TPTP Documents File: ProblemList


-------------------------------------------------------------------------------
Domain AGT = Agents
76 problems (42 abstract), 0 CNF, 53 FOF, 0 TFF, 23 THF
-------------------------------------------------------------------------------
AGT001 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT002 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT003 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT004 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT005 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT006 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT007 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT008 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT009 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT010 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT011 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT012 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT013 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT014 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT015 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT016 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT017 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT018 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT019 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT020 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT021 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT022 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT023 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT024 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT025 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT026 ( -0 +2 _0 ^0) Problem for the CPlanT system
AGT027 ( -0 +0 _0 ^2) Two different degrees of belief
AGT028 ( -0 +0 _0 ^2) Five different degrees of belief - agent 4
AGT029 ( -0 +0 _0 ^1) Five different degrees of belief - agent 2
AGT030 ( -0 +0 _0 ^1) Five different degrees of belief - agent 1
AGT031 ( -0 +0 _0 ^2) Someone very much likes someone else
AGT032 ( -0 +0 _0 ^2) Someone likes someone else
AGT033 ( -0 +0 _0 ^2) Someone possibly likes someone else
AGT034 ( -0 +0 _0 ^2) Jan very much likes cola
AGT035 ( -0 +0 _0 ^2) Jan likes cola
AGT036 ( -0 +0 _0 ^1) Piotr likes pepsi
AGT037 ( -0 +0 _0 ^2) Jan possibly likes cola
AGT038 ( -0 +0 _0 ^1) Piotr possible likes pepsi
AGT039 ( -0 +0 _0 ^1) Jan possible likes pepsi
AGT040 ( -0 +0 _0 ^1) Piotr possibly likes cola
AGT041 ( -0 +0 _0 ^1) Piotr possibly likes beer
AGT042 ( -0 +1 _0 ^0) Axioms for CPlanT
-------------------------------------------------------------------------------
Domain ALG = General Algebra
545 problems (444 abstract), 171 CNF, 286 FOF, 0 TFF, 88 THF
-------------------------------------------------------------------------------
ALG001 ( -3 +0 _0 ^1) The composition of homomorphisms is a homomorphism
ALG002 ( -1 +0 _0 ^0) In an ordered field, if X > 0 then X^-1 > 0
ALG003 ( -1 +0 _0 ^0) Cancellative medial algebras
ALG004 ( -1 +0 _0 ^0) Cancellative medial algebras satisfy the quotient condition.
ALG005 ( -1 +0 _0 ^0) Associativity of intersection in terms of set difference.
ALG006 ( -1 +0 _0 ^0) Simplification of Kalman's set difference basis (part 1)
ALG007 ( -1 +0 _0 ^0) Simplification of Kalman's set difference basis (part 2)
ALG008 ( -1 +0 _0 ^0) TC + right identity does not give RC.
ALG009 ( -1 +0 _0 ^0) Abstract algebra axioms, based on Godel set theory
ALG010 ( -1 +0 _0 ^0) Prove J follows from HBCK
ALG011 ( -1 +0 _0 ^0) Partition a monoid into 2 partitions
ALG012 ( -1 +0 _0 ^0) Partition a monoid into 3 partitions
ALG013 ( -1 +0 _0 ^0) Partition a monoid into 4 partitions
ALG014 ( -0 +1 _0 ^1) Groups 4: CPROPS-COVERING-PROBLEM-1
ALG015 ( -0 +1 _0 ^1) Groups 4: CPROPS-ISO-COMPLETE-PROBLEM-1
ALG016 ( -0 +1 _0 ^1) Groups 4: CPROPS-ISO-COMPLETE-PROBLEM-2
ALG017 ( -0 +1 _0 ^1) Groups 4: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-1
ALG018 ( -0 +1 _0 ^1) Groups 4: CPROPS-SORTED-DISCRIMINANT-PROBLEM-1
ALG019 ( -0 +1 _0 ^0) Groups 4: CPROPS-SORTED-DISCRIMINANT-PROBLEM-2
ALG020 ( -0 +1 _0 ^1) Groups 4: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-1
ALG021 ( -0 +1 _0 ^1) Groups 4: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-1
ALG022 ( -0 +1 _0 ^1) Groups 4: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-2
ALG023 ( -0 +1 _0 ^1) Groups 4: VERIFY-GEN-SYSES-PROBLEM-1
ALG024 ( -0 +1 _0 ^0) Groups 4: VERIFY-GEN-SYSES-PROBLEM-2
ALG025 ( -0 +1 _0 ^0) Groups 6: CPROPS-COVERING-PROBLEM-1
ALG026 ( -0 +1 _0 ^0) Groups 6: CPROPS-ISO-COMPLETE-PROBLEM-1
ALG027 ( -0 +1 _0 ^0) Groups 6: CPROPS-ISO-COMPLETE-PROBLEM-2
ALG028 ( -0 +1 _0 ^0) Groups 6: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-1
ALG029 ( -0 +1 _0 ^0) Groups 6: CPROPS-SORTED-DISCRIMINANT-PROBLEM-1
ALG030 ( -0 +1 _0 ^0) Groups 6: CPROPS-SORTED-DISCRIMINANT-PROBLEM-2
ALG031 ( -0 +1 _0 ^0) Groups 6: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-1
ALG032 ( -0 +1 _0 ^0) Groups 6: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-1
ALG033 ( -0 +1 _0 ^0) Groups 6: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-2
ALG034 ( -0 +1 _0 ^0) Groups 6: VERIFY-GEN-SYSES-PROBLEM-1
ALG035 ( -0 +1 _0 ^0) Groups 6: VERIFY-GEN-SYSES-PROBLEM-2
ALG036 ( -0 +1 _0 ^0) Loops 4: CPROPS-COVERING-PROBLEM-1
ALG037 ( -0 +1 _0 ^0) Loops 4: CPROPS-ISO-COMPLETE-PROBLEM-1
ALG038 ( -0 +1 _0 ^0) Loops 4: CPROPS-ISO-COMPLETE-PROBLEM-2
ALG039 ( -0 +1 _0 ^0) Loops 4: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-1
ALG040 ( -0 +1 _0 ^0) Loops 4: CPROPS-SORTED-DISCRIMINANT-PROBLEM-1
ALG041 ( -0 +1 _0 ^0) Loops 4: CPROPS-SORTED-DISCRIMINANT-PROBLEM-2
ALG042 ( -0 +1 _0 ^0) Loops 4: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-1
ALG043 ( -0 +1 _0 ^0) Loops 4: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-1
ALG044 ( -0 +1 _0 ^0) Loops 4: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-2
ALG045 ( -0 +1 _0 ^0) Loops 4: VERIFY-GEN-SYSES-PROBLEM-1
ALG046 ( -0 +1 _0 ^0) Loops 4: VERIFY-GEN-SYSES-PROBLEM-2
ALG047 ( -0 +1 _0 ^0) Loops 5: CPROPS-COVERING-PROBLEM-1
ALG048 ( -0 +1 _0 ^0) Loops 5: CPROPS-ISO-COMPLETE-PROBLEM-1
ALG049 ( -0 +1 _0 ^0) Loops 5: CPROPS-ISO-COMPLETE-PROBLEM-2
ALG050 ( -0 +1 _0 ^0) Loops 5: CPROPS-ISO-COMPLETE-PROBLEM-3
ALG051 ( -0 +1 _0 ^0) Loops 5: CPROPS-ISO-COMPLETE-PROBLEM-4
ALG052 ( -0 +1 _0 ^0) Loops 5: CPROPS-ISO-COMPLETE-PROBLEM-5
ALG053 ( -0 +1 _0 ^0) Loops 5: CPROPS-ISO-COMPLETE-PROBLEM-6
ALG054 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-1
ALG055 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-10
ALG056 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-11
ALG057 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-12
ALG058 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-13
ALG059 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-14
ALG060 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-15
ALG061 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-2
ALG062 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-3
ALG063 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-4
ALG064 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-5
ALG065 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-6
ALG066 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-7
ALG067 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-8
ALG068 ( -0 +1 _0 ^0) Loops 5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-9
ALG069 ( -0 +1 _0 ^0) Loops 5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-1
ALG070 ( -0 +1 _0 ^0) Loops 5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-2
ALG071 ( -0 +1 _0 ^0) Loops 5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-3
ALG072 ( -0 +1 _0 ^0) Loops 5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-4
ALG073 ( -0 +1 _0 ^0) Loops 5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-5
ALG074 ( -0 +1 _0 ^0) Loops 5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-6
ALG075 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-1
ALG076 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-10
ALG077 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-11
ALG078 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-12
ALG079 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-13
ALG080 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-14
ALG081 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-15
ALG082 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-2
ALG083 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-3
ALG084 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-4
ALG085 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-5
ALG086 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-6
ALG087 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-7
ALG088 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-8
ALG089 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-9
ALG090 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-1
ALG091 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-2
ALG092 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-3
ALG093 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-4
ALG094 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-5
ALG095 ( -0 +1 _0 ^0) Loops 5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-6
ALG096 ( -0 +1 _0 ^0) Loops 5: VERIFY-GEN-SYSES-PROBLEM-1
ALG097 ( -0 +1 _0 ^0) Loops 5: VERIFY-GEN-SYSES-PROBLEM-2
ALG098 ( -0 +1 _0 ^0) Loops 5: VERIFY-GEN-SYSES-PROBLEM-3
ALG099 ( -0 +1 _0 ^0) Loops 5: VERIFY-GEN-SYSES-PROBLEM-4
ALG100 ( -0 +1 _0 ^0) Loops 5: VERIFY-GEN-SYSES-PROBLEM-5
ALG101 ( -0 +1 _0 ^0) Loops 5: VERIFY-GEN-SYSES-PROBLEM-6
ALG102 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-100
ALG103 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-101
ALG104 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-102
ALG105 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-75
ALG106 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-76
ALG107 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-77
ALG108 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-78
ALG109 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-79
ALG110 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-80
ALG111 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-81
ALG112 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-82
ALG113 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-83
ALG114 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-84
ALG115 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-85
ALG116 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-86
ALG117 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-87
ALG118 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-88
ALG119 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-89
ALG120 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-90
ALG121 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-91
ALG122 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-92
ALG123 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-93
ALG124 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-94
ALG125 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-95
ALG126 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-96
ALG127 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-97
ALG128 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-98
ALG129 ( -0 +1 _0 ^0) Quasigroups 4: PROP-ISO-COMPLETE-99
ALG130 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-40
ALG131 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-41
ALG132 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-42
ALG133 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-43
ALG134 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-44
ALG135 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-45
ALG136 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-46
ALG137 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-47
ALG138 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-48
ALG139 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-49
ALG140 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-50
ALG141 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-51
ALG142 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-52
ALG143 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-53
ALG144 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-54
ALG145 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-55
ALG146 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-56
ALG147 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-57
ALG148 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-58
ALG149 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-59
ALG150 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-60
ALG151 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-61
ALG152 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-62
ALG153 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-63
ALG154 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-64
ALG155 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-65
ALG156 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-66
ALG157 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-67
ALG158 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-68
ALG159 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-69
ALG160 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-70
ALG161 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-71
ALG162 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-72
ALG163 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-73
ALG164 ( -0 +1 _0 ^0) Quasigroups 4: PROP-SATS-GEN-SYS-74
ALG165 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-COVERING-PROBLEM-1
ALG166 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-ISO-COMPLETE-PROBLEM-1
ALG167 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-ISO-COMPLETE-PROBLEM-2
ALG168 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-ISO-COMPLETE-PROBLEM-3
ALG169 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-ISO-COMPLETE-PROBLEM-4
ALG170 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-1
ALG171 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-2
ALG172 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-3
ALG173 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-4
ALG174 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-5
ALG175 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-6
ALG176 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-SORTED-DISCRIMINANT-PROBLEM-1
ALG177 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-SORTED-DISCRIMINANT-PROBLEM-2
ALG178 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-SORTED-DISCRIMINANT-PROBLEM-3
ALG179 ( -0 +1 _0 ^0) Quasigroups 5 QG4: CPROPS-SORTED-DISCRIMINANT-PROBLEM-4
ALG180 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-1
ALG181 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-2
ALG182 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-3
ALG183 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-4
ALG184 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-5
ALG185 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-6
ALG186 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-1
ALG187 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-2
ALG188 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-3
ALG189 ( -0 +1 _0 ^0) Quasigroups 5 QG4: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-4
ALG190 ( -0 +1 _0 ^0) Quasigroups 5 QG4: VERIFY-GEN-SYSES-PROBLEM-1
ALG191 ( -0 +1 _0 ^0) Quasigroups 5 QG4: VERIFY-GEN-SYSES-PROBLEM-2
ALG192 ( -0 +1 _0 ^0) Quasigroups 5 QG4: VERIFY-GEN-SYSES-PROBLEM-3
ALG193 ( -0 +1 _0 ^0) Quasigroups 5 QG4: VERIFY-GEN-SYSES-PROBLEM-4
ALG194 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-COVERING-PROBLEM-1
ALG195 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-ISO-COMPLETE-PROBLEM-1
ALG196 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-ISO-COMPLETE-PROBLEM-2
ALG197 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-ISO-COMPLETE-PROBLEM-3
ALG198 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-1
ALG199 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-2
ALG200 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-PAIRWISE-EXCLUSIVE-PROBLEM-3
ALG201 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-1
ALG202 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-2
ALG203 ( -0 +1 _0 ^0) Quasigroups 7 QG5: CPROPS-SORTED-DISCRIMINANT-PROBLEM-3
ALG204 ( -0 +1 _0 ^0) Quasigroups 7 QG5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-1
ALG205 ( -0 +1 _0 ^0) Quasigroups 7 QG5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-2
ALG206 ( -0 +1 _0 ^0) Quasigroups 7 QG5: REPRESENTATIVES-PAIRWISE-NOT-ISO-PROBLEM-3
ALG207 ( -0 +1 _0 ^0) Quasigroups 7 QG5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-1
ALG208 ( -0 +1 _0 ^0) Quasigroups 7 QG5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-2
ALG209 ( -0 +1 _0 ^0) Quasigroups 7 QG5: REPRESENTATIVES-SATISFY-PROPS-PROBLEM-3
ALG210 ( -0 +2 _0 ^0) Star-algebras are closed under multiplication
ALG211 ( -0 +1 _0 ^0) Vector spaces and bases
ALG212 ( -0 +1 _0 ^0) Distributivity, long version
ALG213 ( -0 +1 _0 ^0) Distributivity, short version
ALG214 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T02
ALG215 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T04
ALG216 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T06
ALG217 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T11
ALG218 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T12
ALG219 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T14
ALG220 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T16
ALG221 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T17
ALG222 ( -0 +4 _0 ^0) Linear Independence in Right Module over Domain T18
ALG223 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T04
ALG224 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T05
ALG225 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T06
ALG226 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T07
ALG227 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T08
ALG228 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T09
ALG229 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T10
ALG230 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T11
ALG231 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T12
ALG232 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T13
ALG233 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T14
ALG234 ( -0 +4 _0 ^0) Algebraic Operation on Subsets of Many Sorted Sets T16
ALG235 ( -1 +0 _0 ^0) Short equational base for two varieties of groupoids - part 1a
ALG236 ( -1 +0 _0 ^0) Short equational base for two varieties of groupoids - part 1b
ALG237 ( -1 +0 _0 ^0) Selfdistributive groupoids are symmetric-by-medial - part 1
ALG238 ( -1 +0 _0 ^0) Selfdistributive groupoids are symmetric-by-medial - part 2
ALG239 ( -1 +0 _0 ^0) Selfdistributive groupoids are symmetric-by-medial - part 3
ALG240 ( -1 +0 _0 ^0) Selfdistributive groupoids are symmetric-by-medial - part 4
ALG241 ( -1 +0 _0 ^0) Selfdistributive groupoids are symmetric-by-medial - part 5
ALG242 ( -1 +0 _0 ^0) Idempotent selfdistributive groupoids are symmetric-by-medial - 1
ALG243 ( -1 +0 _0 ^0) Idempotent selfdistributive groupoids are symmetric-by-medial - 2
ALG244 ( -1 +0 _0 ^0) Idempotent selfdistributive groupoids are symmetric-by-medial - 3
ALG245 ( -1 +0 _0 ^0) Idempotent selfdistributive groupoids are symmetric-by-medial - 4
ALG246 ( -1 +0 _0 ^0) Axioms of SBL algebras are not independent
ALG247 ( -0 +0 _0 ^1) Push property lemma 0
ALG248 ( -0 +0 _0 ^3) Push property lemma 1
ALG249 ( -0 +0 _0 ^1) Push property lemma 2
ALG250 ( -0 +0 _0 ^1) Push property lemma 3
ALG251 ( -0 +0 _0 ^3) Push property
ALG252 ( -0 +0 _0 ^2) Induction lemma
ALG253 ( -0 +0 _0 ^2) Induction
ALG254 ( -0 +0 _0 ^2) M is a monoid and T is an M-set
ALG255 ( -0 +0 _0 ^1) T is an M-set
ALG256 ( -0 +0 _0 ^2) HOASap is injective 1
ALG257 ( -0 +0 _0 ^2) HOASap is injective 2
ALG258 ( -0 +0 _0 ^2) HOASlam is injective
ALG259 ( -0 +0 _0 ^2) HOASlam not ap
ALG260 ( -0 +0 _0 ^2) HOASlam not var
ALG261 ( -0 +0 _0 ^2) HOASap not var
ALG262 ( -0 +0 _0 ^1) HOAS induction lemma 0
ALG263 ( -0 +0 _0 ^2) HOAS induction lemma 1
ALG264 ( -0 +0 _0 ^2) HOAS induction lemma 2
ALG265 ( -0 +0 _0 ^1) HOAS induction lemma 3aa
ALG266 ( -0 +0 _0 ^2) HOAS induction lemma 3a
ALG267 ( -0 +0 _0 ^2) HOAS induction lemma 3b
ALG268 ( -0 +0 _0 ^6) HOAS induction lemma 3
ALG269 ( -0 +0 _0 ^4) HOAS induction
ALG270 ( -0 +0 _0 ^1) TPS problem THM23
ALG271 ( -0 +0 _0 ^1) TPS problem EQUIV-01-03
