TPTP Problem File: ALG072+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ALG072+1 : TPTP v9.0.0. Released v2.7.0.
% Domain : General Algebra
% Problem : Loops 5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-4
% Version : Especial.
% English :
% Refs : [Mei03] Meier (2003), Email to G.Sutcliffe
% : [CM+04] Colton et al. (2004), Automatic Generation of Classifi
% Source : [Mei03]
% Names :
% Status : Theorem
% Rating : 0.58 v8.2.0, 0.50 v7.5.0, 0.59 v7.4.0, 0.40 v7.3.0, 0.45 v7.2.0, 0.48 v7.0.0, 0.50 v6.4.0, 0.46 v6.3.0, 0.54 v6.2.0, 0.67 v6.0.0, 0.65 v5.5.0, 0.74 v5.4.0, 0.75 v5.3.0, 0.81 v5.2.0, 0.65 v4.0.1, 0.57 v4.0.0, 0.58 v3.7.0, 0.60 v3.5.0, 0.58 v3.3.0, 0.71 v3.2.0, 0.67 v2.7.0
% Syntax : Number of formulae : 9 ( 2 unt; 0 def)
% Number of atoms : 44 ( 16 equ)
% Maximal formula atoms : 14 ( 4 avg)
% Number of connectives : 41 ( 6 ~; 2 |; 14 &)
% ( 0 <=>; 19 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 22 ( 18 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(ax1,axiom,
sorti1(unit1) ).
fof(ax2,axiom,
( ! [U] :
( sorti1(U)
=> ( op1(unit1,U) = U
& op1(U,unit1) = U ) )
& ? [V] :
( sorti1(V)
& unit1 = V ) ) ).
fof(ax3,axiom,
sorti2(unit2) ).
fof(ax4,axiom,
( ! [U] :
( sorti2(U)
=> ( op2(unit2,U) = U
& op2(U,unit2) = U ) )
& ? [V] :
( sorti2(V)
& unit2 = V ) ) ).
fof(ax5,axiom,
! [U] :
( sorti1(U)
=> ! [V] :
( sorti1(V)
=> sorti1(op1(U,V)) ) ) ).
fof(ax6,axiom,
! [U] :
( sorti2(U)
=> ! [V] :
( sorti2(V)
=> sorti2(op2(U,V)) ) ) ).
fof(ax7,axiom,
? [U] :
( sorti1(U)
& ! [V] :
( sorti1(V)
=> ! [W] :
( sorti1(W)
=> ( op1(V,W) != U
| ( op1(V,U) = W
& U != unit1 ) ) ) ) ) ).
fof(ax8,axiom,
~ ? [U] :
( sorti2(U)
& ! [V] :
( sorti2(V)
=> ! [W] :
( sorti2(W)
=> ( op2(V,W) != U
| ( op2(V,U) = W
& U != unit2 ) ) ) ) ) ).
fof(co1,conjecture,
( ( ! [U] :
( sorti1(U)
=> sorti2(h(U)) )
& ! [V] :
( sorti2(V)
=> sorti1(j(V)) ) )
=> ~ ( ! [W] :
( sorti1(W)
=> ! [X] :
( sorti1(X)
=> h(op1(W,X)) = op2(h(W),h(X)) ) )
& ! [Y] :
( sorti2(Y)
=> ! [Z] :
( sorti2(Z)
=> j(op2(Y,Z)) = op1(j(Y),j(Z)) ) )
& ! [X1] :
( sorti2(X1)
=> h(j(X1)) = X1 )
& ! [X2] :
( sorti1(X2)
=> j(h(X2)) = X2 ) ) ) ).
%--------------------------------------------------------------------------