pboole(B,A) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : m1_subset_1(B,A) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).

fof(fc1_xboole_0,axiom,
    v1_xboole_0(k1_xboole_0) ).

fof(fc2_closure2,axiom,
    ! [A,B] :
      ( m1_pboole(B,A)
     => ( ~ v1_xboole_0(k1_closure2(A,B))
        & v1_fraenkel(k1_closure2(A,B))
        & v1_pralg_2(k1_closure2(A,B)) ) ) ).

fof(rc1_closure2,axiom,
    ? [A] :
      ( v1_xboole_0(A)
      & v1_relat_1(A)
      & v1_funct_1(A)
      & v2_funct_1(A)
      & v1_finset_1(A)
      & v1_fraenkel(A) ) ).

fof(rc1_finset_1,axiom,
    ? [A] :
      ( ~ v1_xboole_0(A)
      & v1_finset_1(A) ) ).

fof(rc1_funct_1,axiom,
    ? [A] :
      ( v1_relat_1(A)
      & v1_funct_1(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : v1_xboole_0(A) ).

fof(rc2_closure2,axiom,
    ! [A,B] :
      ( m1_pboole(B,A)
     => ? [C] :
          ( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
          & ~ v1_xboole_0(C)
          & v1_fraenkel(C)
          & v1_pralg_2(C) ) ) ).

fof(rc2_funct_1,axiom,
    ? [A] :
      ( v1_relat_1(A)
      & v1_xboole_0(A)
      & v1_funct_1(A) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
      & v1_xboole_0(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ v1_xboole_0(A) ).

fof(rc3_closure2,axiom,
    ! [A,B] :
      ( m1_pboole(B,A)
     => ? [C] :
          ( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
          & v1_xboole_0(C)
          & v1_relat_1(C)
          & v1_funct_1(C)
          & v2_funct_1(C)
          & v1_finset_1(C)
          & v1_fraenkel(C) ) ) ).

fof(rc3_finset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B)
          & v1_finset_1(B) ) ) ).

fof(rc3_funct_1,axiom,
    ? [A] :
      ( v1_relat_1(A)
      & v1_funct_1(A)
      & v2_funct_1(A) ) ).

fof(rc4_finset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B)
          & v1_finset_1(B) ) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : r1_tarski(A,A) ).

fof(reflexivity_r2_closure3,axiom,
    ! [A,B,C,D] :
      ( ( m1_pboole(B,A)
        & m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
        & m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
     => r2_closure3(A,B,C,C) ) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => m1_subset_1(A,B) ) ).

fof(t1_xboole_1,axiom,
    ! [A,B,C] :
      ( ( r1_tarski(A,B)
        & r1_tarski(B,C) )
     => r1_tarski(A,C) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,B)
     => ( v1_xboole_0(B)
        | r2_hidden(A,B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,k1_zfmisc_1(B))
    <=> r1_tarski(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C)) )
     => m1_subset_1(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C))
        & v1_xboole_0(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => A = k1_xboole_0 ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( r2_hidden(A,B)
        & v1_xboole_0(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( v1_xboole_0(A)
        & A != B
        & v1_xboole_0(B) ) ).

%------------------------------------------------------------------------------