ALG272 ( -0 +0 _0 ^1) TPS problem EQUIV-01-02
ALG273 ( -0 +0 _0 ^1) TPS problem EQUIV-02-03
ALG274 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG275 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG276 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG277 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG278 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG279 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG280 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG281 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG282 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG283 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG284 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG285 ( -0 +0 _0 ^1) TPS problem from GRP-THMS
ALG286 ( -0 +0 _0 ^1) TPS problem from PAIRING-UNPAIRING-ALG-THMS
ALG287 ( -0 +0 _0 ^1) TPS problem from PAIRING-UNPAIRING-ALG-THMS
ALG288 ( -0 +0 _0 ^1) TPS problem from PU-LAMBDA-MODEL-THMS
ALG289 ( -0 +0 _0 ^1) TPS problem from PU-LAMBDA-MODEL-THMS
ALG290 ( -0 +0 _0 ^1) TPS problem from PU-LAMBDA-MODEL-THMS
ALG291 ( -0 +0 _0 ^1) TPS problem from PU-LAMBDA-MODEL-THMS
ALG292 ( -0 +0 _0 ^1) TPS problem from PU-LAMBDA-MODEL-THMS
ALG293 ( -0 +0 _0 ^1) TPS problem from PU-LAMBDA-MODEL-THMS
ALG294 ( -0 +0 _0 ^1) TPS problem from PU-LAMBDA-MODEL-THMS
ALG295 ( -0 +0 _0 ^1) TPS problem from SEQUENTIAL-PU-ALG-THMS
ALG296 ( -0 +0 _0 ^1) TPS problem from SEQUENTIAL-PU-ALG-THMS
ALG297 ( -0 +0 _0 ^1) TPS problem from S-SEQ-THMS
ALG298 ( -0 +0 _0 ^1) TPS problem THM270
ALG299 ( -1 +0 _0 ^0) An equational theory with no nontrivial finite models
ALG300 ( -1 +0 _0 ^0) Identity with no nontrivial finite model
ALG301 ( -1 +0 _0 ^0) Identity with no nontrivial finite model
ALG302 ( -1 +0 _0 ^0) Austin's identity
ALG303 ( -1 +0 _0 ^0) Random graph 1, omit12 polymorphism
ALG304 ( -1 +0 _0 ^0) Random graph 2, omit12 polymorphism
ALG305 ( -1 +0 _0 ^0) Random graph 3, nu5 polymorphism
ALG306 ( -1 +0 _0 ^0) Random graph 4, edge5 polymorphism
ALG307 ( -1 +0 _0 ^0) Random graph 5, nu5 polymorphism
ALG308 ( -1 +0 _0 ^0) Random graph 6, nu5 polymorphism
ALG309 ( -1 +0 _0 ^0) Random graph 7, nu5 polymorphism
ALG310 ( -1 +0 _0 ^0) Random graph 8, nu5 polymorphism
ALG311 ( -1 +0 _0 ^0) Random graph 9, nu5 polymorphism
ALG312 ( -1 +0 _0 ^0) Random graph 10, nu5 polymorphism
ALG313 ( -1 +0 _0 ^0) Random graph 11, nu5 polymorphism
ALG314 ( -1 +0 _0 ^0) Random graph 12, nu5 polymorphism
ALG315 ( -1 +0 _0 ^0) Random graph 13, nu5 polymorphism
ALG316 ( -1 +0 _0 ^0) Random graph 14, siggers polymorphism
ALG317 ( -1 +0 _0 ^0) Random graph 15, nu5 polymorphism
ALG318 ( -1 +0 _0 ^0) Random graph 16, omit12 polymorphism
ALG319 ( -1 +0 _0 ^0) Random graph 17, siggers polymorphism
ALG320 ( -1 +0 _0 ^0) Random graph 18, nu5 polymorphism 
ALG321 ( -1 +0 _0 ^0) Random graph 19, nu5 polymorphism
ALG322 ( -1 +0 _0 ^0) Random graph 20, nu5 polymorphism
ALG323 ( -1 +0 _0 ^0) Random graph 21, nu4 polymorphism
ALG324 ( -1 +0 _0 ^0) Random graph 22, edge5 polymorphism
ALG325 ( -1 +0 _0 ^0) Random graph 23, wnu4 polymorphism
ALG326 ( -1 +0 _0 ^0) Random graph 24, omit12 polymorphism
ALG327 ( -1 +0 _0 ^0) Random graph 25, omit12 polymorphism
ALG328 ( -1 +0 _0 ^0) Random graph 26, wnu5 polymorphism
ALG329 ( -1 +0 _0 ^0) Random graph 27, nu5 polymorphism
ALG330 ( -1 +0 _0 ^0) Random graph 28, nu5 polymorphism
ALG331 ( -1 +0 _0 ^0) Random graph 29, siggers polymorphism
ALG332 ( -1 +0 _0 ^0) Random graph 30, wnu4 polymorphism
ALG333 ( -1 +0 _0 ^0) Random graph 31, wnu5 polymorphism
ALG334 ( -1 +0 _0 ^0) Random graph 32, omit12 polymorphism
ALG335 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0018_1
ALG336 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0027_9
ALG337 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0042_34
ALG338 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0049_31
ALG339 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0062_3
ALG340 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0074_21
ALG341 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0084_54
ALG342 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0090_22
ALG343 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0111_1
ALG344 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0120_1
ALG345 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0127_1
ALG346 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0131_1
ALG347 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0135_1
ALG348 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0150_5
ALG349 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0160_5
ALG350 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0166_5
ALG351 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0174_31
ALG352 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0184_1
ALG353 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0196_53
ALG354 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0212_59
ALG355 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0222_7
ALG356 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0232_7
ALG357 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0238_7
ALG358 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0242_7
ALG359 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0250_7
ALG360 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0257_17
ALG361 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0277_21
ALG362 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0285_83
ALG363 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0291_17
ALG364 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0301_5
ALG365 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0312_5
ALG366 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0325_55
ALG367 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0337_3
ALG368 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0348_33
ALG369 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0356_50
ALG370 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0367_58
ALG371 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0380_7
ALG372 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0387_73
ALG373 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0393_80
ALG374 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0407_9
ALG375 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0421_93
ALG376 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0432_51
ALG377 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0445_113
ALG378 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0456_9
ALG379 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0464_40
ALG380 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0473_3
ALG381 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0484_3
ALG382 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0501_62
ALG383 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0509_69
ALG384 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0517_33
ALG385 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0525_20
ALG386 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0537_98
ALG387 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0546_36
ALG388 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0559_3
ALG389 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0581_7
ALG390 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0585_7
ALG391 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0591_7
ALG392 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0604_21
ALG393 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0615_5
ALG394 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0619_5
ALG395 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0638_40
ALG396 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0647_46
ALG397 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0653_38
ALG398 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0660_7
ALG399 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0670_62
ALG400 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0677_41
ALG401 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0689_50
ALG402 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0699_9
ALG403 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0708_37
ALG404 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0715_65
ALG405 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0723_9
ALG406 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0729_37
ALG407 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0735_17
ALG408 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0740_9
ALG409 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0745_66
ALG410 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0754_44
ALG411 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0767_1
ALG412 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0778_66
ALG413 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0789_55
ALG414 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0795_34
ALG415 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0813_1
ALG416 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0836_41
ALG417 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0843_40
ALG418 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0849_13
ALG419 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0857_15
ALG420 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0867_42
ALG421 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0876_15
ALG422 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0882_15
ALG423 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0886_15
ALG424 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0891_43
ALG425 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0902_34
ALG426 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0913_7
ALG427 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0923_9
ALG428 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0931_50
ALG429 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0939_29
ALG430 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0951_49
ALG431 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0958_5
ALG432 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0980_75
ALG433 ( -1 +0 _0 ^0) Fundamental theorem of algebra 0993_34
ALG434 ( -1 +0 _0 ^0) Fundamental theorem of algebra 1005_24
ALG435 ( -1 +0 _0 ^0) Fundamental theorem of algebra 1025_27
ALG436 ( -1 +0 _0 ^0) Fundamental theorem of algebra 1049_33
ALG437 ( -1 +0 _0 ^0) Fundamental theorem of algebra 1077_42
ALG438 ( -1 +0 _0 ^0) Fundamental theorem of algebra 1105_3
ALG439 ( -1 +0 _0 ^0) Fundamental theorem of algebra 1122_62
ALG440 ( -1 +0 _0 ^0) Malcev, wnu2, wnu3 implies majority
ALG441 ( -1 +0 _0 ^0) Malcev, wnu2, wnu4 implies majority
ALG442 ( -1 +0 _0 ^0) Malcev, wnu3, wnu4 implies majority
ALG443 ( -0 +1 _0 ^0) Axioms for Median algebra
ALG444 ( -0 +0 _0 ^1) Axioms for Untyped lambda sigma calculus
-------------------------------------------------------------------------------
Domain ANA = Analysis
178 problems (129 abstract), 91 CNF, 0 FOF, 0 TFF, 87 THF
-------------------------------------------------------------------------------
ANA001 ( -1 +0 _0 ^0) Attaining minimum (or maximum) value
ANA002 ( -4 +0 _0 ^0) Intermediate value theorem
ANA003 ( -4 +0 _0 ^0) Lemma 1 for the sum of two continuous functions is continuous
ANA004 ( -5 +0 _0 ^0) Lemma 2 for the sum of two continuous functions is continuous
ANA005 ( -5 +0 _0 ^0) The sum of two continuous functions is continuous
ANA006 ( -2 +0 _0 ^0) Analysis (limits) axioms for continuous functions
ANA007 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA009 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA010 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA012 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA013 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA014 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA015 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA016 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA017 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA018 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA019 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA020 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA021 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA022 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA023 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA024 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA025 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA026 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA027 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA028 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA029 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA030 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA031 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA032 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA033 ( -1 +0 _0 ^0) Problem about Big-O notation
ANA034 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA035 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA036 ( -1 +0 _0 ^0) Problem about Big-O notation
ANA037 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA038 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA039 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA041 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA042 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA043 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA044 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA045 ( -2 +0 _0 ^0) Problem about Big-O notation
ANA046 ( -0 +0 _0 ^1) Chart System Math II+B Blue Book, Problem 08CB2P372
ANA047 ( -0 +0 _0 ^1) Chart System Math II+B Blue Book, Problem 08CB2R159
ANA048 ( -0 +0 _0 ^1) Chart System Math II+B Red Book, Problem 08CR2E074
ANA049 ( -0 +0 _0 ^1) Chart System Math II+B Red Book, Problem 08CR2P235
ANA050 ( -0 +0 _0 ^1) Chart System Math III+C Blue Book, Problem 09CB3P325
ANA051 ( -0 +0 _0 ^1) Chart System Math III+C Blue Book, Problem 09CB3P348
ANA052 ( -0 +0 _0 ^1) Chart System Math III+C Red Book, Problem 09CR3R137
ANA053 ( -0 +0 _0 ^1) Chart System Math III+C White Book, Problem 09CW3E339
ANA054 ( -0 +0 _0 ^1) Chart System Math III+C Yellow Book, Problem 09CY3C036
ANA055 ( -0 +0 _0 ^1) Chart System Math III+C Yellow Book, Problem 09CY3E281
ANA056 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2002, Problem 5
ANA057 ( -0 +0 _0 ^1) Hokkaido University, 1999, Science Course, Problem 1
ANA058 ( -0 +0 _0 ^1) Kyoto University, 1999, Science Course, Problem 6
ANA059 ( -0 +0 _0 ^1) Kyushu University, 1999, Science Course, Problem 3
ANA060 ( -0 +0 _0 ^1) Kyushu University, 2013, Science Course, Problem 4
ANA061 ( -0 +0 _0 ^1) Nagoya University, 2003, Science Course, Problem 2
ANA062 ( -0 +0 _0 ^1) Osaka University, 1999, Science Course, Problem 3
ANA063 ( -0 +0 _0 ^1) Tohoku University, 2009, Science Course, Problem 6
ANA064 ( -0 +0 _0 ^1) Tohoku University, 2011, Science Course, Problem 2
ANA065 ( -0 +0 _0 ^1) The University of Tokyo, 1991, Science Course, Problem 3
ANA066 ( -0 +0 _0 ^1) The University of Tokyo, 1997, Science Course, Problem 3
ANA067 ( -0 +0 _0 ^1) The University of Tokyo, 2001, Science Course, Problem 3
ANA068 ( -0 +0 _0 ^1) real_INFINITE
ANA069 ( -0 +0 _0 ^1) REAL_LE_SUP_FINITE
ANA070 ( -0 +0 _0 ^1) REAL_SUP_LE_FINITE
ANA071 ( -0 +0 _0 ^1) REAL_LT_SUP_FINITE
ANA072 ( -0 +0 _0 ^1) REAL_SUP_LT_FINITE
ANA073 ( -0 +0 _0 ^1) REAL_SUP_UNIQUE
ANA074 ( -0 +0 _0 ^1) REAL_SUP_LE
ANA075 ( -0 +0 _0 ^1) REAL_SUP_LE_SUBSET
ANA076 ( -0 +0 _0 ^1) REAL_SUP_BOUNDS
ANA077 ( -0 +0 _0 ^1) REAL_ABS_SUP_LE
ANA078 ( -0 +0 _0 ^1) SUP_SING
ANA079 ( -0 +0 _0 ^1) REAL_LE_SUP
ANA080 ( -0 +0 _0 ^1) REAL_SUP_LE_EQ
ANA081 ( -0 +0 _0 ^1) REAL_LE_INF_FINITE
ANA082 ( -0 +0 _0 ^1) REAL_INF_LE_FINITE
ANA083 ( -0 +0 _0 ^1) REAL_LT_INF_FINITE
ANA084 ( -0 +0 _0 ^1) REAL_INF_LT_FINITE
ANA085 ( -0 +0 _0 ^1) REAL_INF_UNIQUE
ANA086 ( -0 +0 _0 ^1) REAL_LE_INF
ANA087 ( -0 +0 _0 ^1) REAL_LE_INF_SUBSET
ANA088 ( -0 +0 _0 ^1) REAL_INF_BOUNDS
ANA089 ( -0 +0 _0 ^1) REAL_ABS_INF_LE
ANA090 ( -0 +0 _0 ^1) REAL_SUP_EQ_INF
ANA091 ( -0 +0 _0 ^1) REAL_INF_LE
ANA092 ( -0 +0 _0 ^1) REAL_LE_INF_EQ
ANA093 ( -0 +0 _0 ^1) NEUTRAL_REAL_ADD
ANA094 ( -0 +0 _0 ^1) NEUTRAL_REAL_MUL
ANA095 ( -0 +0 _0 ^1) SUM_UNION
ANA096 ( -0 +0 _0 ^1) SUM_DIFF
ANA097 ( -0 +0 _0 ^1) SUM_INCL_EXCL
ANA098 ( -0 +0 _0 ^1) SUM_SUPPORT
ANA099 ( -0 +0 _0 ^1) SUM_ADD
ANA100 ( -0 +0 _0 ^1) SUM_RMUL
ANA101 ( -0 +0 _0 ^1) SUM_SUB
ANA102 ( -0 +0 _0 ^1) SUM_UNION_EQ
ANA103 ( -0 +0 _0 ^1) REAL_OF_NUM_SUM
ANA104 ( -0 +0 _0 ^1) REAL_OF_NUM_SUM_GEN
ANA105 ( -0 +0 _0 ^1) SUM_ADD_NUMSEG
ANA106 ( -0 +0 _0 ^1) SUM_SUB_NUMSEG
ANA107 ( -0 +0 _0 ^1) SUM_ABS_NUMSEG
ANA108 ( -0 +0 _0 ^1) SUM_TRIV_NUMSEG
ANA109 ( -0 +0 _0 ^1) SUM_SING_NUMSEG
ANA110 ( -0 +0 _0 ^1) SUM_CLAUSES_NUMSEG_
ANA111 ( -0 +0 _0 ^1) SUM_CLAUSES_NUMSEG_
ANA112 ( -0 +0 _0 ^1) SUM_SWAP_NUMSEG
ANA113 ( -0 +0 _0 ^1) SUM_OFFSET_0
ANA114 ( -0 +0 _0 ^1) SUM_CLAUSES_RIGHT
ANA115 ( -0 +0 _0 ^1) REAL_OF_NUM_SUM_NUMSEG
ANA116 ( -0 +0 _0 ^1) SUM_PARTIAL_PRE
ANA117 ( -0 +0 _0 ^1) SUM_DIFFS_ALT
ANA118 ( -0 +0 _0 ^1) REAL_SUB_POW_R1
ANA119 ( -0 +0 _0 ^1) REAL_SUB_POW_L1
ANA120 ( -0 +0 _0 ^1) REAL_POLYFUN_FINITE_ROOTS
ANA121 ( -0 +0 _0 ^1) REAL_POLYFUN_EQ_0
ANA122 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_CONST
ANA123 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_I
ANA124 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_LMUL
ANA125 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_RMUL
ANA126 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_NEG
ANA127 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_SUB
ANA128 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_SUM
ANA129 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_POW
ANA130 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_INDUCT
ANA131 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_o
ANA132 ( -0 +0 _0 ^1) POLYNOMIAL_FUNCTION_FINITE_ROOTS
-------------------------------------------------------------------------------
Domain ARI = Arithmetic
693 problems (681 abstract), 0 CNF, 0 FOF, 693 TFF, 0 THF
-------------------------------------------------------------------------------
ARI001 ( -0 +0 _1 ^0) Integer: 2 less than 3
ARI002 ( -0 +0 _1 ^0) Integer: 3 not less than 2
ARI003 ( -0 +0 _1 ^0) Integer: 2 less than 13
ARI004 ( -0 +0 _1 ^0) Integer: Something less than 13
ARI005 ( -0 +0 _1 ^0) Integer: 12 less than something
ARI006 ( -0 +0 _1 ^0) Integer: Something less than something
ARI007 ( -0 +0 _1 ^0) Integer: -2 less than 2
ARI008 ( -0 +0 _1 ^0) Integer: -4 less than -2
ARI009 ( -0 +0 _1 ^0) Integer: 2 not less than -2
ARI010 ( -0 +0 _1 ^0) Integer: -2 not less than -4
ARI011 ( -0 +0 _1 ^0) Integer: Something less than 0
ARI012 ( -0 +0 _1 ^0) Integer: Something less than -2
ARI013 ( -0 +0 _1 ^0) Integer: -2 less than something
ARI014 ( -0 +0 _1 ^0) Integer: 2 lesseq to 2
ARI015 ( -0 +0 _1 ^0) Integer: 2 lesseq to 3
ARI016 ( -0 +0 _1 ^0) Integer: 3 not lesseq to 2
ARI017 ( -0 +0 _1 ^0) Integer: Something lesseq to 13
ARI018 ( -0 +0 _1 ^0) Integer: 12 lesseq to something
ARI019 ( -0 +0 _1 ^0) Integer: Something lesseq to something
ARI020 ( -0 +0 _1 ^0) Integer: -2 lesseq to -2
ARI021 ( -0 +0 _1 ^0) Integer: -2 lesseq to 2
ARI022 ( -0 +0 _1 ^0) Integer: -4 lesseq to -2
ARI023 ( -0 +0 _1 ^0) Integer: 2 not lesseq to -2
ARI024 ( -0 +0 _1 ^0) Integer: -2 not lesseq to -4
ARI025 ( -0 +0 _1 ^0) Integer: Something lesseq to 0
ARI026 ( -0 +0 _1 ^0) Integer: Something lesseq to -2
ARI027 ( -0 +0 _1 ^0) Integer: -2 lesseq to something
ARI028 ( -0 +0 _1 ^0) Integer: 4 greater than 3
ARI029 ( -0 +0 _1 ^0) Integer: 3 not greater than 4
ARI030 ( -0 +0 _1 ^0) Integer: 17 greater than 8
ARI031 ( -0 +0 _1 ^0) Integer: Something greater than 15
ARI032 ( -0 +0 _1 ^0) Integer: 15 greater than something
ARI033 ( -0 +0 _1 ^0) Integer: Something greater than something
ARI034 ( -0 +0 _1 ^0) Integer: 4 greater than -4
ARI035 ( -0 +0 _1 ^0) Integer: -4 greater than -6
ARI036 ( -0 +0 _1 ^0) Integer: -3 not greater than 3
ARI037 ( -0 +0 _1 ^0) Integer: -5 not greater than -3
ARI038 ( -0 +0 _1 ^0) Integer: Something greater than 0
ARI039 ( -0 +0 _1 ^0) Integer: Something greater than -5
ARI040 ( -0 +0 _1 ^0) Integer: -5 greater than something
ARI041 ( -0 +0 _1 ^0) Integer: 2 greatereq to 2
ARI042 ( -0 +0 _1 ^0) Integer: 4 greatereq to 3
ARI043 ( -0 +0 _1 ^0) Integer: 6 not greatereq to 7
ARI044 ( -0 +0 _1 ^0) Integer: Something greatereq to 15
ARI045 ( -0 +0 _1 ^0) Integer: 15 greatereq to something
ARI046 ( -0 +0 _1 ^0) Integer: Something greatereq to something
