TPTP Problem File: AGT027^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : AGT027^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Agents
% Problem : Two different degrees of belief
% Version : [Ben11] axioms.
% English :
% Refs : [Ben11] Benzmueller (2011), Email to Geoff Sutcliffe
% : [Ben11] Benzmueller (2011), Combining and Automating Classical
% Source : [Ben11]
% Names : Ex_10_1 [Ben11]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.60 v8.2.0, 0.54 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.78 v7.2.0, 0.75 v7.0.0, 0.71 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.43 .0, 0.86 v5.5.0, 0.67 v5.4.0, 0.80 v5.3.0, 1.00 v5.2.0
% Syntax : Number of formulae : 85 ( 31 unt; 40 typ; 31 def)
% Number of atoms : 211 ( 36 equ; 0 cnn)
% Maximal formula atoms : 11 ( 4 avg)
% Number of connectives : 255 ( 4 ~; 4 |; 8 &; 231 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 189 ( 189 >; 0 *; 0 +; 0 <<)
% Number of symbols : 50 ( 48 usr; 12 con; 0-3 aty)
% Number of variables : 97 ( 62 ^; 29 !; 6 ?; 97 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include embedding of quantified multimodal logic in simple type theory
include('Axioms/LCL013^0.ax').
%------------------------------------------------------------------------------
thf(a1,type,
a1: $i > $i > $o ).
thf(a2,type,
a2: $i > $i > $o ).
thf(a,type,
a: mu ).
thf(tom,type,
tom: mu ).
thf(p,type,
p: mu > $i > $o ).
thf(q,type,
q: mu > $i > $o ).
thf(r,type,
r: mu > $i > $o ).
thf(s,type,
s: mu > $i > $o ).
thf(axiom_a1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( mbox @ a2 @ ( mimplies @ ( mdia @ a2 @ ( q @ X ) ) @ ( p @ X ) ) ) ) ) ).
thf(axiom_a2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( mbox @ a1 @ ( mimplies @ ( mand @ ( r @ X ) @ ( s @ X ) ) @ ( q @ X ) ) ) ) ) ).
thf(axiom_a3,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( mbox @ a1 @ ( mimplies @ ( s @ X ) @ ( mbox @ a1 @ ( r @ X ) ) ) ) ) ) ).
thf(axiom_a4,axiom,
mvalid @ ( mdia @ a1 @ ( s @ a ) ) ).
thf(axiom_D_for_a1,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mbox @ a1 @ Phi ) @ ( mnot @ ( mbox @ a1 @ ( mnot @ Phi ) ) ) ) ) ) ).
thf(axiom_D_for_a2,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mbox @ a2 @ Phi ) @ ( mnot @ ( mbox @ a2 @ ( mnot @ Phi ) ) ) ) ) ) ).
thf(axiom_I_for_a2_a1,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mbox @ a2 @ Phi ) @ ( mbox @ a1 @ Phi ) ) ) ) ).
thf(axiom_4s_for_a1_a1,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mbox @ a1 @ Phi ) @ ( mbox @ a1 @ ( mbox @ a1 @ Phi ) ) ) ) ) ).
thf(axiom_4s_for_a1_a2,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mbox @ a1 @ Phi ) @ ( mbox @ a2 @ ( mbox @ a1 @ Phi ) ) ) ) ) ).
thf(axiom_4s_for_a2_a1,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mbox @ a2 @ Phi ) @ ( mbox @ a1 @ ( mbox @ a2 @ Phi ) ) ) ) ) ).
thf(axiom_4s_for_a2_a2,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mbox @ a2 @ Phi ) @ ( mbox @ a2 @ ( mbox @ a2 @ Phi ) ) ) ) ) ).
thf(axiom_5_for_a1,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mnot @ ( mbox @ a1 @ Phi ) ) @ ( mbox @ a1 @ ( mnot @ ( mbox @ a1 @ Phi ) ) ) ) ) ) ).
thf(axiom_5_for_a2,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mnot @ ( mbox @ a2 @ Phi ) ) @ ( mbox @ a2 @ ( mnot @ ( mbox @ a2 @ Phi ) ) ) ) ) ) ).
thf(conj,conjecture,
( mvalid
@ ( mexists_ind
@ ^ [X: mu] : ( mbox @ a1 @ ( p @ X ) ) ) ) ).
%------------------------------------------------------------------------------