ARI047 ( -0 +0 _1 ^0) Integer: -4 greatereq to -4
ARI048 ( -0 +0 _1 ^0) Integer: 4 greatereq to -6
ARI049 ( -0 +0 _1 ^0) Integer: -3 greatereq to -6
ARI050 ( -0 +0 _1 ^0) Integer: -3 not greatereq to 3
ARI051 ( -0 +0 _1 ^0) Integer: -5 not greatereq to -3
ARI052 ( -0 +0 _1 ^0) Integer: Something greatereq to 0
ARI053 ( -0 +0 _1 ^0) Integer: Something greatereq to -5
ARI054 ( -0 +0 _1 ^0) Integer: -5 greatereq to something
ARI055 ( -0 +0 _1 ^0) Integer: 31 not 12
ARI056 ( -0 +0 _1 ^0) Integer: Something not 12
ARI057 ( -0 +0 _1 ^0) Integer: Sum 2 and 3 is 5
ARI058 ( -0 +0 _1 ^0) Integer: Sum 23 and 34 is 57
ARI059 ( -0 +0 _1 ^0) Integer: Sum 23 and 34 is something
ARI060 ( -0 +0 _1 ^0) Integer: Sum something and 23 is 34
ARI061 ( -0 +0 _1 ^0) Integer: Sum 23 and something is 34
ARI062 ( -0 +0 _1 ^0) Integer: Sum 2 and 3 is not 6
ARI063 ( -0 +0 _1 ^0) Integer: Sum 2 and 3 is only 5
ARI064 ( -0 +0 _1 ^0) Integer: Sum only 2 and 3 is 5
ARI065 ( -0 +0 _1 ^0) Integer: Sum 2 and only 3 is 5
ARI066 ( -0 +0 _1 ^0) Integer: Sum -2 and -5 is -7
ARI067 ( -0 +0 _1 ^0) Integer: Sum 2 and -5 is -3
ARI068 ( -0 +0 _1 ^0) Integer: Sum 5 and -2 is 3
ARI069 ( -0 +0 _1 ^0) Integer: Sum 5 and -5 is 0
ARI070 ( -0 +0 _1 ^0) Integer: Sum -2 and -5 is something
ARI071 ( -0 +0 _1 ^0) Integer: Sum 2 and -5 is something
ARI072 ( -0 +0 _1 ^0) Integer: Sum 5 and -2 is something
ARI073 ( -0 +0 _1 ^0) Integer: Sum 5 and -5 is something
ARI074 ( -0 +0 _1 ^0) Integer: Sum something and -5 is -7
ARI075 ( -0 +0 _1 ^0) Integer: Sum something  and -5  is -3
ARI076 ( -0 +0 _1 ^0) Integer: Sum something  and -2 is 3
ARI077 ( -0 +0 _1 ^0) Integer: Sum something  and -5 is 0
ARI078 ( -0 +0 _1 ^0) Integer: Sum with zero is the identity
ARI079 ( -0 +0 _1 ^0) Integer: Sum something and another thing is the first thing
ARI080 ( -0 +0 _1 ^0) Integer: Sum 4 and 4 is 8
ARI081 ( -0 +0 _1 ^0) Integer: Communative sum of 6 and 7
ARI082 ( -0 +0 _1 ^0) Integer: Associative sum
ARI083 ( -0 +0 _1 ^0) Integer: Associative sum exists
ARI084 ( -0 +0 _1 ^0) Integer: Sum 2 and 3 is 5 in a predicate
ARI085 ( -0 +0 _1 ^0) Integer: Sum something and another thing is 7, in a predicate
ARI086 ( -0 +0 _1 ^0) Integer: Sum 2 and 2 is 5
ARI087 ( -0 +0 _1 ^0) Integer: Sum something and something is 0
ARI088 ( -0 +0 _1 ^0) Integer: Sum only 4 and only 4 is 8
ARI089 ( -0 +0 _1 ^0) Integer: Difference 7 and 5 is 2
ARI090 ( -0 +0 _1 ^0) Integer: Difference 5 and 3 is only 2
ARI091 ( -0 +0 _1 ^0) Integer: Difference only 5 and 2 is 3
ARI092 ( -0 +0 _1 ^0) Integer: Difference 5 and only 3 is 2
ARI093 ( -0 +0 _1 ^0) Integer: Difference with zero is identity
ARI094 ( -0 +0 _1 ^0) Integer: Difference 5 and 3 is 2 in a predicate
ARI095 ( -0 +0 _1 ^0) Integer: Lower boundary for bytes
ARI096 ( -0 +0 _1 ^0) Integer: Product of 2 and 3 is 6
ARI097 ( -0 +0 _1 ^0) Integer: Product of -2 and 3 is -6
ARI098 ( -0 +0 _1 ^0) Integer: Product of -2 and -3 is 6
ARI099 ( -0 +0 _1 ^0) Integer: Product of 11 and 11 is 121
ARI100 ( -0 +0 _1 ^0) Integer: Product of 11 and 11 is something
ARI101 ( -0 +0 _1 ^0) Integer: Product of something and 11 is 121
ARI102 ( -0 +0 _1 ^0) Integer: Product of 11 and something is 121
ARI103 ( -0 +0 _1 ^0) Integer: Product of 2 and 3 is not 5
ARI104 ( -0 +0 _1 ^0) Integer: Product of 2 and 3 is only 6
ARI105 ( -0 +0 _1 ^0) Integer: Product of only 2 and 3 is 6
ARI106 ( -0 +0 _1 ^0) Integer: Product of 2 and only 3 is 6
ARI107 ( -0 +0 _1 ^0) Integer: Product of -2 and -5 is 10
ARI108 ( -0 +0 _1 ^0) Integer: Product of 2 and -5 is -10
ARI109 ( -0 +0 _1 ^0) Integer: Product of 5 and -2 is -10
ARI110 ( -0 +0 _1 ^0) Integer: Product of 5 and 0 is 0
ARI111 ( -0 +0 _1 ^0) Integer: Product of -2 and -5 is something
ARI112 ( -0 +0 _1 ^0) Integer: Product of 2 and -5 is something
ARI113 ( -0 +0 _1 ^0) Integer: Product of 5 and -2 is something
ARI114 ( -0 +0 _1 ^0) Integer: Product of something and -5 is -10
ARI115 ( -0 +0 _1 ^0) Integer: Product of something and -5 is 10
ARI116 ( -0 +0 _1 ^0) Integer: Product of zero and something is zero
ARI117 ( -0 +0 _1 ^0) Integer: Product with 1 is the identity
ARI118 ( -0 +0 _1 ^0) Integer: Product of something and another thing is the first thing
ARI119 ( -0 +0 _1 ^0) Integer: Product of 4 and 4 is 16
ARI120 ( -0 +0 _1 ^0) Integer: Product of X and X is 4
ARI121 ( -0 +0 _1 ^0) Integer: Commutative product of 6 and 7
ARI122 ( -0 +0 _1 ^0) Integer: Associative product
ARI123 ( -0 +0 _1 ^0) Integer: Associative product exists
ARI124 ( -0 +0 _1 ^0) Integer: Product of 5 and 3 is 15 in a predicate
ARI125 ( -0 +0 _1 ^0) Integer: Product of 2 and 2 is not 5
ARI126 ( -0 +0 _1 ^0) Integer: Product of something and itself is not 0
ARI127 ( -0 +0 _1 ^0) Integer: Not product of only 2 and only 4 is 8
ARI128 ( -0 +0 _1 ^0) Integer: -2 equal - 2
ARI129 ( -0 +0 _1 ^0) Integer: 2 equal - -2
ARI130 ( -0 +0 _1 ^0) Integer: Sum of 2 and - 2 is 0
ARI131 ( -0 +0 _1 ^0) Integer: Sum of -2 and - 2 is 0
ARI132 ( -0 +0 _1 ^0) Integer: - - 2 is 2
ARI133 ( -0 +0 _1 ^0) Integer: - - -2 is -2
ARI162 ( -0 +0 _1 ^0) Integer: Sum is 8 and difference is 0
ARI163 ( -0 +0 _1 ^0) Integer: Between -1 and 1 must be 0
ARI164 ( -0 +0 _1 ^0) Integer: Something is less than sum of something and 1
ARI165 ( -0 +0 _1 ^0) Integer: Sum of 2 and 3 is less than 6
ARI166 ( -0 +0 _1 ^0) Integer: 4 is less than the sum of 2 and 3
ARI167 ( -0 +0 _1 ^0) Integer: -4 * (127 - 99) < (- 3) + 27
ARI168 ( -0 +0 _1 ^0) Integer: Not sum is 8 and difference is 1
ARI169 ( -0 +0 _1 ^0) Integer: Not sum is 8 implies difference is 1
ARI170 ( -0 +0 _1 ^0) Integer: Not sum is 8 implies difference is 0
ARI171 ( -0 +0 _1 ^0) Integer: Not 7 less than sum of 2 and 3
ARI172 ( -0 +0 _1 ^0) Integer: Sum of something and itself is less than -10
ARI173 ( -0 +0 _1 ^0) Integer: Formula less that -12
ARI174 ( -0 +0 _1 ^0) Integer: Formula equals 24
ARI175 ( -0 +0 _1 ^0) Integer: Formula equals 23
ARI176 ( -0 +0 _1 ^0) Integer: Formula equals 22
ARI177 ( -0 +0 _1 ^0) Integer: Formula equals 21
ARI178 ( -0 +0 _1 ^0) Integer: It can't be 0
ARI179 ( -0 +0 _1 ^0) Integer: It must be 2
ARI180 ( -0 +0 _1 ^0) Integer: It must be the function of 0
ARI181 ( -0 +0 _1 ^0) Integer: Increasing function applied 3 times
ARI182 ( -0 +0 _1 ^0) Integer: Increasing function in a formula
ARI183 ( -0 +0 _1 ^0) Integer: Monotonic function formula 1
ARI184 ( -0 +0 _1 ^0) Integer: Monotonic function formula 2
ARI185 ( -0 +0 _1 ^0) Integer: Positive function formula
ARI186 ( -0 +0 _1 ^0) Integer: Function of two arguments
ARI187 ( -0 +0 _1 ^0) Integer: Sum of product of 14 and 3, and 8, is 50 in a predicate
ARI188 ( -0 +0 _1 ^0) Integer: Sum of something and 3 is 5 in a predicate
ARI189 ( -0 +0 _1 ^0) Integer: Product of 2 and something is 10 in a predicate
ARI190 ( -0 +0 _1 ^0) Rational: 3/4 less than 7/8
ARI191 ( -0 +0 _1 ^0) Rational: 1/2 not less 1/21
ARI192 ( -0 +0 _1 ^0) Rational: 1/5 less than 4/15
ARI193 ( -0 +0 _1 ^0) Rational: Something less than 9/16
ARI194 ( -0 +0 _1 ^0) Rational: 13/24 less than something
ARI195 ( -0 +0 _1 ^0) Rational: Something less than something else
ARI196 ( -0 +0 _1 ^0) Rational: -1/4 less than 1/4
ARI197 ( -0 +0 _1 ^0) Rational: -5/8 less than -3/8
ARI198 ( -0 +0 _1 ^0) Rational: 1/4 not less than -1/4
ARI199 ( -0 +0 _1 ^0) Rational: -3/8 not less than -5/8
ARI200 ( -0 +0 _1 ^0) Rational: Something less than 0/1
ARI201 ( -0 +0 _1 ^0) Rational: Something less than -13/4
ARI202 ( -0 +0 _1 ^0) Rational: -13/4 less than something
ARI203 ( -0 +0 _1 ^0) Rational: 5/12 lesseq to 5/12
ARI204 ( -0 +0 _1 ^0) Rational: 1/4 lesseq to 5/12
ARI205 ( -0 +0 _1 ^0) Rational: 5/12 not lesseq to 1/4
ARI206 ( -0 +0 _1 ^0) Rational: Something lesseq to 19/25
ARI207 ( -0 +0 _1 ^0) Rational: 3/16 lesseq to something
ARI208 ( -0 +0 _1 ^0) Rational: Something lesseq to something else
ARI209 ( -0 +0 _1 ^0) Rational: -3/4 lesseq to -3/4
ARI210 ( -0 +0 _1 ^0) Rational: -3/4 lesseq to 3/4
ARI211 ( -0 +0 _1 ^0) Rational: -5/8 lesseq to -1/4
ARI212 ( -0 +0 _1 ^0) Rational: 3/4 not lesseq to -3/4
ARI213 ( -0 +0 _1 ^0) Rational: -1/4 not lesseq to -5/8
ARI214 ( -0 +0 _1 ^0) Rational: Something lesseq to 0/1
ARI215 ( -0 +0 _1 ^0) Rational: Something lesseq to -3/5
ARI216 ( -0 +0 _1 ^0) Rational: -7/16 lesseq to something
ARI217 ( -0 +0 _1 ^0) Rational: 7/8 greater than 3/4
ARI218 ( -0 +0 _1 ^0) Rational: 3/4 not greater 7/8
ARI219 ( -0 +0 _1 ^0) Rational: 4/15 greather than 1/5
ARI220 ( -0 +0 _1 ^0) Rational: 13/24 greater than something
ARI221 ( -0 +0 _1 ^0) Rational: Something greater than 9/16
ARI222 ( -0 +0 _1 ^0) Rational: Something greater than something else
ARI223 ( -0 +0 _1 ^0) Rational: 13/121 greater than -13/121
ARI224 ( -0 +0 _1 ^0) Rational: -17/25 greater than -29/34
ARI225 ( -0 +0 _1 ^0) Rational: -33/4 not greater than 33/4
ARI226 ( -0 +0 _1 ^0) Rational: -29/34 not greater than -17/25
ARI227 ( -0 +0 _1 ^0) Rational: 0/1 greater than something
ARI228 ( -0 +0 _1 ^0) Rational: Something greater than -75/112
ARI229 ( -0 +0 _1 ^0) Rational: -75/112 greater than something
ARI230 ( -0 +0 _1 ^0) Rational: 5/12 greatereq to 5/12
ARI231 ( -0 +0 _1 ^0) Rational: 5/12 greatereq to 1/4
ARI232 ( -0 +0 _1 ^0) Rational: 1/4 not greatereq 5/12
ARI233 ( -0 +0 _1 ^0) Rational: 19/25 greatereq to something
ARI234 ( -0 +0 _1 ^0) Rational: Something greatereq to 3/16
ARI235 ( -0 +0 _1 ^0) Rational: Something greatereq something else
ARI236 ( -0 +0 _1 ^0) Rational: -3/4 greatereq to -3/4
ARI237 ( -0 +0 _1 ^0) Rational: 3/4 greatereq to -3/4
ARI238 ( -0 +0 _1 ^0) Rational: -1/4 greatereq -5/8
ARI239 ( -0 +0 _1 ^0) Rational: -3/4 not greatereq to 3/4
ARI240 ( -0 +0 _1 ^0) Rational: -5/8 not greatereq to -1/4
ARI241 ( -0 +0 _1 ^0) Rational: Something greatereq to 0/1
ARI242 ( -0 +0 _1 ^0) Rational: -3/5 greatereq to something
ARI243 ( -0 +0 _1 ^0) Rational: Something greatereq to -7/16
ARI244 ( -0 +0 _1 ^0) Rational: 2/5 not equal to 1/16
ARI245 ( -0 +0 _1 ^0) Rational: Something not equal to 3/4
ARI246 ( -0 +0 _1 ^0) Rational: Sum of 1/2 and 1/4 is 3/4
ARI247 ( -0 +0 _1 ^0) Rational: Sum of 2/5 and 3/5 is 1/1
ARI248 ( -0 +0 _1 ^0) Rational: Sum of 9/16 and 1/2 is 17/16
ARI249 ( -0 +0 _1 ^0) Rational: Sum of 1/1 and 5/8 is 13/8
ARI250 ( -0 +0 _1 ^0) Rational: Sum of 17/4 and 23/4 is 10/1
ARI251 ( -0 +0 _1 ^0) Rational: Sum of 17/4 and 2/1 is 25/4
ARI252 ( -0 +0 _1 ^0) Rational: Sum of 7/2 and 1/2 is 4/1
ARI253 ( -0 +0 _1 ^0) Rational: Sum of 17/4 and 2/1 is something
ARI254 ( -0 +0 _1 ^0) Rational: Sum of something and 3/16 is 1/2
ARI255 ( -0 +0 _1 ^0) Rational: Sum of 5/16 and something is 1/2
ARI256 ( -0 +0 _1 ^0) Rational: Sum of 7/2 and 81/20 is not 11/2
ARI257 ( -0 +0 _1 ^0) Rational: Sum of 17/4 and 23/4 is only 10/1
ARI258 ( -0 +0 _1 ^0) Rational: Sum only 17/4 and 23/4 is 10/1
ARI259 ( -0 +0 _1 ^0) Rational: Sum 17/4 and only 23/4 is 10/1
ARI260 ( -0 +0 _1 ^0) Rational: Sum -7/2 and -1/2 is -4/1
ARI261 ( -0 +0 _1 ^0) Rational: Sum 17/4 and -23/4 is -3/2
ARI262 ( -0 +0 _1 ^0) Rational: Sum 5/12 and -1/6 is 1/4
ARI263 ( -0 +0 _1 ^0) Rational: Sum 3/8 and -3/8 is 0/1
ARI264 ( -0 +0 _1 ^0) Rational: Sum -1/4 and -1/2 is something
ARI265 ( -0 +0 _1 ^0) Rational: Sum 1/4 and -1/2 is something
ARI266 ( -0 +0 _1 ^0) Rational: Sum 1/2 and -1/4 is something
ARI267 ( -0 +0 _1 ^0) Rational: Sum 1/2 and -1/2 is something
ARI268 ( -0 +0 _1 ^0) Rational: Sum something and -7/2 is -11/2
ARI269 ( -0 +0 _1 ^0) Rational: Sum something -11/2 is -13/2
ARI270 ( -0 +0 _1 ^0) Rational: Sum something and -5/2 is 7/2
ARI271 ( -0 +0 _1 ^0) Rational: Sum something and -12/119 is 0/1
ARI272 ( -0 +0 _1 ^0) Rational: Sum something and 0/1 is something
ARI273 ( -0 +0 _1 ^0) Rational: Difference 7/8 and 3/8 is 1/2
ARI274 ( -0 +0 _1 ^0) Rational: Difference 5/12 and 1/2 is -1/12
ARI275 ( -0 +0 _1 ^0) Rational: Difference 90/117 and 25/117 is 5/9
ARI276 ( -0 +0 _1 ^0) Rational: Difference -1/8 and 3/16 is -5/16
ARI277 ( -0 +0 _1 ^0) Rational: Difference 4/7 and -3/7 is 1/1
ARI278 ( -0 +0 _1 ^0) Rational: Difference 5/12 and 1/12 is only 1/3
ARI279 ( -0 +0 _1 ^0) Rational: Difference only 1/2 and 3/16 is 5/16
ARI280 ( -0 +0 _1 ^0) Rational: Difference 5/2 and only 5/8 is 15/8
ARI281 ( -0 +0 _1 ^0) Rational: Difference something and 0/1 is something
ARI282 ( -0 +0 _1 ^0) Rational: Difference 5/12 and 1/12 is 1/3 in a predicate
ARI283 ( -0 +0 _1 ^0) Rational: Difference -7/8 and 3/8 is something
ARI284 ( -0 +0 _1 ^0) Rational: Product 1/3 and 3/4 is 1/4
ARI285 ( -0 +0 _1 ^0) Rational: Problem 3/8 and 7/10 is 21/80
ARI286 ( -0 +0 _1 ^0) Rational: Problem 3/8 and 5/12 is 5/32
ARI287 ( -0 +0 _1 ^0) Rational: Product 2/5 and 9/1 is 18/5
ARI288 ( -0 +0 _1 ^0) Rational: Product 12/5 and 7/1 is 84/5
ARI289 ( -0 +0 _1 ^0) Rational: Product -5/2 and 17/5 is -17/2
ARI290 ( -0 +0 _1 ^0) Rational: Product -3/40 and -12/1 is 9/10
ARI291 ( -0 +0 _1 ^0) Rational: Product 11/2 and 11/2 is 121/4
ARI292 ( -0 +0 _1 ^0) Rational: Product 11/2 and 11/2 is something
ARI293 ( -0 +0 _1 ^0) Rational: Product something and 11/2 is 121/4
ARI294 ( -0 +0 _1 ^0) Rational: Product 11/2 and something is 121/4
ARI295 ( -0 +0 _1 ^0) Rational: Product 5/8 and 7/8 is not 9/16
ARI296 ( -0 +0 _1 ^0) Rational: Product 5/8 and 2/5 is only 1/4
ARI297 ( -0 +0 _1 ^0) Rational: Product only 5/8 and 2/5 is 1/4
ARI298 ( -0 +0 _1 ^0) Rational: Product 5/8 and only 2/5 is 1/4
ARI299 ( -0 +0 _1 ^0) Rational: Product -18/25 and -1/4 is 9/50
ARI300 ( -0 +0 _1 ^0) Rational: Product 1/4 and 18/25 is -9/50
ARI301 ( -0 +0 _1 ^0) Rational: Product 18/25 and -1/4 is -9/50
ARI302 ( -0 +0 _1 ^0) Rational: Product 1/20 and 0/1 is 0/1
ARI303 ( -0 +0 _1 ^0) Rational: Product -15/16 and -4/5 is 3/4
ARI304 ( -0 +0 _1 ^0) Rational: Product 15/16 and -4/5 is something
ARI305 ( -0 +0 _1 ^0) Rational: Product 4/5 and -15/16 is something
ARI306 ( -0 +0 _1 ^0) Rational: Product something and -4/5 is -3/4
ARI307 ( -0 +0 _1 ^0) Rational: Product something and -4/5 is 3/4
ARI308 ( -0 +0 _1 ^0) Rational: -17/25 is - 17/25
ARI309 ( -0 +0 _1 ^0) Rational: 2/3 is - -2/3
ARI310 ( -0 +0 _1 ^0) Rational: Sum 129/503 and - 129/503 is 0/1
ARI311 ( -0 +0 _1 ^0) Rational: Sum -226/25 and - -226/25 is 0/1
ARI312 ( -0 +0 _1 ^0) Rational: - - 3/4 is 3/4
ARI313 ( -0 +0 _1 ^0) Rational: - - -31/8 is -31/8
ARI337 ( -0 +0 _1 ^0) Rational: Sum is 36/5 and difference is 0/1
ARI338 ( -0 +0 _1 ^0) Rational: Something less than sum something and 1/1
ARI339 ( -0 +0 _1 ^0) Rational: Sum of 12/5 and 37/10 is less than 7/1
ARI340 ( -0 +0 _1 ^0) Rational: 15/2 is less than sum of 29/10 and 24/5
ARI341 ( -0 +0 _1 ^0) Rational: -2/5 * (145/2 - 569/5) less than (- 76/25) + 271/10
ARI342 ( -0 +0 _1 ^0) Rational: Sum of something and itself less than -13/2
ARI343 ( -0 +0 _1 ^0) Rational: (Something * 16/5) + -3/4 less than -64/5
ARI344 ( -0 +0 _1 ^0) Rational: (16/5 * something) + (34/5 * something else) is 273/25
ARI345 ( -0 +0 _1 ^0) Real: 2.5 less than 3.0
ARI346 ( -0 +0 _1 ^0) Real: 3.0 not less than 2.5
ARI347 ( -0 +0 _1 ^0) Real: 9.53 less than 9.58
ARI348 ( -0 +0 _1 ^0) Real: Something less than 12.8
ARI349 ( -0 +0 _1 ^0) Real: 7.0 less than something
ARI350 ( -0 +0 _1 ^0) Real: Something less than something else
ARI351 ( -0 +0 _1 ^0) Real: -3.25 less than 3.25
ARI352 ( -0 +0 _1 ^0) Real: -8.68 less than 3.25
ARI353 ( -0 +0 _1 ^0) Real: 3.25 not less than -3.25
ARI354 ( -0 +0 _1 ^0) Real: -3.25 not less than -8.69
ARI355 ( -0 +0 _1 ^0) Real: Something less than 0.0
ARI356 ( -0 +0 _1 ^0) Real: Something less than -32500.0
ARI357 ( -0 +0 _1 ^0) Real: -32500.0 less than something
ARI358 ( -0 +0 _1 ^0) Real: 3.25 lesseq to 3.25
ARI359 ( -0 +0 _1 ^0) Real: 3.25 lesseq to 7.8
ARI360 ( -0 +0 _1 ^0) Real: 7.8 not lesseq to 3.25
ARI361 ( -0 +0 _1 ^0) Real: Something lesseq to 14.68
ARI362 ( -0 +0 _1 ^0) Real: 11.33 lesseq to something
ARI363 ( -0 +0 _1 ^0) Real: Something lesseq to something else
ARI364 ( -0 +0 _1 ^0) Real: -3.25 lesseq to -3.25
ARI365 ( -0 +0 _1 ^0) Real: -3.25 lesseq to 3.25
ARI366 ( -0 +0 _1 ^0) Real: -8.69 lesseq to -3.25
ARI367 ( -0 +0 _1 ^0) Real: 3.25 not lesseq to -3.25
ARI368 ( -0 +0 _1 ^0) Real: -3.25 not lesseq to -8.69
ARI369 ( -0 +0 _1 ^0) Real: Something lesseq to 0.0
ARI370 ( -0 +0 _1 ^0) Real: Something lesseq to -3.25
ARI371 ( -0 +0 _1 ^0) Real: -3.25 lesseq to something
ARI372 ( -0 +0 _1 ^0) Real: 3.0 greater than 2.5
ARI373 ( -0 +0 _1 ^0) Real: 2.5 not greater than 3.0
ARI374 ( -0 +0 _1 ^0) Real: 9.58 greater than 9.53
ARI375 ( -0 +0 _1 ^0) Real: 12.8 greater than something
ARI376 ( -0 +0 _1 ^0) Real: Something greater than 7.0
ARI377 ( -0 +0 _1 ^0) Real: Something greater than something else
ARI378 ( -0 +0 _1 ^0) Real: 3.25 greater then -3.25
ARI379 ( -0 +0 _1 ^0) Real: -3.25 greater than -8.69
ARI380 ( -0 +0 _1 ^0) Real: -3.25 not greater than 3.25
ARI381 ( -0 +0 _1 ^0) Real: -8.69 not greater than -3.25
ARI382 ( -0 +0 _1 ^0) Real: 0.0 greater than something
ARI383 ( -0 +0 _1 ^0) Real: -32500.0 greater than something
ARI384 ( -0 +0 _1 ^0) Real: Something greater than -32500.0
ARI385 ( -0 +0 _1 ^0) Real: 3.25 greatereq to 3.25
ARI386 ( -0 +0 _1 ^0) Real: 7.8 greatereq to 3.25
ARI387 ( -0 +0 _1 ^0) Real: 3.25 not greatereq to 7.8
ARI388 ( -0 +0 _1 ^0) Real: 14.68 greatereq to something
ARI389 ( -0 +0 _1 ^0) Real: Something greatereq to 11.33
ARI390 ( -0 +0 _1 ^0) Real: Something greatereq to something else
ARI391 ( -0 +0 _1 ^0) Real: -3.25 greatereq to -3.25
ARI392 ( -0 +0 _1 ^0) Real: 3.25 greatereq to -3.25
ARI393 ( -0 +0 _1 ^0) Real: -3.25 greatereq to -8.69
ARI394 ( -0 +0 _1 ^0) Real: -3.25 not greatereq to 3.25
ARI395 ( -0 +0 _1 ^0) Real: -8.69 not greatereq to -3.25
ARI396 ( -0 +0 _1 ^0) Real: Something greatereq to 0.0
ARI397 ( -0 +0 _1 ^0) Real: -3.25 greatereq to something
ARI398 ( -0 +0 _1 ^0) Real: Something greatereq to -3.25
ARI399 ( -0 +0 _1 ^0) Real: 14.75 is not 9.69
ARI400 ( -0 +0 _1 ^0) Real: Something is not 20.06
ARI401 ( -0 +0 _1 ^0) Real: Sum 4.0 and 5.0 is 9.0
ARI402 ( -0 +0 _1 ^0) Real: Sum 4.25 and 5.75 is 10.0
ARI403 ( -0 +0 _1 ^0) Real: Sum 4.25 and 2.0 is 6.25
ARI404 ( -0 +0 _1 ^0) Real: Sum 3.5 and 2.05 is 5.55
ARI405 ( -0 +0 _1 ^0) Real: Sum 4.25 and 2.0 is something
ARI406 ( -0 +0 _1 ^0) Real: Sum something and 4.07 is 19.076
ARI407 ( -0 +0 _1 ^0) Real: Sum 4.25 and something is 10.0
ARI408 ( -0 +0 _1 ^0) Real: Sum 3.5 and 2.05 is not 5.5
ARI409 ( -0 +0 _1 ^0) Real: Sum 4.25 and 5.75 is only 10.0
ARI410 ( -0 +0 _1 ^0) Real: Sum only 4.25 and 5.75 is 10.0
ARI411 ( -0 +0 _1 ^0) Real: Sum 4.25 and only 5.75 is 10.0
ARI412 ( -0 +0 _1 ^0) Real: Sum -3.5 and -0.5 is -4.0
ARI413 ( -0 +0 _1 ^0) Real: Sum 4.25 and -5.75 is -1.5
ARI414 ( -0 +0 _1 ^0) Real: Sum 5.55 and -3.05 is 2.5
ARI415 ( -0 +0 _1 ^0) Real: Sum 14.65 and -14.65 is 0.0
ARI416 ( -0 +0 _1 ^0) Real: Sum -2.05 and -3.5 is something
ARI417 ( -0 +0 _1 ^0) Real: Sum 2.05 and -3.5 is something
ARI418 ( -0 +0 _1 ^0) Real: Sum 3.5 and -2.05 is something
ARI419 ( -0 +0 _1 ^0) Real: Sum 3.5 and -3.5 is something
ARI420 ( -0 +0 _1 ^0) Real: Sum something and -3.5 is -5.55
ARI421 ( -0 +0 _1 ^0) Real: Sum something and -3.5 is -6.5
ARI422 ( -0 +0 _1 ^0) Real: Sum something and -2.05 is 3.5
ARI423 ( -0 +0 _1 ^0) Real: Sum something and -3500000.0 is 0.0
ARI424 ( -0 +0 _1 ^0) Real: Sum something and 0.0 is itself
ARI425 ( -0 +0 _1 ^0) Real: Difference 9.0 and 4.0 is 5.0
ARI426 ( -0 +0 _1 ^0) Real: Difference 10.0 and 5.75 is 4.25
ARI427 ( -0 +0 _1 ^0) Real: Difference 6.25 and 4.25 is 2.0
ARI428 ( -0 +0 _1 ^0) Real: Difference 5.55 and 3.5 is 2.05
ARI429 ( -0 +0 _1 ^0) Real: Difference 7.48 and 0.65 is 6.83
ARI430 ( -0 +0 _1 ^0) Real: Difference 23.76 and 9.51 is only 14.25
ARI431 ( -0 +0 _1 ^0) Real: Difference only 16.05 and 12.05 is 4.0
ARI432 ( -0 +0 _1 ^0) Real: Difference 16.05 and only 4.0 is 12.05
ARI433 ( -0 +0 _1 ^0) Real: Difference something and 0.0 is itself
ARI434 ( -0 +0 _1 ^0) Real: Difference 5.8 and 0.3 is 5.5 in a predicate
ARI435 ( -0 +0 _1 ^0) Real: Difference -1.28 and 1.0 is something
ARI436 ( -0 +0 _1 ^0) Real: Product 3.0 and 4.0 is 12.0
ARI437 ( -0 +0 _1 ^0) Real: Product 3.0 and 2.4 is 7.2
ARI438 ( -0 +0 _1 ^0) Real: Product 2.38 and 1.5 is 3.57
ARI439 ( -0 +0 _1 ^0) Real: Product 2.4 and 7.0 is 16.8
ARI440 ( -0 +0 _1 ^0) Real: Product -2.5 and 3.4 is -8.5
ARI441 ( -0 +0 _1 ^0) Real: Product -0.075 and -12.0 is 0.9
ARI442 ( -0 +0 _1 ^0) Real: Product 5.5 and 5.5 is 30.25
ARI443 ( -0 +0 _1 ^0) Real: Product 5.5 and 5.5 is something
ARI444 ( -0 +0 _1 ^0) Real: Product something and 5.5 is 30.25
ARI445 ( -0 +0 _1 ^0) Real: Product 5.5 and something is 30.25
ARI446 ( -0 +0 _1 ^0) Real: Product 5000.0 and 2.5 is not 12000.0
ARI447 ( -0 +0 _1 ^0) Real: Product 7.25 and 4.0 is only 29.0
ARI448 ( -0 +0 _1 ^0) Real: Product only 7.25 and 4.0 is 29.0
ARI449 ( -0 +0 _1 ^0) Real: Product 7.25 and only 4.0 is 29.0
ARI450 ( -0 +0 _1 ^0) Real: Product -0.05 and -70.4 is 3.52
ARI451 ( -0 +0 _1 ^0) Real: Product 0.05 and -70.4 is -3.52
ARI452 ( -0 +0 _1 ^0) Real: Product 70.4 and -0.05 is -3.52
ARI453 ( -0 +0 _1 ^0) Real: Product 0.05 and 0.0 is 0.0
ARI454 ( -0 +0 _1 ^0) Real: Product -14.25 and -0.08 is 1.14
ARI455 ( -0 +0 _1 ^0) Real: Product 14.25 and -0.08 is something
ARI456 ( -0 +0 _1 ^0) Real: Product 0.08 and -14.25 is something
ARI457 ( -0 +0 _1 ^0) Real: Product something and -0.08 is -1.14
ARI458 ( -0 +0 _1 ^0) Real: Product something and -0.08 is 1.14
ARI459 ( -0 +0 _1 ^0) Real: -3.25 is - 3.25
ARI460 ( -0 +0 _1 ^0) Real: 0.6 is - -0.6
ARI461 ( -0 +0 _1 ^0) Real: Sum 11.38 and - 11.38 is 0.0
ARI462 ( -0 +0 _1 ^0) Real: Sum -9.04 and - -9.04 is 0.0
ARI463 ( -0 +0 _1 ^0) Real: - - 0.75 is 0.75
ARI464 ( -0 +0 _1 ^0) Real: - - -70.4 is -70.4
ARI488 ( -0 +0 _1 ^0) Real: Sum is 7.2 and difference is 0.0
ARI489 ( -0 +0 _1 ^0) Real: Something less than sum something and 1
ARI490 ( -0 +0 _1 ^0) Real: Sum 2.4 and 3.7 is less than 7.0
ARI491 ( -0 +0 _1 ^0) Real: 7.5 is less than sum 2.9 and 4.8
ARI492 ( -0 +0 _1 ^0) Real: -0.4 * (72.5 - 113.8) is less than (- 3.04) + 27.1
ARI493 ( -0 +0 _1 ^0) Real: Sum something and iteself is less than -6.5
ARI494 ( -0 +0 _1 ^0) Real: (Something * 3.2) + -0.75 is less than -12.8
ARI495 ( -0 +0 _1 ^0) Real: (3.2 * something) + (6.8 * something else) is 10.92
ARI496 ( -0 +0 _1 ^0) Mixed: 6 is an integer
ARI497 ( -0 +0 _1 ^0) Mixed: 17.0 is an integer
ARI498 ( -0 +0 _1 ^0) Mixed: 7/12 is not an integer
ARI499 ( -0 +0 _1 ^0) Mixed: 9.75 is not an integer
ARI500 ( -0 +0 _1 ^0) Mixed: 3/4 is a rational
ARI501 ( -0 +0 _1 ^0) Mixed: 11 is a rational
ARI502 ( -0 +0 _1 ^0) Mixed: 0.08 is a rational
ARI503 ( -0 +0 _1 ^0) Mixed: 11.33 coerced to integer is an integer
ARI504 ( -0 +0 _1 ^0) Mixed: 2.05 coerced to rational is a rational
ARI505 ( -0 +0 _1 ^0) Mixed: 17.99 coerced to integer is not 18
ARI506 ( -0 +0 _1 ^0) Mixed: 11/2 is 5.5 coerced to rational
ARI507 ( -0 +0 _1 ^0) Mixed: 39/4 coerced to real is 9.75
ARI508 ( -0 +0 _1 ^0) Mixed: 2 is less than 3.5 coerced to integer
ARI509 ( -0 +0 _1 ^0) Mixed: 7/5 is not less that 1.2 coerced to rational
ARI510 ( -0 +0 _1 ^0) Mixed: sum 1/2 and 1/4 is less than 1 coerced to rational
ARI511 ( -0 +0 _1 ^0) Mixed: 5/19 coerced to rational is less than something
ARI512 ( -0 +0 _1 ^0) Mixed: -2 is lesseq to 2.0 coerced to integer
ARI513 ( -0 +0 _1 ^0) Mixed: 0.5 is lesseq to 1/2 coerced to real
ARI514 ( -0 +0 _1 ^0) Mixed: -2.4 is lesseq to 2 coerced to real
ARI515 ( -0 +0 _1 ^0) Mixed: Something is lesseq to 2 coerced to integer
ARI516 ( -0 +0 _1 ^0) Mixed: 4 coerced to real is greater than 3.2
ARI517 ( -0 +0 _1 ^0) Mixed: 6/12 coerced to rational is not greater than 3/4
ARI518 ( -0 +0 _1 ^0) Mixed: Sum of 13.1 coerced to integer and 1 is greatereq to 14
ARI519 ( -0 +0 _1 ^0) Mixed: Something is greatereq to 9 coerced to real
ARI520 ( -0 +0 _1 ^0) Mixed: Sum 2 and 3 is integer
ARI522 ( -0 +0 _1 ^0) Mixed: Sum 3.5 and 3/4 coerced to real is 4.25
ARI523 ( -0 +0 _1 ^0) Mixed: Difference -1/8 and 3/16 is rational
ARI524 ( -0 +0 _1 ^0) Mixed: Product 5/12 and 7/10 is rational
ARI525 ( -0 +0 _1 ^0) Mixed: ((- 7/15) + 4/15) coerced to integer is greatereq to 0
ARI526 ( -0 +0 _1 ^0) Mixed: (4.05 + 3.6) - 53/20 = 5
ARI528 ( -0 +0 _1 ^0) Mixed: Mad mixture 1
ARI529 ( -0 +0 _1 ^0) Mixed: Mad mixture 2
ARI533 ( -0 +0 _1 ^0) Mixed: Product 6.4 and 0.469 is an integer
ARI534 ( -0 +0 _1 ^0) Mixed: Sum 0.5 coerced to integer and 1 is not a rational
ARI535 ( -0 +0 _1 ^0) Integer: Stickel's arithmetic challenge
ARI536 ( -0 +0 _4 ^0) Real: Square root of two exists
ARI537 ( -0 +0 _1 ^0) Integer: 12 less than sum 5 and 8
ARI538 ( -0 +0 _1 ^0) Integer: -15 less than difference 0 and -15
ARI539 ( -0 +0 _1 ^0) Integer: Sum 9 and 3 greater than -21
ARI540 ( -0 +0 _1 ^0) Integer: Product 5 an 7 lesseq to 36
ARI541 ( -0 +0 _1 ^0) Integer: Minus product -18 and -4 greatereq -75
ARI542 ( -0 +0 _1 ^0) Integer: Sum of product -5 and -5, and -25 is 0
ARI543 ( -0 +0 _1 ^0) Integer: -3 * (14 - 69) less than -76 + 271
ARI544 ( -0 +0 _1 ^0) Integer: Sum 2 and 3 less than 7
ARI545 ( -0 +0 _1 ^0) Integer: Something plus iteself less than -13
ARI546 ( -0 +0 _1 ^0) Integer: Difference -4 and sum 0 and -3 is something
ARI547 ( -0 +0 _1 ^0) Integer: Product something and 3 is 27 means 8 less than that
ARI548 ( -0 +0 _1 ^0) Integer: Difference -25 and product something and 0 lesseq to 0
ARI549 ( -0 +0 _1 ^0) Integer: Product of sum -2 and -3, and 0 is 0
ARI550 ( -0 +0 _1 ^0) Integer: Sum of product something and 32, and -7 less than -128
ARI551 ( -0 +0 _1 ^0) Rational: 7/8 less than sum 5/8 and 5/16
ARI552 ( -0 +0 _1 ^0) Rational: -35/4 less than difference 0/1 and -53/12
ARI553 ( -0 +0 _1 ^0) Rational: Sum 9/17 and 3/5 greater than -8/145
ARI554 ( -0 +0 _1 ^0) Rational: Product 3/8 and 7/10 lesseq to 23/80
ARI555 ( -0 +0 _1 ^0) Rational: Minus product -18/25 and -1/4 greatereq to -9/50
ARI556 ( -0 +0 _1 ^0) Rational: Sum of product -3/40 and -12/1, and -9/10 is 0/1
ARI557 ( -0 +0 _1 ^0) Rational: Product something and 9/12 is 3/7 means 1/2 less than it
ARI558 ( -0 +0 _1 ^0) Rational: -1/4 - (something * -1/20) lesseq to 0/1
ARI559 ( -0 +0 _1 ^0) Rational: Product of sum -1/2 and -1/3, and 0/1 is 0/1
ARI560 ( -0 +0 _1 ^0) Real: 0.875 less than sum 0.625 and 0.3125
ARI561 ( -0 +0 _1 ^0) Real: -8.75 less than difference 0.0 and -4.42
ARI562 ( -0 +0 _1 ^0) Real: Sum 0.52 and 0.6 greater than -0.055
ARI563 ( -0 +0 _1 ^0) Real: Product 14.375 and 7.5 lesseq to 123.8
ARI564 ( -0 +0 _1 ^0) Real: -(-6.48 * -2.25) greatereq to -15.62
ARI565 ( -0 +0 _1 ^0) Real: (-0.075 * -12.0) + -0.9) is 0.0
ARI566 ( -0 +0 _1 ^0) Real: Product something and 0.75 is 0.42 means 0.5 less than it
ARI567 ( -0 +0 _1 ^0) Real: (-0.25 - (something * -0.05) lesseq to 0.0
ARI568 ( -0 +0 _1 ^0) Real: Product of sum -2.8 and -3.6, and 0.0 is 0.0
ARI570 ( -0 +0 _1 ^0) Weakening an inequation
ARI571 ( -0 +0 _1 ^0) Negating and weakening an inequation
ARI572 ( -0 +0 _1 ^0) Simple implication between inequations
ARI573 ( -0 +0 _1 ^0) Three inequations imply a fourth one
ARI574 ( -0 +0 _1 ^0) Inequation system has exactly one solution
ARI575 ( -0 +0 _3 ^0) Inequation system has exactly one integer solution
ARI576 ( -0 +0 _1 ^0) Inequation system is solvable (e.g., X = 10)
ARI577 ( -0 +0 _1 ^0) Inequation system is solvable (e.g., X = 5, Y = 4)
ARI578 ( -0 +0 _1 ^0) Inequation system is solvable (e.g., X = 3, Y = 6)
ARI579 ( -0 +0 _3 ^0) Inequation system is not solvable over $int (e.g., X = Y = 1/2)
ARI580 ( -0 +0 _1 ^0) Inequation system is solvable (choose, e.g., Y = X + 1)
ARI581 ( -0 +0 _1 ^0) Inequation system is solvable (choose, e.g., Y = 8 - X)
ARI582 ( -0 +0 _1 ^0) Inequation system is solvable (choose, e.g., Z = X + Y)
ARI583 ( -0 +0 _1 ^0) Inequation system is solvable (choose, e.g., W = 3 - X)
ARI584 ( -0 +0 _1 ^0) Interval (Y,Y+3) cannot cover interval (X,X+5)
ARI585 ( -0 +0 _1 ^0) Interval (X+5,X+8) is covered by (Y,Y+4), e.g. for Y = X + 5
ARI586 ( -0 +0 _1 ^0) For positive X, there is a Y between X and 3X (e.g., Y = 2X)
ARI587 ( -0 +0 _1 ^0) For X > 1, there is a Y between X+2 and 3X (e.g., Y = 2X + 1)
ARI588 ( -0 +0 _1 ^0) If X = 2 then Y < X-1 xor 3-X <= Y
ARI589 ( -0 +0 _1 ^0) There is a number different from Y and Z
ARI590 ( -0 +0 _1 ^0) There is a positive number different from Y
ARI591 ( -0 +0 _1 ^0) There is an X in the interval (0,3) that is different from Y
ARI592 ( -0 +0 _1 ^0) If Z > 2, there is an X in the interval (0,Z) different from Y
ARI593 ( -0 +0 _1 ^0) There is a number in {5,6,7} that is divisible by 3
ARI594 ( -0 +0 _1 ^0) There is a number in [5,...,7] that is divisible by 3
ARI595 ( -0 +0 _1 ^0) There is a number in [a,...,a+2] that is divisible by 3
ARI596 ( -0 +0 _1 ^0) There is a number in {a,a+1,a-1} that is divisible by 3
ARI597 ( -0 +0 _1 ^0) Either a or b or their sum is even
ARI598 ( -0 +0 _1 ^0) Either a or 3a+1 is even
ARI599 ( -0 +0 _1 ^0) Inequations imply a = b, hence f(a,b) = f(b,a)
ARI600 ( -0 +0 _1 ^0) Inequations imply a+1 = b-1, hence f(a+1,b-1) <= f(b-1,a+1) + 1
ARI601 ( -0 +0 _1 ^0) If f(X) > X, then 3 < a implies 4 < a+1 < f(a+1)
ARI602 ( -0 +0 _1 ^0) If f(X) > X, then 4 < 5 < f(5)
ARI603 ( -0 +0 _1 ^0) If f(X) > X, then Y = Z + (Y-Z) < Z + f(Y-Z)
ARI604 ( -0 +0 _1 ^0) If f(X) > X, then f(-X) > -X, hence -f(-X) < X < f(X)
ARI605 ( -0 +0 _1 ^0) If f(X) > X, then a + b < f(a) + b < f(a) + f(b)
ARI606 ( -0 +0 _1 ^0) For monotonic f, 2<=5 implies f(2)<=f(5), thus f(f(2)<=f(f(5))
ARI607 ( -0 +0 _1 ^0) For monotonic f, f(2) <= f(3) and f(5) <= f(7), hence the sum
ARI608 ( -0 +0 _1 ^0) Combining monotonicity and transitivity
ARI609 ( -0 +0 _1 ^0) For mon. f, 0<=a-b => b<=a => f(b)<=f(a) => 0<=f(a)-f(b)
ARI610 ( -0 +0 _1 ^0) For mon. f, f(b)<f(a) => b<a => b<=a => 0<=a-b => f(0)<=f(a-b)
ARI611 ( -0 +0 _1 ^0) Intervals (5,15) and (8,18) intersect
ARI612 ( -0 +0 _1 ^0) Interval (8,12) is contained in (5,15)
ARI613 ( -0 +0 _1 ^0) There is an X > 3 and a Y < 1 whose sum is 0
ARI614 ( -0 +0 _1 ^0) There is an X>a and a Y<1 whose sum is 0 (X = max(a+1,0), Y = -X)
ARI615 ( -0 +0 _1 ^0) If Z<=W, then [X-Z,X+Z] is a subset of [X-W,X+W]
ARI616 ( -0 +0 _1 ^0) If intervals intersect, then sum_of_radii >= distance_of_centers
ARI617 ( -0 +0 _1 ^0) Two different definitions of absolute value agree
ARI618 ( -0 +0 _1 ^0) Absolute value (unusually defined) is idempotent
ARI619 ( -0 +0 _3 ^0) 5 is not a power of 2
ARI620 ( -0 +0 _1 ^0) 8 is a power of 2
ARI621 ( -0 +0 _3 ^0) 12 is not a power of 2
ARI622 ( -0 +0 _1 ^0) There exist two powers of 2 whose sum equals 10
ARI623 ( -0 +0 _1 ^0) There is no strictly mon fct from $rat or $real to a non-dense set
ARI624 ( -0 +0 _1 ^0) f(X) cannot always be smaller than avg(f(X-Y),f(X+Y)) - 1
ARI625 ( -0 +0 _2 ^0) There is no enumeration of the reals
ARI626 ( -0 +0 _1 ^0) Overflow checking on the integers
ARI627 ( -0 +0 _1 ^0) Overflow checking on the rationals
ARI628 ( -0 +0 _1 ^0) Example 0
ARI629 ( -0 +0 _1 ^0) Example 1
ARI630 ( -0 +0 _1 ^0) Example 2
ARI631 ( -0 +0 _1 ^0) Example 3
ARI632 ( -0 +0 _1 ^0) Example 6
ARI633 ( -0 +0 _1 ^0) Example 7
ARI634 ( -0 +0 _1 ^0) Example 8
ARI635 ( -0 +0 _1 ^0) Example 9
ARI636 ( -0 +0 _1 ^0) Example 10
ARI637 ( -0 +0 _1 ^0) Example 13
ARI638 ( -0 +0 _1 ^0) Example 14
ARI639 ( -0 +0 _1 ^0) Example 15
ARI640 ( -0 +0 _1 ^0) Example 18
ARI641 ( -0 +0 _1 ^0) Example 22
ARI642 ( -0 +0 _1 ^0) Example 23
ARI643 ( -0 +0 _1 ^0) Prove that a != 0 implies 0 / a = 0
ARI644 ( -0 +0 _1 ^0) Prove that a != 0 implies b / a * a <= b
ARI645 ( -0 +0 _1 ^0) Prove that d >= 0, b >= a, a > 0 imply d / b <= d / a
ARI646 ( -0 +0 _1 ^0) Simple reasoning about linear inequalities
ARI647 ( -0 +0 _1 ^0) 2*a <= 1 implies 3*a != 3
ARI648 ( -0 +0 _1 ^0) 2*a > 0 | -4*b + 2*a < 8 implies a >= 1 | a-2*b<=3 | 20*a-30*b=7
ARI649 ( -0 +0 _1 ^0) a*a = 25, b*b*b = -125, a < 0 imply a = b
ARI650 ( -0 +0 _1 ^0) a*a >= 50 & a*a <= 60 are inconsistent
ARI651 ( -0 +0 _1 ^0) Solve simple system of linear inequalities
ARI652 ( -0 +0 _1 ^0) Prove that a + 4 > 2, -2 <= -3 - a imply a*a = 1
ARI653 ( -0 +0 _1 ^0) Prove that 5*a >= 1, 7*a <= 6 are unsat
ARI654 ( -0 +0 _1 ^0) y >= 5*x - 1, y <= 5*x, 5*z <= y - 1, 5*z >= y - 2 are unsat
ARI655 ( -0 +0 _1 ^0) a >= b, c >= d imply (a-b)*(c-d) >= 0
ARI656 ( -0 +0 _1 ^0) a >= 0, b >= c imply a*b >= a*c
ARI657 ( -0 +0 _1 ^0) Satisfy a <= -3, a*b <= 5
ARI658 ( -0 +0 _1 ^0) Prove that a*a <= 3 and a >= -1 & a <= 1 are equivalent
ARI659 ( -0 +0 _1 ^0) Prove that a*a*a <= 3 and a <= 1 are equivalent
ARI660 ( -0 +0 _1 ^0) Prove that a*a*a >= 11 and a >= 3 are equivalent
ARI661 ( -0 +0 _1 ^0) Prove that a*a*a*a*a >= 40 and a >= 3 are equivalent
ARI662 ( -0 +0 _1 ^0) Prove that a*a*a*a*a*a*a*a*a*a*a >= 1000 and a > 1 are equivalent
ARI663 ( -0 +0 _1 ^0) Prove that a*b=15 implies a <= 15 & a >= -15 & a != 0
ARI664 ( -0 +0 _1 ^0) 5*a + 11*b = 1 implies a*b <= -36 | a*b >= -2
ARI665 ( -0 +0 _1 ^0) a*b <= -36 | a*b >= -2 implies 5*a + 11*b = 1
ARI666 ( -0 +0 _1 ^0) 5*a + 11*b = 1 implies a*b <= -37 | a*b >= -2
ARI667 ( -0 +0 _1 ^0) 11*a + 7*b = 1 implies a*b <= -40 | a*b >= -6
ARI668 ( -0 +0 _1 ^0) 11*a + 7*b = 1 and c >= a imply a*c <= 0 | a*c >= 4
ARI669 ( -0 +0 _1 ^0) a * b * b * c = 0 and a = 0 | b = 0 | c = 0 are equivalent
ARI670 ( -0 +0 _1 ^0) Prove that a*a >= a
ARI671 ( -0 +0 _1 ^0) a*a = 2 is unsatisfiable
ARI672 ( -0 +0 _1 ^0) Prove that a*b = 1 and a = b & (a = 1 | a = -1) are equivalent
ARI673 ( -0 +0 _1 ^0) Prove that a*a = 1 and a = 1 | a = -1 are equivalent
ARI674 ( -0 +0 _1 ^0) Prove that a*a >= 4 implies a >= 2 | a <= -2
ARI675 ( -0 +0 _1 ^0) Prove that a*a*a*a + a*a + 10 >= 0
ARI676 ( -0 +0 _1 ^0) Prove that a*a + 10 >= 0
ARI677 ( -0 +0 _1 ^0) Prove that a >= 0 and a*a*a <= 0 imply a*a*a*a = 0
ARI678 ( -0 +0 _1 ^0) Prove that a >= 0 and a*a*a <= 7 imply a*a*a*a <= 1
ARI679 ( -0 +0 _1 ^0) Prove equivalence of nonlinear inequalities
ARI680 ( -0 +0 _1 ^0) Solve system of nonlinear inequalities
ARI681 ( -0 +0 _1 ^0) 0 < a * b, 0 < c * d, 0 < a * c imply 0 < b * d
ARI682 ( -0 +0 _1 ^0) 0 <= a, a < b imply a+1 <= a*b + b
ARI683 ( -0 +0 _1 ^0) Solve system of nonlinear inequalities
ARI684 ( -0 +0 _1 ^0) Expand polynomial a * (a + b) * c
ARI685 ( -0 +0 _1 ^0) Expand and rewrite polynomial
ARI686 ( -0 +0 _1 ^0) Expand and rewrite polynomial
ARI687 ( -0 +0 _1 ^0) Expand and rewrite polynomial
ARI688 ( -0 +0 _1 ^0) Verify gcd computation
ARI689 ( -0 +0 _1 ^0) Rewrite polynomial using linear equations
ARI690 ( -0 +0 _1 ^0) Solve simple system of linear equations
ARI691 ( -0 +0 _1 ^0) Rewrite modulo commutativity of multiplication
ARI692 ( -0 +0 _1 ^0) Solve simple system of linear equations
ARI693 ( -0 +0 _1 ^0) Solve simple system of linear equations
ARI694 ( -0 +0 _1 ^0) Solve simple system of linear equations
ARI695 ( -0 +0 _1 ^0) <A one line description of the problem>
ARI696 ( -0 +0 _1 ^0) Expand and rewrite polynomial
ARI697 ( -0 +0 _1 ^0) Solve simple system of linear equations
ARI698 ( -0 +0 _1 ^0) Solve simple system of linear equations, with parameter N
ARI699 ( -0 +0 _1 ^0) Nonlinear inequality reasoning
ARI700 ( -0 +0 _1 ^0) Solve a simple system of nonlinear equations
ARI701 ( -0 +0 _1 ^0) Solve a simple system of nonlinear equations
ARI702 ( -0 +0 _1 ^0) Solve a simple system of nonlinear equations
ARI703 ( -0 +0 _1 ^0) Sum-of-squares decomposition
ARI704 ( -0 +0 _1 ^0) Solve simple system of linear equations
ARI705 ( -0 +0 _1 ^0) Simple rewriting: d*d = d*d + a implies d*c*a*b*2 = 0
ARI706 ( -0 +0 _1 ^0) Simple rewriting: d*d = 2*d*d implies d*d = d*3*d
ARI707 ( -0 +0 _1 ^0) Simple rewriting: d*d + c = 2*d*d implies c*d*d = c*c
ARI708 ( -0 +0 _1 ^0) Expand and rewrite polynomials
ARI709 ( -0 +0 _1 ^0) Simple rewriting: a * 1 = 3 implies a = 3
ARI710 ( -0 +0 _1 ^0) Simple rewriting: b * 1 = a*c*d implies b = d*a*c
ARI711 ( -0 +0 _1 ^0) Expand the equation (a+b+c+1)^4 = 0
ARI712 ( -0 +0 _1 ^0) Expand and rewrite polynomial
ARI713 ( -0 +0 _1 ^0) ceiling is idempotent
ARI714 ( -0 +0 _1 ^0) floor(X+1) = floor(X)+1
ARI715 ( -0 +0 _1 ^0) floor(X+0.3) != floor(X)+0.3
ARI716 ( -0 +0 _1 ^0) floor(X+0.5) >= floor(X)
ARI717 ( -0 +0 _1 ^0) floor(X+0.5) can be greater than X
ARI718 ( -0 +0 _1 ^0) floor(X+0.5) can be less than X
ARI719 ( -0 +0 _1 ^0) floor(X+0.5) can be equal to floor(X-0.3)
ARI720 ( -0 +0 _1 ^0) floor(X+0.5) > floor(X-0.5)
ARI721 ( -0 +0 _1 ^0) floor(X+1.5) > X
ARI722 ( -0 +0 _1 ^0) If floor(X) = X, then X is an integer
ARI723 ( -0 +0 _1 ^0) If ceiling(X) = floor(X), then X is an integer
ARI724 ( -0 +0 _1 ^0) floor(2*X) >= 2*floor(X)
ARI725 ( -0 +0 _1 ^0) floor(2*X) can be greater than 2*floor(X)
ARI726 ( -0 +0 _1 ^0) There is an integer X such that 0.4*X > 1 and 0.3*X < 1
ARI727 ( -0 +0 _1 ^0) Every integer is greater than 3.8 or less than 3.2
ARI728 ( -0 +0 _1 ^0) If 2*X is an integer, then X is an integer or X+0.5 is an integer
ARI729 ( -0 +0 _1 ^0) If floor(X)=floor(Y), the X-Y < 1
ARI730 ( -0 +0 _1 ^0) If X =< 7.2 and X is an integer, then X =< 7
ARI731 ( -0 +0 _1 ^0) If X is an integer, then 2*X+3 is an integer
ARI732 ( -0 +0 _1 ^0) If X is an integer and 5*X+Y is an integer, then Y is an integer
ARI733 ( -0 +0 _1 ^0) Real inequation system has a solution with integer X
ARI734 ( -0 +0 _1 ^0) Verification example
ARI735 ( -0 +0 _1 ^0) Verification example
ARI736 ( -0 +0 _1 ^0) Integer of ceiling of real
ARI737 ( -0 +0 _1 ^0) Integer of ceiling of negative of real
ARI738 ( -0 +0 _1 ^0) Integer of ceiling of real compared to real of integer or real
ARI739 ( -0 +0 _1 ^0) Log of exponent of 1.0
ARI740 ( -0 +0 _1 ^0) Integer power of real
ARI741 ( -0 +0 _1 ^0) Real power of real
ARI742 ( -0 +0 _1 ^0) Square root of 0.0
ARI743 ( -0 +0 _1 ^0) Square root of 1.0
ARI744 ( -0 +0 _1 ^0) Square root of real
ARI745 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI746 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI747 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI748 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI749 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI750 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI751 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI752 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI753 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI754 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI755 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI756 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI757 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI758 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI759 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI760 ( -0 +0 _1 ^0) Aviation C program verification problem
ARI761 ( -0 +0 _1 ^0) Aviation C program verification problem
-------------------------------------------------------------------------------
Domain BIO = Biology
4 problems (4 abstract), 0 CNF, 4 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
BIO001 ( -0 +1 _0 ^0) Consistency of the BioKB
BIO002 ( -0 +1 _0 ^0) A cell has a part
BIO003 ( -0 +1 _0 ^0) A cytoskeleton is in a cell
BIO004 ( -0 +1 _0 ^0) A plasmodial slime mold is a living entity
-------------------------------------------------------------------------------
Domain BOO = Boolean Algebra
140 problems (105 abstract), 139 CNF, 1 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
BOO001 ( -1 +0 _0 ^0) In B3 algebra, inverse is an involution
BOO002 ( -2 +0 _0 ^0) In B3 algebra, X * X^-1 * Y = Y
BOO003 ( -3 +0 _0 ^0) Multiplication is idempotent (X * X = X)
BOO004 ( -3 +0 _0 ^0) Addition is idempotent (X + X = X)
BOO005 ( -3 +0 _0 ^0) Addition is bounded (X + 1 = 1)
BOO006 ( -3 +0 _0 ^0) Multiplication is bounded (X * 0 = 0)
BOO007 ( -3 +0 _0 ^0) Product is associative ( (X * Y) * Z = X * (Y * Z) )
BOO008 ( -4 +0 _0 ^0) Sum is associative ( (X + Y) + Z = X + (Y + Z) )
BOO009 ( -3 +0 _0 ^0) Multiplication absorption (X * (X + Y) = X)
BOO010 ( -3 +0 _0 ^0) Addition absorbtion (X + (X * Y) = X)
BOO011 ( -3 +0 _0 ^0) Inverse of additive identity = Multiplicative identity
BOO012 ( -4 +0 _0 ^0) Inverse is an involution
BOO013 ( -4 +0 _0 ^0) The inverse of X is unique
BOO014 ( -4 +0 _0 ^0) DeMorgan for inverse and product (X+Y)^-1 = (X^-1) * (Y^-1)
BOO015 ( -3 +0 _0 ^0) DeMorgan for inverse and sum (X^-1 + Y^-1) = (X * Y)^-1
BOO016 ( -2 +0 _0 ^0) Relating product and sum (X * Y = Z -> X + Z = X)
BOO017 ( -2 +0 _0 ^0) Relating sum and product (X + Y = Z -> X * Z = X)
BOO018 ( -1 +0 _0 ^0) Inverse of multiplicative identity = Additive identity
BOO019 ( -1 +0 _0 ^0) Prove the independance of Ternary Boolean algebra axiom
BOO020 ( -1 +0 _0 ^0) Frink's Theorem
BOO021 ( -1 +0 _0 ^0) A Basis for Boolean Algebra
BOO022 ( -1 +0 _0 ^0) A Basis for Boolean Algebra
BOO023 ( -1 +0 _0 ^0) Half of Padmanabhan's 6-basis with Pixley, part 1.
BOO024 ( -1 +0 _0 ^0) Half of Padmanabhan's 6-basis with Pixley, part 2.
BOO025 ( -1 +0 _0 ^0) Half of Padmanabhan's 6-basis with Pixley, part 3.
BOO026 ( -1 +0 _0 ^0) Absorption from self-dual independent 2-basis
BOO027 ( -1 +0 _0 ^0) Independence of self-dual 2-basis.
BOO028 ( -1 +0 _0 ^0) Self-dual 2-basis from majority reduction, part 1.
BOO029 ( -1 +0 _0 ^0) Self-dual 2-basis from majority reduction, part 3.
BOO030 ( -1 +0 _0 ^0) Independence of a BA 2-basis by majority reduction.
BOO031 ( -1 +0 _0 ^0) Dual BA 3-basis, proof of distributivity.
BOO032 ( -1 +0 _0 ^0) Independence of a system of Boolean algebra
BOO033 ( -1 +0 _0 ^0) Independence of a system of Boolean algebra.
BOO034 ( -1 +0 _0 ^0) Ternary Boolean Algebra Single axiom is sound.
BOO035 ( -1 +0 _0 ^0) Ternary Boolean Algebra Single axiom is complete
BOO036 ( -1 +0 _0 ^0) Ternary Boolean algebra (equality) axioms
BOO037 ( -3 +0 _0 ^0) Boolean algebra axioms
BOO038 ( -1 +0 _0 ^0) DN-1 is a single axiom for Boolean algebra
BOO039 ( -1 +0 _0 ^0) Sh-1 is a single axiom for Boolean algebra
BOO040 ( -1 +0 _0 ^0) Single axiom C1 for Boolean algebra in the Sheffer stroke
BOO041 ( -1 +0 _0 ^0) Single axiom C2 for Boolean algebra in the Sheffer stroke
BOO042 ( -1 +0 _0 ^0) Single axiom C3 for Boolean algebra in the Sheffer stroke
BOO043 ( -1 +0 _0 ^0) Single axiom C4 for Boolean algebra in the Sheffer stroke
BOO044 ( -1 +0 _0 ^0) Single axiom C5 for Boolean algebra in the Sheffer stroke
BOO045 ( -1 +0 _0 ^0) Single axiom C6 for Boolean algebra in the Sheffer stroke
BOO046 ( -1 +0 _0 ^0) Single axiom C7 for Boolean algebra in the Sheffer stroke
BOO047 ( -1 +0 _0 ^0) Single axiom C8 for Boolean algebra in the Sheffer stroke
BOO048 ( -1 +0 _0 ^0) Single axiom C9 for Boolean algebra in the Sheffer stroke
BOO049 ( -1 +0 _0 ^0) Single axiom C10 for Boolean algebra in the Sheffer stroke
BOO050 ( -1 +0 _0 ^0) Single axiom C11 for Boolean algebra in the Sheffer stroke
BOO051 ( -1 +0 _0 ^0) Single axiom C12 for Boolean algebra in the Sheffer stroke
BOO052 ( -1 +0 _0 ^0) Single axiom C13 for Boolean algebra in the Sheffer stroke
BOO053 ( -1 +0 _0 ^0) Single axiom C14 for Boolean algebra in the Sheffer stroke
BOO054 ( -1 +0 _0 ^0) Single axiom C15 for Boolean algebra in the Sheffer stroke
BOO055 ( -1 +0 _0 ^0) Single axiom C16 for Boolean algebra in the Sheffer stroke
BOO056 ( -1 +0 _0 ^0) Single non-axiom M5A for Boolean algebra in the Sheffer stroke
BOO057 ( -1 +0 _0 ^0) Single non-axiom M5B for Boolean algebra in the Sheffer stroke
BOO058 ( -1 +0 _0 ^0) Single non-axiom M6A for Boolean algebra in the Sheffer stroke
BOO059 ( -1 +0 _0 ^0) Single non-axiom M6B for Boolean algebra in the Sheffer stroke
BOO060 ( -1 +0 _0 ^0) Single non-axiom M6C for Boolean algebra in the Sheffer stroke
BOO061 ( -1 +0 _0 ^0) Single non-axiom M6D for Boolean algebra in the Sheffer stroke
BOO066 ( -1 +0 _0 ^0) Single non-axiom M8A for Boolean algebra in the Sheffer stroke
BOO067 ( -1 +0 _0 ^0) Ternary Boolean Algebra Single axiom is complete, part 1
BOO068 ( -1 +0 _0 ^0) Ternary Boolean Algebra Single axiom is complete, part 2
BOO069 ( -1 +0 _0 ^0) Ternary Boolean Algebra Single axiom is complete, part 3
BOO070 ( -1 +0 _0 ^0) Ternary Boolean Algebra Single axiom is complete, part 4
BOO071 ( -1 +0 _0 ^0) Ternary Boolean Algebra Single axiom is complete, part 5
BOO072 ( -1 +0 _0 ^0) DN-1 is a single axiom for Boolean algebra, part 1
BOO073 ( -1 +0 _0 ^0) DN-1 is a single axiom for Boolean algebra, part 2
BOO074 ( -1 +0 _0 ^0) DN-1 is a single axiom for Boolean algebra, part 3
BOO075 ( -1 +0 _0 ^0) Sh-1 is a single axiom for Boolean algebra, part 1
BOO076 ( -1 +0 _0 ^0) Sh-1 is a single axiom for Boolean algebra, part 2
BOO077 ( -1 +0 _0 ^0) Axiom C1 for Boolean algebra in the Sheffer stroke, part 1
BOO078 ( -1 +0 _0 ^0) Axiom C1 for Boolean algebra in the Sheffer stroke, part 2
BOO079 ( -1 +0 _0 ^0) Axiom C2 for Boolean algebra in the Sheffer stroke, part 1
BOO080 ( -1 +0 _0 ^0) Axiom C2 for Boolean algebra in the Sheffer stroke, part 2
BOO081 ( -1 +0 _0 ^0) Axiom C3 for Boolean algebra in the Sheffer stroke, part 1
BOO082 ( -1 +0 _0 ^0) Axiom C3 for Boolean algebra in the Sheffer stroke, part 2
BOO083 ( -1 +0 _0 ^0) Axiom C4 for Boolean algebra in the Sheffer stroke, part 1
BOO084 ( -1 +0 _0 ^0) Axiom C4 for Boolean algebra in the Sheffer stroke, part 2
BOO085 ( -1 +0 _0 ^0) Axiom C5 for Boolean algebra in the Sheffer stroke, part 1
BOO086 ( -1 +0 _0 ^0) Axiom C5 for Boolean algebra in the Sheffer stroke, part 2
BOO087 ( -1 +0 _0 ^0) Axiom C6 for Boolean algebra in the Sheffer stroke, part 1
BOO088 ( -1 +0 _0 ^0) Axiom C6 for Boolean algebra in the Sheffer stroke, part 2
BOO089 ( -1 +0 _0 ^0) Axiom C7 for Boolean algebra in the Sheffer stroke, part 1
BOO090 ( -1 +0 _0 ^0) Axiom C7 for Boolean algebra in the Sheffer stroke, part 2
BOO091 ( -1 +0 _0 ^0) Axiom C8 for Boolean algebra in the Sheffer stroke, part 1
BOO092 ( -1 +0 _0 ^0) Axiom C8 for Boolean algebra in the Sheffer stroke, part 2
BOO093 ( -1 +0 _0 ^0) Axiom C9 for Boolean algebra in the Sheffer stroke, part 1
BOO094 ( -1 +0 _0 ^0) Axiom C9 for Boolean algebra in the Sheffer stroke, part 2
BOO095 ( -1 +0 _0 ^0) Axiom C10 for Boolean algebra in the Sheffer stroke, part 1
BOO096 ( -1 +0 _0 ^0) Axiom C10 for Boolean algebra in the Sheffer stroke, part 2
BOO097 ( -1 +0 _0 ^0) Axiom C11 for Boolean algebra in the Sheffer stroke, part 1
BOO098 ( -1 +0 _0 ^0) Axiom C11 for Boolean algebra in the Sheffer stroke, part 2
BOO099 ( -1 +0 _0 ^0) Axiom C12 for Boolean algebra in the Sheffer stroke, part 1
BOO100 ( -1 +0 _0 ^0) Axiom C12 for Boolean algebra in the Sheffer stroke, part 2
BOO101 ( -1 +0 _0 ^0) Axiom C13 for Boolean algebra in the Sheffer stroke, part 1
BOO102 ( -1 +0 _0 ^0) Axiom C13 for Boolean algebra in the Sheffer stroke, part 2
BOO103 ( -1 +0 _0 ^0) Axiom C14 for Boolean algebra in the Sheffer stroke, part 1
BOO104 ( -1 +0 _0 ^0) Axiom C14 for Boolean algebra in the Sheffer stroke, part 2
BOO105 ( -1 +0 _0 ^0) Axiom C15 for Boolean algebra in the Sheffer stroke, part 1
BOO106 ( -1 +0 _0 ^0) Axiom C15 for Boolean algebra in the Sheffer stroke, part 2
BOO107 ( -1 +0 _0 ^0) Axiom C16 for Boolean algebra in the Sheffer stroke, part 1
BOO108 ( -1 +0 _0 ^0) Axiom C16 for Boolean algebra in the Sheffer stroke, part 2
BOO109 ( -0 +1 _0 ^0) Josef Urban's problem using the Wajsberg axiom
-------------------------------------------------------------------------------
Domain CAT = Category Theory
132 problems (38 abstract), 62 CNF, 68 FOF, 0 TFF, 2 THF
-------------------------------------------------------------------------------
CAT001 ( -4 +0 _0 ^0) XY monomorphism => Y monomorphism
CAT002 ( -4 +0 _0 ^0) X and Y monomorphisms, XY well-defined => XY monomorphism
CAT003 ( -4 +0 _0 ^0) XY epimorphism => X epimorphism
CAT004 ( -4 +0 _0 ^0) X and Y epimorphisms, XY well-defined => XY epimorphism
CAT005 ( -3 +0 _0 ^0) Domain is the unique right identity
CAT006 ( -3 +0 _0 ^0) Codomain is the unique left identity
CAT007 ( -2 +0 _0 ^0) If domain(x) = codomain(y) then xy is defined
CAT008 ( -1 +0 _0 ^0) If xy is defined then domain(x) = codomain(y)
CAT009 ( -3 +0 _0 ^0) If xy is defined, then domain(xy) = domain(y)
CAT010 ( -2 +0 _0 ^0) If xy is defined, then codomain(xy) = codomain(x)
CAT011 ( -4 +0 _0 ^0) domain(domain(x)) = domain(x)
CAT012 ( -3 +0 _0 ^0) codomain(domain(x)) = domain(x)
CAT013 ( -3 +0 _0 ^0) domain(codomain(x)) = codomain(x)
CAT014 ( -4 +0 _0 ^0) codomain(codomain(x)) = codomain(x)
CAT015 ( -2 +0 _0 ^0) Prove something exists
CAT016 ( -2 +0 _0 ^0) If x exists, then domain(x) exists
CAT017 ( -2 +0 _0 ^0) If x exists, then codomain(x) exists
CAT018 ( -3 +0 _0 ^0) If xy and yz exist, then so does x(yz)
CAT019 ( -5 +0 _0 ^0) Axiom of Indiscernibles
CAT020 ( -4 +0 _0 ^0) Category theory axioms
CAT021 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T11
CAT022 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T21
CAT023 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T28
CAT024 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T29
CAT025 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T34
CAT026 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T38
CAT027 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T40
CAT028 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T41
CAT029 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T42
CAT030 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T43
CAT031 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T45
CAT032 ( -0 +4 _0 ^0) Some Isomorphisms Between Functor Categories T49
CAT033 ( -0 +4 _0 ^0) Yoneda Embedding T02
CAT034 ( -0 +4 _0 ^0) Yoneda Embedding T04
CAT035 ( -0 +4 _0 ^0) Yoneda Embedding T05
CAT036 ( -0 +4 _0 ^0) Yoneda Embedding T08
CAT037 ( -0 +4 _0 ^0) Yoneda Embedding T09
CAT038 ( -0 +0 _0 ^2) Swapping function
ERROR: Internal name wrong in /home/tptp/TPTP/Problems/CAT/CAT038^2.p
       Internal: SYO519^1; File:CAT038^2
-------------------------------------------------------------------------------
Domain COL = Combinatory Logic
239 problems (121 abstract), 239 CNF, 0 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
COL001 ( -2 +0 _0 ^0) Weak fixed point for S and K
COL002 ( -5 +0 _0 ^0) Weak fixed point for S, B, C, and I
COL003 (-19 +0 _0 ^0) Strong fixed point for B and W
COL004 ( -2 +0 _0 ^0) Find combinator equivalent to U from S and K
COL005 ( -1 +0 _0 ^0) Find a model for S and W but not a weak fixed point
COL006 ( -7 +0 _0 ^0) Strong fixed point for S and K
COL007 ( -1 +0 _0 ^0) Weak fixed point for L
COL008 ( -1 +0 _0 ^0) Weak fixed point for M and B
COL009 ( -1 +0 _0 ^0) Weak fixed point for B and L2
COL010 ( -1 +0 _0 ^0) Weak fixed point for B and S2
COL011 ( -1 +0 _0 ^0) Weak fixed point for O and Q1
COL012 ( -1 +0 _0 ^0) Weak fixed point for U
COL013 ( -1 +0 _0 ^0) Weak fixed point for S and L
COL014 ( -1 +0 _0 ^0) Weak fixed point for L and O
COL015 ( -1 +0 _0 ^0) Weak fixed point for Q and M
COL016 ( -1 +0 _0 ^0) Weak fixed point for B, M and L
COL017 ( -1 +0 _0 ^0) Weak fixed point for B, M, and T
COL018 ( -1 +0 _0 ^0) Weak fixed point for W, Q, and L
COL019 ( -1 +0 _0 ^0) Weak fixed point for B, S, and T
COL020 ( -1 +0 _0 ^0) Weak fixed point for B, S, and C
COL021 ( -1 +0 _0 ^0) Weak fixed point for B, M, and V
COL022 ( -1 +0 _0 ^0) Weak fixed point for B, O, and M
COL023 ( -1 +0 _0 ^0) Weak fixed point for B and N
COL024 ( -1 +0 _0 ^0) Weak fixed point for B, M, and C
COL025 ( -1 +0 _0 ^0) Weak fixed point for B and W
COL026 ( -1 +0 _0 ^0) Weak fixed point for B and W1
COL027 ( -1 +0 _0 ^0) Weak fixed point for B and H
COL029 ( -1 +0 _0 ^0) Strong fixed point for U
COL030 ( -1 +0 _0 ^0) Strong fixed point for S and L
COL031 ( -1 +0 _0 ^0) Strong fixed point for L and O
COL032 ( -1 +0 _0 ^0) Strong fixed point for Q and M
COL033 ( -1 +0 _0 ^0) Strong fixed point for B, M and L
COL034 ( -1 +0 _0 ^0) Strong fixed point for B, M, and T
COL035 ( -1 +0 _0 ^0) Strong fixed point for W, Q, and L
COL036 ( -1 +0 _0 ^0) Strong fixed point for B, S, and T
COL037 ( -1 +0 _0 ^0) Strong fixed point for B, S, and C
COL038 ( -1 +0 _0 ^0) Strong fixed point for B, M, and V
COL039 ( -1 +0 _0 ^0) Strong fixed point for B, O, and M
COL041 ( -1 +0 _0 ^0) Strong fixed point for B, M, and C
COL042 ( -9 +0 _0 ^0) Strong fixed point for B and W1
COL043 ( -3 +0 _0 ^0) Strong fixed point for B and H
COL044 ( -9 +0 _0 ^0) Strong fixed point for B and N
COL045 ( -1 +0 _0 ^0) Weak fixed point for B, M and S
COL046 ( -1 +0 _0 ^0) Strong fixed point for B, M and S
COL047 ( -1 +0 _0 ^0) Find a model for L and Q but not a strong fixed point
COL048 ( -1 +0 _0 ^0) Weak fixed point for B, W, and M
COL049 ( -1 +0 _0 ^0) Strong fixed point for B, W, and M
COL050 ( -1 +0 _0 ^0) The Significance of the Mockingbird
COL051 ( -1 +0 _0 ^0) Egocentric mocking bird?
COL052 ( -2 +0 _0 ^0) A Question on Agreeable Birds
COL053 ( -1 +0 _0 ^0) An Exercise in Composition
COL054 ( -1 +0 _0 ^0) Compatible Birds
COL055 ( -1 +0 _0 ^0) Happy Birds
COL056 ( -1 +0 _0 ^0) Normal Birds
COL057 ( -1 +0 _0 ^0) Strong fixed point for S, B, C, and I
COL058 ( -3 +0 _0 ^0) If there's a lark, then there's an egocentric bird.
COL059 ( -1 +0 _0 ^0) L3 ((lark lark) lark) is not egocentric.
COL060 ( -3 +0 _0 ^0) Find combinator equivalent to Q from B and T
COL061 ( -3 +0 _0 ^0) Find combinator equivalent to Q1 from B and T
COL062 ( -3 +0 _0 ^0) Find combinator equivalent to C from B and T
COL063 ( -6 +0 _0 ^0) Find combinator equivalent to F from B and T
COL064 (-11 +0 _0 ^0) Find combinator equivalent to V from B and T
COL065 ( -1 +0 _0 ^0) Find combinator equivalent to G from B and T
COL066 ( -3 +0 _0 ^0) Find combinator equivalent to P from B, Q and W
COL067 ( -1 +0 _0 ^0) Strong fixed point for B and S
COL068 ( -1 +0 _0 ^0) Weak fixed point for B and S
COL069 ( -1 +0 _0 ^0) Strong fixed point for B and L
COL070 ( -1 +0 _0 ^0) Weak fixed point for B and N1
COL071 ( -1 +0 _0 ^0) Strong fixed point for N and Q
COL073 ( -1 +0 _0 ^0) Strong fixed point for B and N1
COL074 ( -3 +0 _0 ^0) Unsatisfiable variant of TRC
COL075 ( -2 +0 _0 ^0) Lemma 1 for showing the unsatisfiable variant of TRC
COL076 ( -2 +0 _0 ^0) Lemma 2 for showing the unsatisfiable variant of TRC
COL077 ( -1 +0 _0 ^0) Abst Abst Abst Abst Abst Abst = Id
COL078 ( -2 +0 _0 ^0) Abst Abst Abst Abst = k(k(id))
COL079 ( -2 +0 _0 ^0) Abst(Abst(Abst X)) = Abst X
COL080 ( -2 +0 _0 ^0) Abst(Abst k(X)) = k(X)
COL081 ( -2 +0 _0 ^0) Abst k(k(X)) = k(k(X))
COL082 ( -1 +0 _0 ^0) Type-respecting combinators
COL083 ( -1 +0 _0 ^0) Compatible Birds, part 1
COL084 ( -1 +0 _0 ^0) Compatible Birds, part 2
COL085 ( -1 +0 _0 ^0) Happy Birds, part 1
COL086 ( -1 +0 _0 ^0) Happy Birds, part 2
COL087 ( -1 +0 _0 ^0) Strong fixed point for B and M
COL088 ( -2 +0 _0 ^0) ap_reduce1_2c1
COL089 ( -2 +0 _0 ^0) ap_reduce2_2c1
COL090 ( -3 +0 _0 ^0) i_contract_E
COL091 ( -2 +0 _0 ^0) k1_contractD_c1
COL092 ( -2 +0 _0 ^0) k1_parcontractD_c1
COL093 ( -2 +0 _0 ^0) s1_parcontractD_c1
COL094 ( -2 +0 _0 ^0) s2_parcontractD_c1
COL095 ( -2 +0 _0 ^0) diamond_parcontract_2c1
COL096 ( -2 +0 _0 ^0) diamond_parcontract_3c1
COL097 ( -2 +0 _0 ^0) diamond_parcontract_4c1
COL098 ( -2 +0 _0 ^0) diamond_strip_lemmaD_2c1
COL099 ( -2 +0 _0 ^0) diamond_trancl_1c1
COL100 ( -2 +0 _0 ^0) diamond_trancl_2c1
COL101 ( -2 +0 _0 ^0) Problem about combinators
COL102 ( -2 +0 _0 ^0) Problem about combinators
COL103 ( -2 +0 _0 ^0) Problem about combinators
COL104 ( -2 +0 _0 ^0) Problem about combinators
COL105 ( -2 +0 _0 ^0) Problem about combinators
COL106 ( -2 +0 _0 ^0) Problem about combinators
COL107 ( -1 +0 _0 ^0) Problem about combinators
COL108 ( -1 +0 _0 ^0) Problem about combinators
COL109 ( -2 +0 _0 ^0) Problem about combinators
COL110 ( -2 +0 _0 ^0) Problem about combinators
COL111 ( -2 +0 _0 ^0) Problem about combinators
COL112 ( -2 +0 _0 ^0) Problem about combinators
COL113 ( -2 +0 _0 ^0) Problem about combinators
COL114 ( -2 +0 _0 ^0) Problem about combinators
COL115 ( -2 +0 _0 ^0) Problem about combinators
COL116 ( -2 +0 _0 ^0) Problem about combinators
COL117 ( -2 +0 _0 ^0) Problem about combinators
COL118 ( -2 +0 _0 ^0) Problem about combinators
COL119 ( -2 +0 _0 ^0) Problem about combinators
COL120 ( -2 +0 _0 ^0) Problem about combinators
COL121 ( -2 +0 _0 ^0) Problem about combinators
COL122 ( -2 +0 _0 ^0) Problem about combinators
COL123 ( -2 +0 _0 ^0) Problem about combinators
COL124 ( -2 +0 _0 ^0) Problem about combinators
-------------------------------------------------------------------------------
Domain COM = Computing Theory
238 problems (211 abstract), 14 CNF, 61 FOF, 102 TFF, 61 THF
-------------------------------------------------------------------------------
COM001 ( -1 +0 _1 ^0) A program correctness theorem
COM002 ( -2 +0 _2 ^0) A program correctness theorem
COM003 ( -2 +3 _1 ^0) The halting problem is undecidable
COM004 ( -1 +0 _0 ^0) Part of completeness of resolution
COM005 ( -1 +0 _0 ^0) Behaviour of an algorithm that orients rings with 3 nodes
COM006 ( -1 +0 _0 ^0) Behaviour of an algorithm that orients rings with 5 nodes
COM007 ( -0 +2 _0 ^0) Preservation of the Diamond Property under reflexive closure
COM008 ( -0 +2 _0 ^0) Induction step in Newman's Lemma
COM009 ( -2 +0 _0 ^0) Problem about UNITY theory
COM010 ( -2 +0 _0 ^0) Problem about UNITY theory
COM011 ( -2 +0 _0 ^0) Problem about UNITY theory
COM012 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 01, 00 expansion
COM013 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 02, 00 expansion
COM014 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03+, 00 expansion
COM015 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_01, 00 expansion
COM016 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_01_01, 00 expansion
COM017 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_01_03, 00 expansion
COM018 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_01_04, 00 expansion
COM019 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_01_05, 00 expansion
COM020 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_01_05_01, 00 expansion
COM021 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_01_05_02, 00 expansion
COM022 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_01_07, 00 expansion
COM023 ( -0 +2 _0 ^0) Newman's lemma on rewriting systems 03_02, 00 expansion
COM024 ( -0 +0 _0 ^1) TPS problem THM9
COM025 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 19
COM026 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 21
COM027 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 23
COM028 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 25
COM029 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 26
COM030 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 48
COM031 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 51
COM032 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 53
COM033 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 55
COM034 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 57
COM035 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 59
COM036 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 61
COM037 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 63
COM038 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 66
COM039 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 70
COM040 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 72
COM041 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 74
COM042 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 76
COM043 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 78
COM044 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 80
COM045 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 82
COM046 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 85
COM047 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 87
COM048 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 94
COM049 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 102
COM050 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 104
COM051 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 107
COM052 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 108
COM053 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 110
COM054 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 112
COM055 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 117
COM056 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 119
COM057 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 121
COM058 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 123
COM059 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 124
COM060 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 130
COM061 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 134
COM062 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 136
COM063 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 137
COM064 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 140
COM065 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 142
COM066 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 143
COM067 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 147
COM068 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 152
COM069 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 154
COM070 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 157
COM071 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 159
COM072 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 163
COM073 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 166
COM074 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 168
COM075 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 170
COM076 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 172
COM077 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 176
COM078 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 177
COM079 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 184
COM080 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 185
COM081 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 187
COM082 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 191
COM083 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 196
COM084 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 199
COM085 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 201
COM086 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 203
COM087 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 210
COM088 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 212
COM089 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 213
COM090 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 214
COM091 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 217
COM092 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 218
COM093 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 220
COM094 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 222
COM095 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 225
COM096 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 227
COM097 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 230
COM098 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 231
COM099 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 233
COM100 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 234
COM101 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 238
COM102 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 240
COM103 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 241
COM104 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 243
COM105 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 244
COM106 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 248
COM107 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 249
COM108 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 251
COM109 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 253
COM110 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 255
COM111 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 258
COM112 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 262
COM113 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 264
COM114 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 265
COM115 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 268
COM116 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 270
COM117 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 274
COM118 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 283
COM119 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 287
COM120 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 289
COM121 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 290
COM122 ( -0 +0 _1 ^0) Quantifier elimination for Presburger arithmetic line 294
COM123 ( -0 +1 _0 ^0) T-Weak-FreeVar-abs-1 step in progress/preservation proof
COM124 ( -0 +1 _0 ^0) T-Weak-FreeVar-abs-2 step in progress/preservation proof
COM125 ( -0 +1 _0 ^0) T-Weak-FreeVar-abs step in progress/preservation proof
COM126 ( -0 +1 _0 ^0) T-Weak-FreeVar-app step in progress/preservation proof
COM127 ( -0 +1 _0 ^0) T-Weak-FreeVar-var step in progress/preservation proof
COM128 ( -0 +1 _0 ^0) Fresh-unequal-var-3 step in progress/preservation proof
COM129 ( -0 +1 _0 ^0) Fresh-free-2 step in progress/preservation proof
COM130 ( -0 +1 _0 ^0) T-subst-abs-1 step in progress/preservation proof
COM131 ( -0 +1 _0 ^0) T-subst-abs-2 step in progress/preservation proof
COM132 ( -0 +2 _0 ^0) T-subst-abs-3 step in progress/preservation proof
COM133 ( -0 +1 _0 ^0) T-subst-abs step in progress/preservation proof
COM134 ( -0 +1 _0 ^0) T-subst-app step in progress/preservation proof
COM135 ( -0 +1 _0 ^0) T-subst-var step in progress/preservation proof
COM136 ( -0 +1 _0 ^0) T-Strong-abs step in progress/preservation proof
COM137 ( -0 +1 _0 ^0) T-Strong-app step in progress/preservation proof
COM138 ( -0 +1 _0 ^0) T-Strong-var step in progress/preservation proof
COM139 ( -0 +1 _0 ^0) T-Weak-abs-1 step in progress/preservation proof
COM140 ( -0 +1 _0 ^0) T-Weak-abs-2 step in progress/preservation proof
COM141 ( -0 +1 _0 ^0) T-Weak-abs step in progress/preservation proof
COM142 ( -0 +1 _0 ^0) T-Weak-app step in progress/preservation proof
COM143 ( -0 +1 _0 ^0) T-Weak-var step in progress/preservation proof
COM144 ( -0 +1 _0 ^0) T-Preservation-T-abs step in progress/preservation proof
COM145 ( -0 +1 _0 ^0) T-Preservation-T-app step in progress/preservation proof
COM146 ( -0 +1 _0 ^0) T-Preservation-T-var step in progress/preservation proof
COM147 ( -0 +1 _0 ^0) T-Progress-T-abs step in progress/preservation proof
COM148 ( -0 +1 _0 ^0) T-Progress-T-app step in progress/preservation proof
COM149 ( -0 +1 _0 ^0) T-Progress-T-var step in progress/preservation proof
COM150 ( -0 +1 _0 ^0) Axioms for progress/preservation proof
COM151 ( -0 +1 _0 ^0) Common axioms for progress/preservation proof
COM152 ( -0 +0 _0 ^1) Abstract completeness 27
COM153 ( -0 +0 _0 ^1) Abstract completeness 90
COM154 ( -0 +0 _0 ^1) Abstract completeness 131
COM155 ( -0 +0 _0 ^1) Abstract completeness 181
COM156 ( -0 +0 _0 ^1) Abstract completeness 215
COM157 ( -0 +0 _0 ^1) Abstract completeness 235
COM158 ( -0 +0 _0 ^1) Abstract completeness 262
COM159 ( -0 +0 _0 ^1) Abstract completeness 288
COM160 ( -0 +0 _0 ^1) Abstract completeness 317
COM161 ( -0 +0 _0 ^1) Abstract completeness 355
COM162 ( -0 +0 _0 ^1) Binary decision diagram 38
COM163 ( -0 +0 _0 ^1) Binary decision diagram 95
COM164 ( -0 +0 _0 ^1) Binary decision diagram 141
COM165 ( -0 +0 _0 ^1) Binary decision diagram 172
COM166 ( -0 +0 _0 ^1) Binary decision diagram 212
COM167 ( -0 +0 _0 ^1) Binary decision diagram 250
COM168 ( -0 +0 _0 ^1) Binary decision diagram 276
COM169 ( -0 +0 _0 ^1) Binary decision diagram 318
COM170 ( -0 +0 _0 ^1) Binary decision diagram 356
COM171 ( -0 +0 _0 ^1) Binary decision diagram 424
COM172 ( -0 +0 _0 ^1) Koenig's lemma 47
COM173 ( -0 +0 _0 ^1) Koenig's lemma 73
COM174 ( -0 +0 _0 ^1) Koenig's lemma 94
COM175 ( -0 +0 _0 ^1) Koenig's lemma 115
COM176 ( -0 +0 _0 ^1) Koenig's lemma 131
COM177 ( -0 +0 _0 ^1) Koenig's lemma 184
COM178 ( -0 +0 _0 ^1) Koenig's lemma 206
COM179 ( -0 +0 _0 ^1) Koenig's lemma 231
COM180 ( -0 +0 _0 ^1) Koenig's lemma 252
COM181 ( -0 +0 _0 ^1) Koenig's lemma 269
COM182 ( -0 +0 _0 ^1) Grammars and languages 60
COM183 ( -0 +0 _0 ^1) Grammars and languages 157
COM184 ( -0 +0 _0 ^1) Grammars and languages 228
COM185 ( -0 +0 _0 ^1) Grammars and languages 307
COM186 ( -0 +0 _0 ^1) Grammars and languages 431
COM187 ( -0 +0 _0 ^1) Grammars and languages 549
COM188 ( -0 +0 _0 ^1) Grammars and languages 619
COM189 ( -0 +0 _0 ^1) Grammars and languages 706
COM190 ( -0 +0 _0 ^1) Grammars and languages 811
COM191 ( -0 +0 _0 ^1) Grammars and languages 882
COM192 ( -0 +0 _0 ^1) Grammars and languages 1005
COM193 ( -0 +0 _0 ^1) Grammars and languages 1154
COM194 ( -0 +0 _0 ^1) Grammars and languages 1238
COM195 ( -0 +0 _0 ^1) Grammars and languages 1319
COM196 ( -0 +0 _0 ^1) Grammars and languages 1357
COM197 ( -0 +0 _0 ^1) Koenig's lemma (about infinite trees) 51
COM198 ( -0 +0 _0 ^1) Koenig's lemma (about infinite trees) 75
COM199 ( -0 +0 _0 ^1) Koenig's lemma (about infinite trees) 84
COM200 ( -0 +0 _0 ^1) Koenig's lemma (about infinite trees) 111
COM201 ( -0 +0 _0 ^1) Koenig's lemma (about infinite trees) 120
COM202 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 38
COM203 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 44
COM204 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 65
COM205 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 84
COM206 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 97
COM207 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 111
COM208 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 122
COM209 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 133
COM210 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 140
COM211 ( -0 +0 _0 ^1) Parallel extension to grammars and languages 144
-------------------------------------------------------------------------------
Domain CSR = Commonsense Reasoning
868 problems (155 abstract), 0 CNF, 786 FOF, 0 TFF, 82 THF
-------------------------------------------------------------------------------
CSR001 ( -0 +2 _0 ^0) Water level is 3 at time 4
CSR002 ( -0 +2 _0 ^0) Not filling at time 4
CSR003 ( -0 +1 _0 ^0) Spilling at time 4
CSR004 ( -0 +2 _0 ^0) Overflow happens at time 3
CSR005 ( -0 +2 _0 ^0) Filling at time 3
CSR006 ( -0 +1 _0 ^0) Waterlevel is 3 at time 3
CSR007 ( -0 +1 _0 ^0) Waterlevel is not 3 at time 2
CSR008 ( -0 +1 _0 ^0) Waterlevel is 2 at time 2
CSR009 ( -0 +1 _0 ^0) Filling at time 2
CSR010 ( -0 +1 _0 ^0) Filling at time 1
CSR011 ( -0 +1 _0 ^0) Not stopped filling between times 0 and 3
CSR012 ( -0 +1 _0 ^0) Waterlevel is 1 at time 1
CSR013 ( -0 +1 _0 ^0) Nothing happens to stop filling at time 2
CSR014 ( -0 +1 _0 ^0) Filling is not released at time 3
CSR015 ( -0 +1 _0 ^0) Not backwards at time 1
CSR016 ( -0 +1 _0 ^0) Forwards at time 1
CSR017 ( -0 +1 _0 ^0) Not spinning at time 1
CSR018 ( -0 +1 _0 ^0) Backwards at time 2
CSR019 ( -0 +1 _0 ^0) Not forwards at time 2
CSR020 ( -0 +1 _0 ^0) Not spinning at time 2
CSR021 ( -0 +1 _0 ^0) Not backwards at time 3
CSR022 ( -0 +1 _0 ^0) Not forwards at time 3
CSR023 ( -0 +1 _0 ^0) Spinning at time 3
CSR024 ( -0 +2 _0 ^0) Multiple trolleys, size 9
CSR025 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR025+1
CSR026 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR026+1
CSR027 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR027+1
CSR028 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR028+1
CSR029 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR029+1
CSR030 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR030+1
CSR031 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR031+1
CSR032 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR032+1
CSR033 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR033+1
CSR034 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR034+1
CSR035 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR035+1
CSR036 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR036+1
CSR037 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR037+1
CSR038 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR038+1
CSR039 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR039+1
CSR040 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR040+1
CSR041 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR041+1
CSR042 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR042+1
CSR043 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR043+1
CSR044 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR044+1
CSR045 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR045+1
CSR046 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR046+1
CSR047 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR047+1
CSR048 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR048+1
CSR049 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR049+1
CSR050 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR050+1
CSR051 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR051+1
CSR052 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR052+1
CSR053 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR053+1
CSR054 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR054+1
CSR055 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR055+1
CSR056 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR056+1
CSR057 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR057+1
CSR058 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR058+1
CSR059 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR059+1
CSR060 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR060+1
CSR061 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR061+1
CSR062 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR062+1
CSR063 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR063+1
CSR064 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR064+1
CSR065 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR065+1
CSR066 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR066+1
CSR067 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR067+1
CSR068 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR068+1
CSR069 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR069+1
CSR070 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR070+1
CSR071 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR071+1
CSR072 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR072+1
CSR073 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR073+1
CSR074 ( -0 +6 _0 ^0) Autogenerated Cyc Problem CSR074+1
CSR075 ( -0 +6 _0 ^0) Class subsumption, skolemization
CSR076 ( -0 +7 _0 ^0) Relation subsumption
CSR077 ( -0 +6 _0 ^0) Case elimination reasoning
CSR078 ( -0 +6 _0 ^0) Uses holdsDuring
CSR079 ( -0 +7 _0 ^0) Class equality and subsumption reasoning
CSR080 ( -0 +6 _0 ^0) Hard parts and pieces
CSR081 ( -0 +7 _0 ^0) Family matter
CSR082 ( -0 +6 _0 ^0) Jane does reasoning and perception
CSR083 ( -0 +6 _0 ^0) Class identification
CSR084 ( -0 +7 _0 ^0) Case elimination with multiple rules
CSR085 ( -0 +7 _0 ^0) One simple rule
CSR086 ( -0 +6 _0 ^0) Skolemization, multiple rules
CSR087 ( -0 +6 _0 ^0) Just one rule that cannot be satisfied
CSR088 ( -0 +7 _0 ^0) Overlapping and meeting time
CSR089 ( -0 +7 _0 ^0) Overlapping and meeting space
CSR090 ( -0 +6 _0 ^0) Pieces of time
CSR091 ( -0 +6 _0 ^0) Therapeutic process
CSR092 ( -0 +6 _0 ^0) Ancestry
CSR093 ( -0 +7 _0 ^0) Distant ancestry
CSR094 ( -0 +7 _0 ^0) Class subsumption
CSR095 ( -0 +6 _0 ^0) Case elimination
CSR096 ( -0 +7 _0 ^0) Case elimination
CSR097 ( -0 +6 _0 ^0) A gaseous object
CSR098 ( -0 +7 _0 ^0) Equality reasoning
CSR099 ( -0 +6 _0 ^0) Reasoning about class equality
CSR100 ( -0 +7 _0 ^0) Circular subclass subsumption reasoning
CSR101 ( -0 +6 _0 ^0) An "intensional" query requiring circular subclass reasoning
CSR102 ( -0 +6 _0 ^0) Every physical object has some positive mass
CSR103 ( -0 +7 _0 ^0) Every term is an instance of Entity
CSR104 ( -0 +7 _0 ^0) Temporal point and interval reasoning
CSR105 ( -0 +7 _0 ^0) Temporal interval reasoning
CSR106 ( -0 +7 _0 ^0) Temporal point and interval reasoning
CSR107 ( -0 +7 _0 ^0) Temporal point and interval reasoning
CSR108 ( -0 +7 _0 ^0) Defines a new predicate of 10 arguments
CSR109 ( -0 +7 _0 ^0) Skolemization of a deep class hierarchy, with subsumption
CSR110 ( -0 +3 _0 ^0) The SUMO axioms
CSR111 ( -0 +5 _0 ^0) 1131 axioms from Cyc
CSR112 ( -0 +1 _0 ^0) Who is the singer of the band U2?
CSR113 ( -0+31 _0 ^0) Where can you find the Statue of Liberty?
CSR114 ( -0+30 _0 ^0) In which Italian city can you find the Colosseum?
CSR115 ( -0+100 _0 ^0) Which British company was taken over by BMW in 1994?
CSR116 ( -0+47 _0 ^0) Who was the first black president elected in South Africa?
CSR117 ( -0 +1 _0 ^0) Flooding Copenhagen
CSR118 ( -0 +7 _0 ^0) Abraham Lincoln is a mammal
CSR119 ( -0 +0 _0 ^3) Did someone like Bill in 2009?
CSR120 ( -0 +0 _0 ^3) Did someone like Bill in 2009?
CSR121 ( -0 +0 _0 ^2) Did Mary and Sue like someone in 2009?
CSR122 ( -0 +0 _0 ^2) Do Mary and Sue like Bill in 2009?
CSR123 ( -0 +0 _0 ^2) What does Sue feel?
CSR124 ( -0 +0 _0 ^2) Do Mary and Sue like Bill in 2009?
CSR125 ( -0 +0 _0 ^2) Sue contradicts her likes
CSR126 ( -0 +0 _0 ^2) Did Sue like Bill in 2009?
CSR127 ( -0 +0 _0 ^2) Did someone like Bill in 2009?
CSR128 ( -0 +0 _0 ^2) Did Sue like someone in 2009?
CSR129 ( -0 +0 _0 ^2) What do Sue and Mary feel about Bill in 2009?
CSR130 ( -0 +0 _0 ^2) In 2009, what's the common feeling between Sue and Mary, and Bill?
CSR131 ( -0 +0 _0 ^2) In 2009, what's the feeling for Bill and Anna?
CSR132 ( -0 +0 _0 ^2) In 2009, what's the feeling for Bill and Anna?
CSR133 ( -0 +0 _0 ^2) In 2009, what are different feelings for Bill and Anna?
CSR134 ( -0 +0 _0 ^2) In 2009, what are different feelings of people to Anna?
CSR135 ( -0 +0 _0 ^2) What's a common feeling of Sue and Mary to Bill?
CSR136 ( -0 +0 _0 ^2) What's a common feeling of Sue and Mary to Bill?
CSR137 ( -0 +0 _0 ^2) Feelings from people to Bill and Anna
CSR138 ( -0 +0 _0 ^2) Feelings from people to Bill and Anna
CSR139 ( -0 +0 _0 ^2) Different feelings from people to Bill and Anna
CSR140 ( -0 +0 _0 ^2) Different feelings for Anna
CSR141 ( -0 +0 _0 ^3) Reiner and MariaPaola are not connected at the CADE meeting
CSR142 ( -0 +0 _0 ^3) Who is the husband of Corina?
CSR143 ( -0 +0 _0 ^3) Who is the husband of Corina during 2009?
CSR144 ( -0 +0 _0 ^3) Does Max think he's single?
CSR145 ( -0 +0 _0 ^3) What is the relation between Chris and Corina?
CSR146 ( -0 +0 _0 ^3) What is the relation between Chris and Corina during 2009?
CSR147 ( -0 +1 _0 ^0) My experienced brother
CSR148 ( -0 +0 _0 ^3) Is there a year in which Sue liked somebody?
CSR149 ( -0 +0 _0 ^3) Elegantly, is there a year in which Sue liked somebody?
CSR150 ( -0 +0 _0 ^3) How many grandchildren does John at most have?
CSR151 ( -0 +0 _0 ^3) Is it the case that in 2009 Sue liked Bill and Mary liked Bill?
CSR152 ( -0 +0 _0 ^3) Does Chris know that Sue likes Bill?
CSR153 ( -0 +0 _0 ^3) Is there a common relation?
CSR154 ( -0 +1 _0 ^0) Standard discrete event calculus axioms
CSR155 ( -0 +1 _0 ^0) LogAnswer
-------------------------------------------------------------------------------
Domain DAT = Data Structures
332 problems (330 abstract), 0 CNF, 0 FOF, 114 TFF, 218 THF
-------------------------------------------------------------------------------
DAT001 ( -0 +0 _1 ^0) Recursive list sort
DAT002 ( -0 +0 _1 ^1) Recursive list Fibonacci sort
DAT003 ( -0 +0 _1 ^0) Element 3 is 33
DAT004 ( -0 +0 _1 ^0) Element 4 is 44 or 66
DAT005 ( -0 +0 _1 ^0) Element between 33 and 44
DAT006 ( -0 +0 _1 ^0) Some element is 33
DAT007 ( -0 +0 _1 ^0) Element between 30 and 40
DAT008 ( -0 +0 _1 ^0) An element greater than its index
DAT009 ( -0 +0 _1 ^0) Every element greater than its index
DAT010 ( -0 +0 _1 ^0) All elements are less than 100
DAT011 ( -0 +0 _1 ^0) Compare elements 1
DAT012 ( -0 +0 _1 ^0) Compare elements 2
DAT013 ( -0 +0 _1 ^0) Compare elements 3
DAT014 ( -0 +0 _1 ^0) Compare elements 4
DAT015 ( -0 +0 _1 ^0) Some element is 50
DAT016 ( -0 +0 _1 ^0) Some element is 53
DAT017 ( -0 +0 _1 ^0) Arrays with different elements
DAT018 ( -0 +0 _1 ^0) Compare elements 5
DAT019 ( -0 +0 _1 ^0) 3 is in the colection
DAT020 ( -0 +0 _1 ^0) 4 is not in the collection
DAT021 ( -0 +0 _1 ^0) Sum of two elements is less than 9
DAT022 ( -0 +0 _1 ^0) Elements stay positive
DAT023 ( -0 +0 _1 ^0) Removing 1 and 2 ensures elements are greater than 2
DAT024 ( -0 +0 _1 ^0) Without 0 or 1 all elements are greater or equal to 2
DAT025 ( -0 +0 _1 ^0) With 0 and 1 removed all elements are greater or equal to 2
DAT026 ( -0 +0 _1 ^0) Replacing 2 by something larger keeps elements positive
DAT027 ( -0 +0 _1 ^0) Replacing 2 by something positive keeps elements positive
DAT028 ( -0 +0 _1 ^0) Comparing elements in two collections 1
DAT029 ( -0 +0 _1 ^0) Comparing elements in two collections 2
DAT030 ( -0 +0 _1 ^0) Comparing elements in two collections 3
DAT031 ( -0 +0 _1 ^0) Some element is betweeb 20 and 40
DAT032 ( -0 +0 _1 ^0) Removing one elements changes count by one
DAT033 ( -0 +0 _1 ^0) Count changes are consistent with adding and removal
DAT034 ( -0 +0 _1 ^0) Adding an element increases the count by at least one
DAT035 ( -0 +0 _1 ^0) Adding an element greater than 0 - 1
DAT036 ( -0 +0 _1 ^0) Adding an element greater than 0 - 2
DAT037 ( -0 +0 _1 ^0) If 2 is the only element, there are not 5 elements
DAT038 ( -0 +0 _1 ^0) If 2 and 3 are the only elements, there are not 5 elements
DAT039 ( -0 +0 _1 ^0) If 2 and 3 are the only elements, then no elements are larger
DAT040 ( -0 +0 _1 ^0) Only elements less than 3 or greater than 6
DAT041 ( -0 +0 _1 ^0) Adding an element makes list longer
DAT042 ( -0 +0 _1 ^0) Some collection has 3 as an element
DAT043 ( -0 +0 _1 ^0) Three different elements
DAT044 ( -0 +0 _1 ^0) Adding a larger element to the collection 1
DAT045 ( -0 +0 _1 ^0) Adding a larger element to the collection 2
DAT046 ( -0 +0 _1 ^0) The collection of 1 and 2 has size 2
DAT047 ( -0 +0 _1 ^0) Adding and removing 3 leaves size 1
DAT048 ( -0 +0 _1 ^0) Removing an non-existent element from collection of size 3
DAT049 ( -0 +0 _1 ^0) Removing what you've added does change the size
DAT050 ( -0 +0 _1 ^0) Adding 0 to equal size results
DAT051 ( -0 +0 _1 ^0) Even and odd numbered elements 1
DAT052 ( -0 +0 _1 ^0) Even and odd numbered elements 2
DAT053 ( -0 +0 _1 ^0) Sublist of odd numbered elements
DAT054 ( -0 +0 _1 ^0) Decreasing pointer list
DAT055 ( -0 +0 _1 ^0) Boyer-Moore min-max problem
DAT056 ( -0 +0 _0 ^2) List operation requiring induction
DAT057 ( -0 +0 _1 ^0) get-put on self
DAT058 ( -0 +0 _1 ^0) Add nothing to an array
DAT059 ( -0 +0 _1 ^0) put is commutative
DAT060 ( -0 +0 _1 ^0) get-put on self lemma
DAT061 ( -0 +0 _1 ^0) get-put on self lemma
DAT062 ( -0 +0 _1 ^0) Heap lengths
DAT063 ( -0 +0 _1 ^0) Empty heap length
DAT064 ( -0 +0 _1 ^0) Impossible heap
DAT065 ( -0 +0 _1 ^0) Add an element to an empty heap
DAT066 ( -0 +0 _1 ^0) Cannot select after end of tree-heap
DAT067 ( -0 +0 _1 ^0) Add an element to a tree heap
DAT068 ( -0 +0 _1 ^0) Can select from only within a tree-heap
DAT069 ( -0 +0 _1 ^0) Can select from only within a tree-heap
DAT070 ( -0 +0 _1 ^0) Select from only within a tree-heap
DAT071 ( -0 +0 _1 ^0) Arrays problem 1
DAT072 ( -0 +0 _1 ^0) Arrays problem 2
DAT073 ( -0 +0 _1 ^0) Arrays problem 3
DAT074 ( -0 +0 _1 ^0) Arrays problem 4
DAT075 ( -0 +0 _1 ^0) Arrays problem 5
DAT076 ( -0 +0 _1 ^0) Arrays problem 6
DAT077 ( -0 +0 _1 ^0) Arrays problem 7
DAT078 ( -0 +0 _1 ^0) Arrays problem 8
DAT079 ( -0 +0 _1 ^0) Lists by functions problem 1
DAT080 ( -0 +0 _1 ^0) Lists by functions problem 2
DAT081 ( -0 +0 _1 ^0) Lists by functions problem 3
DAT082 ( -0 +0 _1 ^0) Lists by functions problem 4
DAT083 ( -0 +0 _1 ^0) Lists by functions problem 5
DAT084 ( -0 +0 _1 ^0) Lists by functions problem 6
DAT085 ( -0 +0 _1 ^0) Lists by functions problem 7
DAT086 ( -0 +0 _1 ^0) Lists by functions problem 8
DAT087 ( -0 +0 _1 ^0) Lists by functions problem 9
DAT088 ( -0 +0 _1 ^0) Lists by functions problem 10
DAT089 ( -0 +0 _1 ^0) Lists by functions problem 11
DAT090 ( -0 +0 _1 ^0) Lists by functions problem 12
DAT091 ( -0 +0 _1 ^0) Lists by functions problem 13
DAT092 ( -0 +0 _1 ^0) Lists by functions problem 14
DAT093 ( -0 +0 _1 ^0) Lists by functions problem 15
DAT094 ( -0 +0 _1 ^0) Lists by functions problem 16
DAT095 ( -0 +0 _1 ^0) Lists by functions problem 17
DAT097 ( -0 +0 _1 ^0) Lists by functions problem 18
DAT098 ( -0 +0 _1 ^0) Lists by relations problem 1
DAT099 ( -0 +0 _1 ^0) Lists by relations problem 2
DAT100 ( -0 +0 _1 ^0) Lists by relations problem 3
DAT101 ( -0 +0 _1 ^0) Lists by relations problem 4
DAT102 ( -0 +0 _1 ^0) Lists by relations problem 5
DAT103 ( -0 +0 _1 ^0) Lists by relations problem 6
DAT104 ( -0 +0 _1 ^0) Lists by relations problem 7
DAT105 ( -0 +0 _1 ^0) Lists by relations problem 8
DAT106 ( -0 +0 _1 ^0) Lists by relations problem 9
DAT107 ( -0 +0 _1 ^0) Integer arrays
DAT108 ( -0 +0 _1 ^0) Integer collections with counting
DAT109 ( -0 +0 _1 ^0) Pointer data types
DAT110 ( -0 +0 _1 ^0) Array data types
DAT111 ( -0 +0 _1 ^0) Heap data types
DAT112 ( -0 +0 _1 ^0) Tree-heap data types
DAT113 ( -0 +0 _0 ^1) Coinductive list 24
DAT114 ( -0 +0 _0 ^1) Coinductive list 349
DAT115 ( -0 +0 _0 ^1) Coinductive list 557
DAT117 ( -0 +0 _0 ^1) Coinductive list 761
DAT118 ( -0 +0 _0 ^1) Coinductive list 970
DAT119 ( -0 +0 _0 ^1) Coinductive list 1279
DAT120 ( -0 +0 _0 ^1) Coinductive list 1483
DAT121 ( -0 +0 _0 ^1) Coinductive list 1690
DAT122 ( -0 +0 _0 ^1) Coinductive list 1876
DAT123 ( -0 +0 _0 ^1) Coinductive list 2041
DAT124 ( -0 +0 _0 ^1) Coinductive list 2275
DAT125 ( -0 +0 _0 ^1) Coinductive list 2490
DAT126 ( -0 +0 _0 ^1) Coinductive list 2704
DAT127 ( -0 +0 _0 ^1) Coinductive list 2896
DAT128 ( -0 +0 _0 ^1) Coinductive list 3119
DAT129 ( -0 +0 _0 ^1) Coinductive list 3306
DAT130 ( -0 +0 _0 ^1) Coinductive list 3543
DAT131 ( -0 +0 _0 ^1) Coinductive list 3781
DAT132 ( -0 +0 _0 ^1) Coinductive list 3961
DAT133 ( -0 +0 _0 ^1) Coinductive list 4159
DAT134 ( -0 +0 _0 ^1) Coinductive list 4309
DAT135 ( -0 +0 _0 ^1) Coinductive list 4499
DAT136 ( -0 +0 _0 ^1) Coinductive list 4627
DAT137 ( -0 +0 _0 ^1) Coinductive list 4812
DAT138 ( -0 +0 _0 ^1) Coinductive list 5031
DAT139 ( -0 +0 _0 ^1) Coinductive list prefix 21
DAT140 ( -0 +0 _0 ^1) Coinductive list prefix 36
DAT141 ( -0 +0 _0 ^1) Coinductive list prefix 70
DAT142 ( -0 +0 _0 ^1) Coinductive list prefix 88
DAT143 ( -0 +0 _0 ^1) Coinductive list prefix 109
DAT144 ( -0 +0 _0 ^1) Coinductive stream 14
DAT145 ( -0 +0 _0 ^1) Coinductive stream 82
DAT146 ( -0 +0 _0 ^1) Coinductive stream 133
DAT147 ( -0 +0 _0 ^1) Coinductive stream 192
DAT148 ( -0 +0 _0 ^1) Coinductive stream 241
DAT149 ( -0 +0 _0 ^1) Coinductive stream 295
DAT150 ( -0 +0 _0 ^1) Coinductive stream 331
DAT151 ( -0 +0 _0 ^1) Coinductive stream 392
DAT152 ( -0 +0 _0 ^1) Coinductive stream 429
DAT153 ( -0 +0 _0 ^1) Coinductive stream 491
DAT154 ( -0 +0 _0 ^1) Hamming stream 35
DAT155 ( -0 +0 _0 ^1) Hamming stream 89
DAT156 ( -0 +0 _0 ^1) Hamming stream 122
DAT157 ( -0 +0 _0 ^1) Hamming stream 157
DAT158 ( -0 +0 _0 ^1) Hamming stream 184
DAT159 ( -0 +0 _0 ^1) Hamming stream 232
DAT160 ( -0 +0 _0 ^1) Hamming stream 260
DAT161 ( -0 +0 _0 ^1) Hamming stream 289
DAT162 ( -0 +0 _0 ^1) Hamming stream 305
DAT163 ( -0 +0 _0 ^1) Hamming stream 337
DAT164 ( -0 +0 _0 ^1) Huffman 385
DAT165 ( -0 +0 _0 ^1) Huffman 651
DAT166 ( -0 +0 _0 ^1) Huffman 1018
DAT167 ( -0 +0 _0 ^1) Huffman 1213
DAT168 ( -0 +0 _0 ^1) Huffman 1359
DAT169 ( -0 +0 _0 ^1) Huffman 1448
DAT170 ( -0 +0 _0 ^1) Huffman 1572
DAT171 ( -0 +0 _0 ^1) Huffman 1825
DAT172 ( -0 +0 _0 ^1) Huffman 2088
DAT173 ( -0 +0 _0 ^1) Huffman 2222
DAT174 ( -0 +0 _0 ^1) Lazy lists II 73
DAT175 ( -0 +0 _0 ^1) Lazy lists II 183
DAT176 ( -0 +0 _0 ^1) Lazy lists II 283
DAT177 ( -0 +0 _0 ^1) Lazy lists II 375
DAT178 ( -0 +0 _0 ^1) Lazy lists II 507
DAT179 ( -0 +0 _0 ^1) Lazy lists II 596
DAT180 ( -0 +0 _0 ^1) Lazy lists II 676
DAT181 ( -0 +0 _0 ^1) Lazy lists II 762
DAT182 ( -0 +0 _0 ^1) Lazy lists II 857
DAT183 ( -0 +0 _0 ^1) Lazy lists II 951
DAT184 ( -0 +0 _0 ^1) Lazy lists II 1062
DAT185 ( -0 +0 _0 ^1) Lazy lists II 1155
DAT186 ( -0 +0 _0 ^1) Lazy lists II 1277
DAT187 ( -0 +0 _0 ^1) Lazy lists II 1278
DAT188 ( -0 +0 _0 ^1) Lazy lists II 1288
DAT189 ( -0 +0 _0 ^1) Lazy list mirror 23
DAT190 ( -0 +0 _0 ^1) Lazy list mirror 44
DAT191 ( -0 +0 _0 ^1) Lazy list mirror 58
DAT192 ( -0 +0 _0 ^1) Lazy list mirror 73
DAT193 ( -0 +0 _0 ^1) Lazy list mirror 79
DAT194 ( -0 +0 _0 ^1) Lazy list mirror 89
DAT195 ( -0 +0 _0 ^1) Lazy list mirror 104
DAT196 ( -0 +0 _0 ^1) Lazy list mirror 122
DAT197 ( -0 +0 _0 ^1) Lazy list mirror 137
DAT198 ( -0 +0 _0 ^1) Lazy list mirror 164
DAT199 ( -0 +0 _0 ^1) Sorted list operations 19
DAT200 ( -0 +0 _0 ^1) Sorted list operations 47
DAT201 ( -0 +0 _0 ^1) Sorted list operations 70
DAT202 ( -0 +0 _0 ^1) Sorted list operations 108
DAT203 ( -0 +0 _0 ^1) Sorted list operations 132
DAT204 ( -0 +0 _0 ^1) Sorted list operations 166
DAT205 ( -0 +0 _0 ^1) Sorted list operations 194
DAT206 ( -0 +0 _0 ^1) Sorted list operations 216
DAT207 ( -0 +0 _0 ^1) Sorted list operations 243
DAT208 ( -0 +0 _0 ^1) Sorted list operations 293
DAT209 ( -0 +0 _0 ^1) Splay tree analysis 17
DAT210 ( -0 +0 _0 ^1) Splay tree analysis 65
DAT211 ( -0 +0 _0 ^1) Splay tree analysis 105
DAT212 ( -0 +0 _0 ^1) Splay tree analysis 136
DAT213 ( -0 +0 _0 ^1) Splay tree analysis 186
DAT214 ( -0 +0 _0 ^1) Splay tree analysis 231
DAT215 ( -0 +0 _0 ^1) Splay tree analysis 270
DAT216 ( -0 +0 _0 ^1) Splay tree analysis 312
DAT217 ( -0 +0 _0 ^1) Splay tree analysis 341
DAT218 ( -0 +0 _0 ^1) Splay tree analysis 380
DAT219 ( -0 +0 _0 ^1) Terminated lazy lists 54
DAT220 ( -0 +0 _0 ^1) Tllist 251
DAT221 ( -0 +0 _0 ^1) Tllist 340
DAT222 ( -0 +0 _0 ^1) Tllist 370
DAT223 ( -0 +0 _0 ^1) Tllist 459
DAT224 ( -0 +0 _0 ^1) Terminated lazy lists 605
DAT225 ( -0 +0 _0 ^1) Tllist 693
DAT226 ( -0 +0 _0 ^1) Tllist 793
DAT227 ( -0 +0 _0 ^1) Tllist 869
DAT228 ( -0 +0 _0 ^1) Tllist 950
DAT229 ( -0 +0 _0 ^1) Red-black trees 26
DAT230 ( -0 +0 _0 ^1) Red-black trees 205
DAT231 ( -0 +0 _0 ^1) Red-black trees 312
DAT232 ( -0 +0 _0 ^1) Red-black trees 415
DAT233 ( -0 +0 _0 ^1) Red-black trees 585
DAT234 ( -0 +0 _0 ^1) Red-black trees 740
DAT235 ( -0 +0 _0 ^1) Red-black trees 858
DAT236 ( -0 +0 _0 ^1) Red-black trees 931
DAT237 ( -0 +0 _0 ^1) Red-black trees 1025
DAT238 ( -0 +0 _0 ^1) Red-black trees 1330
DAT239 ( -0 +0 _0 ^1) Red-black trees 1450
DAT240 ( -0 +0 _0 ^1) Red-black trees 1688
DAT241 ( -0 +0 _0 ^1) Red-black trees 1921
DAT242 ( -0 +0 _0 ^1) Red-black trees 1926
DAT243 ( -0 +0 _0 ^1) Red-black trees 2056
DAT244 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 29
DAT245 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 108
DAT246 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 156
DAT247 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 202
DAT248 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 250
DAT249 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 301
DAT250 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 347
DAT251 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 443
DAT252 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 476
DAT253 ( -0 +0 _0 ^1) Infinite streams (sequences/lists) 551
DAT254 ( -0 +0 _0 ^1) Data structure for translators from streams to streams 38
DAT255 ( -0 +0 _0 ^1) Data structure for translators from streams to streams 65
DAT256 ( -0 +0 _0 ^1) Data structure for translators from streams to streams 83
DAT257 ( -0 +0 _0 ^1) Data structure for translators from streams to streams 113
DAT258 ( -0 +0 _0 ^1) Data structure for translators from streams to streams 166
DAT259 ( -0 +0 _0 ^1) HD
DAT260 ( -0 +0 _0 ^1) APPEND_
DAT261 ( -0 +0 _0 ^1) REVERSE_
DAT262 ( -0 +0 _0 ^1) LENGTH_
DAT263 ( -0 +0 _0 ^1) MAP_
DAT264 ( -0 +0 _0 ^1) LAST
DAT265 ( -0 +0 _0 ^1) BUTLAST_
DAT266 ( -0 +0 _0 ^1) REPLICATE_
DAT267 ( -0 +0 _0 ^1) NULL_
DAT268 ( -0 +0 _0 ^1) ALL_
DAT269 ( -0 +0 _0 ^1) EX_
DAT270 ( -0 +0 _0 ^1) ITLIST_
DAT271 ( -0 +0 _0 ^1) MEM_
DAT272 ( -0 +0 _0 ^1) ALL2_DEF_
DAT273 ( -0 +0 _0 ^1) ALL2_
DAT274 ( -0 +0 _0 ^1) ALL2_
DAT275 ( -0 +0 _0 ^1) MAP2_DEF_
DAT276 ( -0 +0 _0 ^1) MAP2_
DAT277 ( -0 +0 _0 ^1) EL_
DAT278 ( -0 +0 _0 ^1) FILTER_
DAT279 ( -0 +0 _0 ^1) ITLIST2_DEF_
DAT280 ( -0 +0 _0 ^1) ITLIST2_
DAT281 ( -0 +0 _0 ^1) ZIP_DEF_
DAT282 ( -0 +0 _0 ^1) ZIP_
DAT283 ( -0 +0 _0 ^1) PAIRWISE_
DAT284 ( -0 +0 _0 ^1) NOT_CONS_NIL
DAT285 ( -0 +0 _0 ^1) LAST_CLAUSES_
DAT286 ( -0 +0 _0 ^1) APPEND_ASSOC
DAT287 ( -0 +0 _0 ^1) REVERSE_REVERSE
DAT288 ( -0 +0 _0 ^1) list_CASES
DAT289 ( -0 +0 _0 ^1) MAP_APPEND
DAT290 ( -0 +0 _0 ^1) LENGTH_EQ_NIL
DAT291 ( -0 +0 _0 ^1) MAP_o
DAT292 ( -0 +0 _0 ^1) ALL_IMP
DAT293 ( -0 +0 _0 ^1) NOT_ALL
DAT294 ( -0 +0 _0 ^1) ALL_T
DAT295 ( -0 +0 _0 ^1) ALL2_MAP
DAT296 ( -0 +0 _0 ^1) ALL2_AND_RIGHT
DAT297 ( -0 +0 _0 ^1) ITLIST_EXTRA
DAT298 ( -0 +0 _0 ^1) AND_ALL
DAT299 ( -0 +0 _0 ^1) ALL_MEM
DAT300 ( -0 +0 _0 ^1) EX_MAP
DAT301 ( -0 +0 _0 ^1) FORALL_ALL
DAT302 ( -0 +0 _0 ^1) MEM_MAP
DAT303 ( -0 +0 _0 ^1) FILTER_MAP
DAT304 ( -0 +0 _0 ^1) EX_MEM
DAT305 ( -0 +0 _0 ^1) MAP_SND_ZIP
DAT306 ( -0 +0 _0 ^1) ALL_APPEND
DAT307 ( -0 +0 _0 ^1) MEM_EXISTS_EL
DAT308 ( -0 +0 _0 ^1) ALL2_MAP2
DAT309 ( -0 +0 _0 ^1) ALL2_ALL
DAT310 ( -0 +0 _0 ^1) LENGTH_MAP2
DAT311 ( -0 +0 _0 ^1) INJECTIVE_MAP
DAT312 ( -0 +0 _0 ^1) MAP_ID
DAT313 ( -0 +0 _0 ^1) APPEND_BUTLAST_LAST
DAT314 ( -0 +0 _0 ^1) LENGTH_TL
DAT315 ( -0 +0 _0 ^1) EL_TL
DAT316 ( -0 +0 _0 ^1) LAST_EL
DAT317 ( -0 +0 _0 ^1) CONS_HD_TL
DAT318 ( -0 +0 _0 ^1) MAP_REVERSE
DAT319 ( -0 +0 _0 ^1) APPEND_SING
DAT320 ( -0 +0 _0 ^1) MEM_APPEND_DECOMPOSE
DAT321 ( -0 +0 _0 ^1) MONO_ALL2
DAT322 ( -0 +0 _0 ^1) set_of_list_
DAT323 ( -0 +0 _0 ^1) LIST_OF_SET_PROPERTIES
DAT324 ( -0 +0 _0 ^1) LENGTH_LIST_OF_SET
DAT325 ( -0 +0 _0 ^1) FINITE_SET_OF_LIST
DAT326 ( -0 +0 _0 ^1) SET_OF_LIST_APPEND
DAT327 ( -0 +0 _0 ^1) SET_OF_LIST_EQ_EMPTY
DAT328 ( -0 +0 _0 ^1) LIST_OF_SET_SING
DAT329 ( -0 +0 _1 ^0) PVS TCC problem
DAT330 ( -0 +0 _1 ^0) Assertion verification of simple set manipulation program
DAT331 ( -0 +0 _1 ^0) Assertion verification of simple set manipulation operation
DAT332 ( -0 +0 _1 ^0) Assertion verification of simple set manipulation program
-------------------------------------------------------------------------------
Domain FLD = Fields
281 problems (101 abstract), 281 CNF, 0 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
FLD001 ( -1 +0 _0 ^0) Transformation additive relation --> multiplicative relation
FLD002 ( -1 +0 _0 ^0) Transformation multiplicative relation --> additive relation
FLD003 ( -1 +0 _0 ^0) Elimination of an additive term/inverse term - pair
FLD004 ( -1 +0 _0 ^0) Elimination of an multiplicative term/inverse term - pair
FLD005 ( -2 +0 _0 ^0) Every linear equation in the additive group has a solution
FLD006 ( -2 +0 _0 ^0) In the additive group it holds: inverse(identity)=identity
FLD007 ( -2 +0 _0 ^0) The additive inverse fulfills the involution property
FLD008 ( -4 +0 _0 ^0) Compatibility of operation and inverse in the additive group
FLD009 ( -2 +0 _0 ^0) Linear equations in the multiplicative group have a solution
FLD010 ( -3 +0 _0 ^0) In the multiplicative group inverse(identity)=identity
FLD011 ( -2 +0 _0 ^0) The multiplicative inverse fulfills the involution property
FLD012 ( -4 +0 _0 ^0) Compatibility of operation and inverse in multiplicative group
FLD013 ( -5 +0 _0 ^0) The resulting equation of the summation of two equations
FLD014 ( -2 +0 _0 ^0) Compatibility of additive inverses with the equality, part 1
FLD015 ( -2 +0 _0 ^0) Compatibility of additive inverses with the equality, part 2
FLD016 ( -3 +0 _0 ^0) Solutions of linear equations in the additive group are unique
FLD017 ( -2 +0 _0 ^0) Substitution of an element in additive equations
FLD018 ( -2 +0 _0 ^0) If a is zero, the additive inverse of a is also zero
FLD019 ( -2 +0 _0 ^0) If the additive inverse of a is zero, a itself is zero
FLD020 ( -2 +0 _0 ^0) The additive identity is unique
FLD021 ( -2 +0 _0 ^0) Every element equal to zero is an additive identity
FLD022 ( -2 +0 _0 ^0) Elimination of a summation in an equation
FLD023 ( -2 +0 _0 ^0) Side Change of a term in an equation, part 1
FLD024 ( -2 +0 _0 ^0) Side Change of a term in an equation, part 2
FLD025 ( -5 +0 _0 ^0) The resulting equation of a multiplication of two equations
FLD026 ( -2 +0 _0 ^0) Compatibility of multiplicative inverses with equality
FLD027 ( -2 +0 _0 ^0) Elimination of multiplicative inverses in an equation
FLD028 ( -2 +0 _0 ^0) The solution of a multiplicative linear equation is unique
FLD029 ( -2 +0 _0 ^0) The solution of a multiplicative linear equation is unique
FLD030 ( -4 +0 _0 ^0) Compatibility of multiplication and equality relation
FLD031 ( -3 +0 _0 ^0) If a is one, then the multiplicative inverse of a is also one
FLD032 ( -2 +0 _0 ^0) If the multiplicative inverse of a is one, then a is one itself
FLD033 ( -2 +0 _0 ^0) The multiplicative identity is unique
FLD034 ( -2 +0 _0 ^0) Every element equal one is a multiplicative identity
FLD035 ( -2 +0 _0 ^0) Elimination of a multiplication in an equation
FLD036 ( -2 +0 _0 ^0) Only a multiplication by zero can make elements equal
FLD037 ( -2 +0 _0 ^0) Side change of a term in an equation by multiplication, part 1
FLD038 ( -2 +0 _0 ^0) Side change of a term in an equation by multiplication, part 2
FLD039 ( -2 +0 _0 ^0) In a field with two or more elements, 1 and 0 must be different
FLD040 ( -3 +0 _0 ^0) If a is not 0, then the multiplicative inverse of a is not 0
FLD041 ( -4 +0 _0 ^0) If a,b are not 0, the the product of a and b is not 0
FLD043 ( -3 +0 _0 ^0) The multiplication with 0 yields 0
FLD044 ( -4 +0 _0 ^0) Compatibility of multiplication and additive inverses
FLD045 ( -4 +0 _0 ^0) Compatibility of multiplication and additive inverses
FLD046 ( -2 +0 _0 ^0) Compatibility of the additive and the multiplicative inverse
FLD047 ( -4 +0 _0 ^0) Fraction calculation, part 1
FLD048 ( -4 +0 _0 ^0) Fraction calculation, part 2
FLD049 ( -4 +0 _0 ^0) Fraction calculation, part 3
FLD050 ( -4 +0 _0 ^0) Fraction calculation, part 4
FLD051 ( -4 +0 _0 ^0) Fraction calculation, part 5
FLD052 ( -4 +0 _0 ^0) Fraction calculation, part 6
FLD053 ( -4 +0 _0 ^0) Fraction calculation, part 7
FLD054 ( -4 +0 _0 ^0) Fraction calculation, part 8
FLD055 ( -2 +0 _0 ^0) Compatibility of order and equality relation
FLD056 ( -2 +0 _0 ^0) Reflexivity of the order relation
FLD057 ( -2 +0 _0 ^0) 0 is less than 1
FLD058 ( -2 +0 _0 ^0) If a greater 0 and b greater or equal a the b greater 0
FLD059 ( -4 +0 _0 ^0) If a greater or equal 0, then 2a greater or equal 0
FLD060 ( -4 +0 _0 ^0) If b greater or equal b, then 2b greater or equal 2a
FLD061 ( -4 +0 _0 ^0) The resulting inequality of a summation of two inequalities
FLD062 ( -2 +0 _0 ^0) Compatibility of the order relation and additive inverses
FLD063 ( -2 +0 _0 ^0) Elimination of additive inverses in an order relation
FLD064 ( -2 +0 _0 ^0) Side change of a term in an order relation, part 1
FLD065 ( -2 +0 _0 ^0) Side change of a term in an order relation, part 2
FLD066 ( -2 +0 _0 ^0) Elimination of a summation in an order relation
FLD067 ( -4 +0 _0 ^0) Side change in an order relation, part 1
FLD068 ( -4 +0 _0 ^0) Side change of a term in an order relation, part 2
FLD069 ( -2 +0 _0 ^0) If b > 0 and a >= 0, then a + b not 0
FLD070 ( -4 +0 _0 ^0) One-sided addition of two order relations
FLD071 ( -4 +0 _0 ^0) One-sided multiplication of two order relations, part 1
FLD072 ( -4 +0 _0 ^0) One-sided multiplication of two order relations, part 2
FLD073 ( -4 +0 _0 ^0) One-sided multiplication of two order relations, part 3
FLD074 ( -4 +0 _0 ^0) Two-sided multiplication in an order relation, part 1
FLD075 ( -4 +0 _0 ^0) Two-sided multiplication in an order relation, part 2
FLD076 ( -4 +0 _0 ^0) Two-sided multiplication in an order relation, part 3
FLD077 ( -4 +0 _0 ^0) Elimination of a product in an order relation, part 1
FLD078 ( -4 +0 _0 ^0) Side change in an order relation, multiplicative part 1
FLD079 ( -4 +0 _0 ^0) Side change in an order relation, multiplicative part 2
FLD080 ( -4 +0 _0 ^0) The square of an element is always greater or equal 0
FLD081 ( -4 +0 _0 ^0) Two-sided multiplication of two order relations
FLD082 ( -2 +0 _0 ^0) Compatibility of order and multiplicative inverses, part 1
FLD083 ( -2 +0 _0 ^0) Compatibility of order and multiplicative inverses, part 2
FLD084 ( -2 +0 _0 ^0) Elimination of multiplicative inverses in an order, part 1
FLD085 ( -2 +0 _0 ^0) Elimination of multiplicative inverses in an order, part 2
FLD086 ( -2 +0 _0 ^0) Compatibility of order and multiplicative inverses, part 1
FLD087 ( -2 +0 _0 ^0) Elimination of a multiplicative inverse in an order, part 1
FLD088 ( -2 +0 _0 ^0) Compatibility of order and multiplicative inverses, part 2
FLD089 ( -2 +0 _0 ^0) Elimination of a multiplicative inverse in an order, part 2
FLD090 ( -2 +0 _0 ^0) A characterization of 1 with help of the order relation
FLD091 ( -2 +0 _0 ^0) One-sided Elimination of a multiplicative inverse, part 1
FLD092 ( -2 +0 _0 ^0) One-sided Elimination of a multiplicative inverse, part 2
FLD093 ( -2 +0 _0 ^0) One-sided Elimination of a multiplicative inverse, part 3
FLD094 ( -2 +0 _0 ^0) One-sided Elimination of a multiplicative inverse, part 4
FLD095 ( -4 +0 _0 ^0) Difficult inequality
FLD096 ( -4 +0 _0 ^0) Difficult inequality
FLD097 ( -4 +0 _0 ^0) Difficult inequality
FLD098 ( -4 +0 _0 ^0) Difficult inequality
FLD099 ( -4 +0 _0 ^0) Difficult inequality
FLD100 ( -4 +0 _0 ^0) Difficult inequality
FLD101 ( -1 +0 _0 ^0) Ordered field axioms (axiom formulation glxx)
FLD102 ( -1 +0 _0 ^0) Ordered field axioms (axiom formulation re)
-------------------------------------------------------------------------------
Domain GEG = Geography
24 problems (24 abstract), 0 CNF, 1 FOF, 5 TFF, 18 THF
-------------------------------------------------------------------------------
GEG001 ( -0 +1 _0 ^0) The AceWiki
GEG002 ( -0 +0 _0 ^1) Catalunya and Paris, and Spain and Paris, are disconnected
GEG003 ( -0 +0 _0 ^1) Bob knows Catalunya and Paris and Spain and Paris are disconnected
GEG004 ( -0 +0 _0 ^1) Is it commonly known that places are disconnected?
GEG005 ( -0 +0 _0 ^1) Catalunya is not part of Paris
GEG006 ( -0 +0 _0 ^1) Catalunya is in Spain and Paris is in France
GEG007 ( -0 +0 _0 ^1) Catalunya is not Paris
GEG008 ( -0 +0 _0 ^1) If Catalunya is Paris then France is Spain
GEG009 ( -0 +0 _0 ^1) Something about Paris and Spain
GEG010 ( -0 +0 _0 ^1) Catalunya and Paris are not in the same place
GEG011 ( -0 +0 _0 ^1) Something about France, Spain, Paris, Catalunya
GEG012 ( -0 +0 _0 ^1) Something about France, Spain, Paris, Catalunya
GEG013 ( -0 +0 _0 ^1) Unequal regions
GEG014 ( -0 +0 _0 ^1) Two unequal regions in France
GEG015 ( -0 +0 _0 ^1) Two unequal regions in France
GEG016 ( -0 +0 _0 ^1) Places in Spain and France do not overlap
GEG018 ( -0 +0 _0 ^1) Some places are non-tangential proper parts
GEG019 ( -0 +0 _0 ^1) If Paris and Catalunya overlap, then so do Spain and France
GEG020 ( -0 +0 _0 ^1) A place that overlaps with Paris or Catalunya
GEG021 ( -0 +0 _1 ^0) Estimate distance between cities (one step)
GEG022 ( -0 +0 _1 ^0) Estimate distance between cities (two steps)
GEG023 ( -0 +0 _1 ^0) Estimate distance between cities (three steps)
GEG024 ( -0 +0 _1 ^0) Find sufficiently large and sufficiently close city (easy)
GEG025 ( -0 +0 _1 ^0) Find sufficiently large and sufficiently close city (medium)
-------------------------------------------------------------------------------
Domain GEO = Geometry
860 problems (538 abstract), 254 CNF, 521 FOF, 1 TFF, 84 THF
-------------------------------------------------------------------------------
GEO001 ( -4 +0 _1 ^0) Betweenness is symmetric in its outer arguments
GEO002 ( -4 +0 _0 ^0) For all points x and y, x is between x and y
GEO003 ( -3 +0 _0 ^0) For all points x and y, y is between x and y
GEO004 ( -2 +0 _0 ^0) Every line segment has a midpoint
GEO005 ( -2 +0 _0 ^0) Isosceles triangle based on line segment
GEO006 ( -3 +0 _0 ^0) Betweenness for 3 points on a line
GEO007 ( -3 +0 _0 ^0) Betweenness for 4 points on a line
GEO008 ( -3 +0 _0 ^0) Betweenness for 5 points on a line (Five point theorem)
GEO009 ( -3 +0 _0 ^0) First inner connectivity property of betweenness
GEO010 ( -3 +0 _0 ^0) Collinearity is invariant
GEO011 ( -5 +0 _0 ^0) The axiom set points are not collinear
GEO012 ( -3 +0 _0 ^0) Collinearity for 4 points
GEO013 ( -3 +0 _0 ^0) Collinearity for 5 points
GEO014 ( -1 +0 _0 ^0) Ordinary reflexivity of equidistance
GEO015 ( -2 +0 _0 ^0) Equidistance is symmetric between its argument pairs
GEO016 ( -2 +0 _0 ^0) Equidistance is symmetric within its argument pairs
GEO017 ( -2 +0 _0 ^0) Corollary 1 to symmetries of equidistance
GEO018 ( -2 +0 _0 ^0) Corollary 2 to symmetries of equidistance
GEO019 ( -2 +0 _0 ^0) Corollary 3 to symmetries of equidistance
GEO020 ( -2 +0 _0 ^0) Corollary 4 to symmetries of equidistance
GEO021 ( -2 +0 _0 ^0) Corollary 5 to symmetries of equidistance
GEO022 ( -2 +0 _0 ^0) Ordinary transitivity of equidistance
GEO024 ( -2 +0 _0 ^0) All null segments are congruent
GEO025 ( -2 +0 _0 ^0) Addition of equal segments
GEO026 ( -2 +0 _0 ^0) Extension is unique
GEO027 ( -2 +0 _0 ^0) Corollary 1 to unique extension
GEO028 ( -2 +0 _0 ^0) Corollary 2 to unique extension
GEO029 ( -2 +0 _0 ^0) Corollary 3 to unique extension
GEO030 ( -2 +0 _0 ^0) Corollary to the outer five-segment axiom
GEO031 ( -2 +0 _0 ^0) Second inner five-segment theorem
GEO032 ( -2 +0 _0 ^0) Equal difference between pairs of equal length line segments
GEO033 ( -2 +0 _0 ^0) First inner five-segment theorem
GEO034 ( -2 +0 _0 ^0) Corollary to the first inner five-segment theorem
GEO035 ( -2 +0 _0 ^0) A null extension does not extend a line
GEO036 ( -2 +0 _0 ^0) The 3 axiom set points are distinct
GEO037 ( -2 +0 _0 ^0) A segment can be extended
GEO038 ( -2 +0 _0 ^0) Corollary 1 to the segment contruction axiom
GEO039 ( -2 +0 _0 ^0) Corollary the identity axiom for betweenness
GEO040 ( -2 +0 _0 ^0) Antisymmetry of betweenness in its first two arguments
GEO041 ( -2 +0 _0 ^0) Corollary to antisymmetry of betweenness in first 2 arguments
GEO042 ( -2 +0 _0 ^0) First inner transitivity property of betweenness
GEO043 ( -2 +0 _0 ^0) Corollary to first inner transitivity property of betweenness
GEO044 ( -2 +0 _0 ^0) First outer transitivity property for betweenness
GEO045 ( -2 +0 _0 ^0) Second outer transitivity property of betweenness
GEO046 ( -2 +0 _0 ^0) Second inner transitivity property of betweenness
GEO047 ( -2 +0 _0 ^0) Corollary to second inner inner transitivity of betweenness
GEO048 ( -2 +0 _0 ^0) Inner points of triangle
GEO049 ( -2 +0 _0 ^0) Theorem of similar situations
GEO050 ( -2 +0 _0 ^0) First outer connectivity property of betweenness
GEO051 ( -2 +0 _0 ^0) Second outer connectivity property of betweenness
GEO052 ( -2 +0 _0 ^0) Second inner connectivity property of betweenness
GEO053 ( -2 +0 _0 ^0) Unique endpoint
GEO054 ( -2 +0 _0 ^0) Corollary 2 to the segment construction axiom
GEO055 ( -2 +0 _0 ^0) Corollary 3 to the segment construction axiom
GEO056 ( -2 +0 _0 ^0) Corollary 1 to null extension
GEO057 ( -2 +0 _0 ^0) Corollary 2 of null extension
GEO058 ( -2 +0 _0 ^0) U is the only fixed point of reflection(U,V)
GEO059 ( -2 +0 _0 ^0) Congruence for double reflection
GEO060 ( -1 +0 _0 ^0) Reflection is an involution
GEO061 ( -2 +0 _0 ^0) Theorem of point insertion
GEO062 ( -2 +0 _0 ^0) Insertion identity
GEO063 ( -2 +0 _0 ^0) Insertion respects congruence in its last two arguments
GEO064 ( -2 +0 _0 ^0) Corollary 1 to collinearity
GEO065 ( -2 +0 _0 ^0) Corollary 2 to collinearity
GEO066 ( -2 +0 _0 ^0) Corollary 3 to collinearity
GEO067 ( -2 +0 _0 ^0) Any two points are collinear
GEO068 ( -2 +0 _0 ^0) Theorem of similar situations for collinear U, V, W
GEO069 ( -2 +0 _0 ^0) A property of collinearity
GEO070 ( -2 +0 _0 ^0) Non-collinear points in the bisecting diagonal theorem
GEO071 ( -2 +0 _0 ^0) Corollary 1 to non-collinear points theorem
GEO072 ( -2 +0 _0 ^0) Corollary 2 to non-collinear points theorem
GEO073 ( -3 +0 _0 ^0) The diagonals of a non-degenerate rectancle bisect
GEO074 ( -1 +0 _0 ^0) Prove the Outer Pasch Axiom
GEO075 ( -1 +0 _0 ^0) Show reflexivity for equidistance is dependent
GEO076 ( -1 +0 _0 ^0) There is no point on every line
GEO077 ( -1 +0 _0 ^0) Three points not collinear if not on line
GEO078 ( -4 +0 _0 ^0) Every plane contains 3 noncollinear points
GEO079 ( -1 +0 _0 ^0) The alternate interior angles in a trapezoid are equal
GEO080 ( -1 +1 _0 ^0) Reflexivity of part_of
GEO081 ( -1 +1 _0 ^0) Transitivity of part_of
GEO082 ( -1 +1 _0 ^0) Antisymmetry of part_of
GEO083 ( -1 +1 _0 ^0) Sum is monotone, part 1
GEO084 ( -1 +1 _0 ^0) Sum is monotone, part 2
GEO085 ( -1 +1 _0 ^0) Every open curve has at least two endpoints
GEO086 ( -1 +1 _0 ^0) Every sub-curve of an open curve is open
GEO087 ( -1 +1 _0 ^0) If one curve is part of another curve then they cannot meet
GEO088 ( -1 +1 _0 ^0) Endpoint of subcurve or curve
GEO089 ( -1 +1 _0 ^0) Inner points of a sub-curve of a curve are inner points
GEO090 ( -1 +1 _0 ^0) Meeting point of curves on a subcurve
GEO091 ( -1 +1 _0 ^0) Two points determine subcurve
GEO092 ( -1 +1 _0 ^0) Common point of open sum is the meeting point
GEO093 ( -1 +1 _0 ^0) Sum of meeting open curves is open
GEO094 ( -1 +1 _0 ^0) Meeting point is not an endpoint of contianing curve
GEO095 ( -1 +1 _0 ^0) Endpoints of open sum are endpoints of curves
GEO096 ( -1 +1 _0 ^0) Endpoints of curves are endpoints of sum
GEO097 ( -1 +1 _0 ^0) A subcurves connects any two points on a curve
GEO098 ( -1 +1 _0 ^0) For closed curves, there are two complementary sub-curves
GEO099 ( -1 +1 _0 ^0) Open subcurves can be complemented to form the sum
GEO100 ( -1 +1 _0 ^0) Subcurves with common endpoint can be complemented
GEO101 ( -1 +1 _0 ^0) Intensification of GEO100+1
GEO102 ( -1 +1 _0 ^0) Common endpoint of subcurves means inclusion
GEO103 ( -1 +1 _0 ^0) Common endpoint of subcurves and another point means inclusion
GEO104 ( -1 +1 _0 ^0) Subcurves with common endpoint meet or include
GEO105 ( -1 +1 _0 ^0) If subcurves meet at an endpoint then there's a meeting
GEO106 ( -1 +1 _0 ^0) Two common endpoints means identical or sum to whole
GEO107 ( -1 +1 _0 ^0) Equivalence of betweenness definitions 1 and 2
GEO108 ( -1 +1 _0 ^0) Equivalence of betweenness definitions 1 and 3
GEO109 ( -1 +1 _0 ^0) Every endpoint of an open curve is not between any other points
GEO110 ( -1 +1 _0 ^0) Betweenness for closed curves
GEO111 ( -1 +1 _0 ^0) Basic property of orderings on linear structures 1
GEO112 ( -1 +1 _0 ^0) Basic property of orderings on linear structures 2
GEO113 ( -1 +1 _0 ^0) Basic property of orderings on linear structures 3
GEO114 ( -1 +1 _0 ^0) Basic property of orderings on linear structures 4
GEO115 ( -1 +1 _0 ^0) Basic property of orderings on linear structures 5
GEO116 ( -1 +1 _0 ^0) Open curve betweenness property for three points
GEO117 ( -1 +1 _0 ^0) Precedence on oriented curves is irreflexive
GEO118 ( -1 +1 _0 ^0) Precedence on oriented curves is asymmetric
GEO119 ( -1 +1 _0 ^0) Oriented curve starting point is endpoint of underlying curve
GEO120 ( -1 +1 _0 ^0) Oriented curve finishing point is endpoint of underlying curve
GEO121 ( -1 +1 _0 ^0) Endpoints are either starting or finishing points
GEO122 ( -1 +1 _0 ^0) Every curve has a finishing point
GEO123 ( -1 +1 _0 ^0) Every oriented curve orders all points on it
GEO124 ( -1 +1 _0 ^0) Every oriented curve has at most one starting point
GEO125 ( -1 +1 _0 ^0) Every oriented curve has at most one finishing point
GEO126 ( -1 +1 _0 ^0) Every oriented curve orders some points
GEO127 ( -1 +1 _0 ^0) Incidence on oriented curves can be defined using precedence
GEO128 ( -1 +1 _0 ^0) Precedence of three points, of whoich two are ordered
GEO129 ( -1 +1 _0 ^0) Precedence on an oriented curve is a transitive relation
GEO130 ( -1 +1 _0 ^0) Betweenness and precedence for three points
GEO131 ( -1 +1 _0 ^0) Betweenness and precedence for three points, corollary
GEO132 ( -1 +1 _0 ^0) Betweenness and precedence property 1
GEO133 ( -1 +1 _0 ^0) Betweenness and precedence property 2
GEO134 ( -1 +1 _0 ^0) Betweenness and precedence property 3
GEO135 ( -1 +1 _0 ^0) Ordering can be determined by betweenness and incidence
GEO136 ( -1 +1 _0 ^0) Underlying curve and one pair of points sufficient for ordering
GEO137 ( -1 +1 _0 ^0) Identical oriented lines
GEO138 ( -1 +1 _0 ^0) Curve and ordered points determine oriented curve
GEO139 ( -1 +1 _0 ^0) Oppositely oriented curve exists
GEO140 ( -1 +1 _0 ^0) Unique oppositely oriented curve 1
GEO141 ( -1 +1 _0 ^0) Unique oppositely oriented curve 2
GEO142 ( -1 +1 _0 ^0) Unique oppositely oriented curve 3
GEO143 ( -1 +1 _0 ^0) Unique oppositely oriented curve 4
GEO144 ( -1 +1 _0 ^0) Unique oppositely oriented curve 5
GEO145 ( -1 +1 _0 ^0) Starting point and precedence
GEO146 ( -1 +1 _0 ^0) Symmetry of connect
GEO147 ( -1 +1 _0 ^0) Meeting is possible only if there is a common position
GEO148 ( -1 +1 _0 ^0) No meeting if someone has already passed
GEO149 ( -1 +1 _0 ^0) Condition for meeting at two points
GEO150 ( -1 +1 _0 ^0) Objects cannot be at two places simultaneously
GEO151 ( -1 +1 _0 ^0) Object stays still while one moves
GEO152 ( -1 +1 _0 ^0) Ordered meeting places
GEO153 ( -2 +0 _0 ^0) Tarski geometry axioms
GEO154 ( -2 +0 _0 ^0) Colinearity axioms for the GEO001 geometry axioms
GEO155 ( -1 +0 _0 ^0) Reflection axioms for the GEO002 geometry axioms
GEO156 ( -1 +0 _0 ^0) Insertion axioms for the GEO003 geometry axioms
GEO157 ( -1 +0 _0 ^0) Hilbert geometry axioms
GEO158 ( -1 +1 _0 ^0) Simple curve axioms
GEO159 ( -1 +1 _0 ^0) Betweenness for simple curves
GEO160 ( -1 +1 _0 ^0) Oriented curves
GEO161 ( -1 +1 _0 ^0) Trajectories
GEO162 ( -1 +0 _0 ^0) Hilbert geometry axioms, adapted to respect multi-sortedness
GEO163 ( -1 +0 _0 ^0) Not enough axioms to prove collinearity of a finite set of points
GEO164 ( -0 +1 _0 ^0) Hessenberg's Theorem
GEO165 ( -0 +1 _0 ^0) Case 2 in Cronheim's proof of Hessenberg's Theorem
GEO166 ( -0 +1 _0 ^0) Case 1 in Cronheim's proof of Hessenberg's Theorem
GEO167 ( -0 +1 _0 ^0) Pappus1 implies Pappus2
GEO168 ( -0 +1 _0 ^0) Pappus2 implies Pappus1
GEO169 ( -0 +2 _0 ^0) Reduction of 8 cases to 2 in Cronheim's proof of Hessenberg
GEO170 ( -0 +3 _0 ^0) Uniqueness of constructed lines
GEO171 ( -0 +3 _0 ^0) Two convergent lines are distinct
GEO172 ( -0 +3 _0 ^0) Uniqueness of constructed points
GEO173 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO174 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO175 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO176 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO177 ( -0 +3 _0 ^0) Symmetry of apartness
GEO178 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO179 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO180 ( -0 +3 _0 ^0) Triangle axiom 1
GEO181 ( -0 +3 _0 ^0) Triangle axiom 2
GEO182 ( -0 +3 _0 ^0) Triangle axiom 3
GEO183 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO184 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO185 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO186 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO187 ( -0 +3 _0 ^0) Symmetry of incidence
GEO188 ( -0 +3 _0 ^0) Collary to symmetry of incidence
GEO189 ( -0 +3 _0 ^0) Collary to symmetry of incidence
GEO190 ( -0 +3 _0 ^0) Collary to symmetry of incidence
GEO191 ( -0 +3 _0 ^0) Symmetry of apartness
GEO192 ( -0 +3 _0 ^0) Lemma on symmetry and apartness
GEO193 ( -0 +3 _0 ^0) Corollary to symmetry of apartness
GEO194 ( -0 +3 _0 ^0) Corollary to symmetry of apartness
GEO195 ( -0 +3 _0 ^0) Corollary to symmetry of apartness
GEO196 ( -0 +3 _0 ^0) Symmetry of incidence
GEO197 ( -0 +3 _0 ^0) Corollary to symmetry of incidence
GEO198 ( -0 +3 _0 ^0) Corollary to symmetry of incidence
GEO199 ( -0 +3 _0 ^0) Corollary to symmetry of incidence
GEO200 ( -0 +3 _0 ^0) Line equals its converse
GEO201 ( -0 +3 _0 ^0) Distinct ends means distinct lines
GEO202 ( -0 +3 _0 ^0) Diverging lines have equal ends
GEO203 ( -0 +3 _0 ^0) Equal lines from points
GEO204 ( -0 +3 _0 ^0) Distinct points and equal lines
GEO205 ( -0 +3 _0 ^0) Convergent lines and equal points
GEO206 ( -0 +3 _0 ^0) Point on parallel lines
GEO207 ( -0 +3 _0 ^0) Irreflexivity of line convergence
GEO208 ( -0 +3 _0 ^0) Point on both parallel lines
GEO209 ( -0 +3 _0 ^0) Pont and three parallel lines
GEO210 ( -0 +3 _0 ^0) Uniqueness of orthogonality
GEO211 ( -0 +3 _0 ^0) A line is not orthogonal to itself
GEO212 ( -0 +3 _0 ^0) Non-orthogonal lines and a third line
GEO213 ( -0 +3 _0 ^0) Corollary to non-orthogonal lines and a third line
GEO214 ( -0 +3 _0 ^0) Corollary to non-orthogonal lines and a third line
GEO215 ( -0 +3 _0 ^0) Third line not orthogonal to two convergent lines
GEO216 ( -0 +3 _0 ^0) A line is not orthogonal to itself
GEO217 ( -0 +3 _0 ^0) Transitivity of parallel
GEO218 ( -0 +3 _0 ^0) Transitivity of parallel and orthogonal
GEO219 ( -0 +3 _0 ^0) Transitivity of orthogonal and parallel
GEO220 ( -0 +3 _0 ^0) Transitivity of orthogonal
GEO221 ( -0 +3 _0 ^0) Lemma on orthogonality
GEO222 ( -0 +3 _0 ^0) Parallel to orthogonal to orthogonal
GEO223 ( -0 +3 _0 ^0) Corollary to uniqueness of parallels
GEO224 ( -0 +3 _0 ^0) Find point incident to line
GEO225 ( -0 +3 _0 ^0) Existence of line joining distinct points
GEO226 ( -0 +3 _0 ^0) Existence of point incident to line
GEO227 ( -0 +2 _0 ^0) Lines not directed and opposite
GEO228 ( -0 +2 _0 ^0) Obervability of equal or opposite direction
GEO229 ( -0 +2 _0 ^0) Uniqueness of reversed lines
GEO230 ( -0 +2 _0 ^0) Reversed lines are equal and conversely directed
GEO231 ( -0 +2 _0 ^0) Oppositely and equally directed lines
GEO232 ( -0 +2 _0 ^0) A line is not oppositely directed to itself
GEO233 ( -0 +2 _0 ^0) Reverse is idempotent for direction
GEO234 ( -0 +2 _0 ^0) Unequally directed lines
GEO235 ( -0 +2 _0 ^0) Left and right apart leads to distinctness of points
GEO236 ( -0 +2 _0 ^0) Left and right apart leads to distinctness of lines
GEO237 ( -0 +2 _0 ^0) Axiom of Pasch
GEO238 ( -0 +2 _0 ^0) Strengthened axiom of Pasch
GEO239 ( -0 +2 _0 ^0) Lemma on oriented intersection of lines with plane
GEO240 ( -0 +2 _0 ^0) Lemma on oriented intersection of lines with plane
GEO241 ( -0 +2 _0 ^0) Lemma on oriented intersection of lines with plane
GEO242 ( -0 +2 _0 ^0) Lemma on oriented intersection of lines with plane
GEO243 ( -0 +2 _0 ^0) Configurations in terms of apartness
GEO244 ( -0 +2 _0 ^0) Configurations in terms of apartness
GEO245 ( -0 +2 _0 ^0) Configurations in terms of apartness
GEO246 ( -0 +2 _0 ^0) Configurations in terms of apartness
GEO247 ( -0 +2 _0 ^0) A point in each region formed by intersecting lines
GEO248 ( -0 +2 _0 ^0) A point in each region formed by parallel lines
GEO249 ( -0 +2 _0 ^0) A point in each region formed by parallel lines
GEO250 ( -0 +2 _0 ^0) A point in each region formed by parallel lines
GEO251 ( -0 +2 _0 ^0) A point in each region formed by parallel lines
GEO252 ( -0 +2 _0 ^0) Jordan-type result for half planes
GEO253 ( -0 +2 _0 ^0) Characteristic property of parallel lines
GEO254 ( -0 +2 _0 ^0) Order on a line is observable
GEO255 ( -0 +2 _0 ^0) Property of order and betweeness
GEO256 ( -0 +2 _0 ^0) Property of order and betweeness
GEO257 ( -0 +2 _0 ^0) Transitivity of order on a line
GEO258 ( -0 +2 _0 ^0) Betweeness
GEO259 ( -0 +2 _0 ^0) Betweeness
GEO260 ( -0 +2 _0 ^0) Betweeness
GEO261 ( -0 +2 _0 ^0) Lemma for parallel projection preserves or reverses order
GEO262 ( -0 +2 _0 ^0) Lemma for parallel projection preserves or reverses order
GEO263 ( -0 +2 _0 ^0) Parallel projection preserves or reverses order
GEO264 ( -0 +2 _0 ^0) Traingle divides plane into seven regions
GEO265 ( -0 +1 _0 ^0) Equally directed opposite and reversed lines
GEO266 ( -0 +1 _0 ^0) Symmetry of unequally directed opposite lines
GEO267 ( -0 +1 _0 ^0) Possible unequally directed opposite lines
GEO268 ( -0 +1 _0 ^0) Equivalence of unequally directed opposite and reversed lines
GEO269 ( -0 +1 _0 ^0) Equally directed opposite reveresed lines
GEO270 ( -0 +1 _0 ^0) 208-qe(208)
GEO271 ( -0 +1 _0 ^0) the(211)-qu(theu(the(211),1),imp(the(211)))
GEO272 ( -0 +1 _0 ^0) the(212)-qu(theu(the(212),1),imp(the(212)))
GEO273 ( -0 +1 _0 ^0) 222-qe(222)
GEO274 ( -0 +1 _0 ^0) the(227)-qu(theu(the(227),1),imp(the(227)))
GEO275 ( -0 +1 _0 ^0) the(228)-qu(theu(the(228),1),imp(the(228)))
GEO276 ( -0 +1 _0 ^0) 229-qe(229)
GEO277 ( -0 +1 _0 ^0) the(230)-qu(theu(the(230),1),imp(the(230)))
GEO278 ( -0 +1 _0 ^0) the(231)-qu(theu(the(231),1),imp(the(231)))
GEO279 ( -0 +1 _0 ^0) 232-qe(232)
GEO280 ( -0 +1 _0 ^0) neg(247)-neg(neg(247))
GEO281 ( -0 +1 _0 ^0) 248-qe(248)
GEO282 ( -0 +1 _0 ^0) neg(254)-neg(neg(254))
GEO283 ( -0 +1 _0 ^0) 255-qe(255)
GEO284 ( -0 +1 _0 ^0) 259-qe(259)
GEO285 ( -0 +1 _0 ^0) neg(260)-neg(neg(260))
GEO286 ( -0 +1 _0 ^0) 261-qe(261)
GEO287 ( -0 +1 _0 ^0) conjunct1(266)-holds(conjunct1(266),1175,0)
GEO288 ( -0 +1 _0 ^0) conjunct1(conjunct2(266))-holds(conjunct1(conjunct2(266)),1176,0)
GEO289 ( -0 +1 _0 ^0) conjunct2(conjunct2(266))-holds(conjunct2(conjunct2(266)),1177,0)
GEO290 ( -0 +1 _0 ^0) 276-dis(276)
GEO291 ( -0 +1 _0 ^0) case_distinction(conseq(296))-dis(case_distinction(conseq(296)))
GEO292 ( -0 +1 _0 ^0) 299-holds(299,1238,0)
GEO293 ( -0 +1 _0 ^0) 302-holds(302,1241,0)
GEO294 ( -0 +1 _0 ^0) 303-pred(303,0)
GEO295 ( -0 +1 _0 ^0) 307-holds(307,1243,0)
GEO296 ( -0 +1 _0 ^0) 310-holds(310,1246,0)
GEO297 ( -0 +1 _0 ^0) 312-cont(312,0)
GEO298 ( -0 +1 _0 ^0) 321-dis(321)
GEO299 ( -0 +1 _0 ^0) 324-holds(324,1255,0)
GEO300 ( -0 +1 _0 ^0) 331-holds(331,1260,0)
GEO301 ( -0 +1 _0 ^0) conjunct1(338)-holds(conjunct1(338),1268,0)
GEO302 ( -0 +1 _0 ^0) conjunct1(conjunct2(338))-holds(conjunct1(conjunct2(338)),1269,0)
GEO303 ( -0 +1 _0 ^0) conjunct2(conjunct2(338))-holds(conjunct2(conjunct2(338)),1270,0)
GEO304 ( -0 +1 _0 ^0) conjunct2(343)-holds(conjunct2(343),1286,0)
GEO305 ( -0 +1 _0 ^0) conjunct2(349)-pred(conjunct2(349),0)
GEO306 ( -0 +1 _0 ^0) 352-qe(352)
GEO307 ( -0 +1 _0 ^0) 357-holds(357,1316,0)
GEO308 ( -0 +1 _0 ^0) 358-holds(358,1317,0)
GEO309 ( -0 +1 _0 ^0) conjunct1(359)-holds(conjunct1(359),1318,0)
GEO310 ( -0 +1 _0 ^0) conjunct1(conjunct2(359))-holds(conjunct1(conjunct2(359)),1319,0)
GEO311 ( -0 +1 _0 ^0) conjunct2(conjunct2(359))-holds(conjunct2(conjunct2(359)),1320,0)
GEO312 ( -0 +1 _0 ^0) conjunct2(360)-holds(conjunct2(360),1322,0)
GEO313 ( -0 +1 _0 ^0) 361-holds(361,1323,0)
GEO314 ( -0 +1 _0 ^0) conjunct1(362)-holds(conjunct1(362),1324,0)
GEO315 ( -0 +1 _0 ^0) conjunct2(362)-holds(conjunct2(362),1325,0)
GEO316 ( -0 +1 _0 ^0) 363-holds(363,1326,0)
GEO317 ( -0 +1 _0 ^0) 364-holds(364,1327,0)
GEO318 ( -0 +1 _0 ^0) 367-qe(367)
GEO319 ( -0 +1 _0 ^0) conj1(conj2(conj2(368)))-holds(conj1(conj2(conj2(368))),1333,0)
GEO320 ( -0 +1 _0 ^0) 373-holds(373,1341,0)
GEO321 ( -0 +1 _0 ^0) 374-holds(374,1342,0)
GEO322 ( -0 +1 _0 ^0) conjunct1(375)-holds(conjunct1(375),1343,0)
GEO323 ( -0 +1 _0 ^0) conjunct1(conjunct2(375))-holds(conjunct1(conjunct2(375)),1344,0)
GEO324 ( -0 +1 _0 ^0) conjunct2(conjunct2(375))-holds(conjunct2(conjunct2(375)),1345,0)
GEO325 ( -0 +1 _0 ^0) conjunct2(376)-holds(conjunct2(376),1346,0)
GEO326 ( -0 +1 _0 ^0) 377-holds(377,1347,0)
GEO327 ( -0 +1 _0 ^0) conjunct1(378)-holds(conjunct1(378),1348,0)
GEO328 ( -0 +1 _0 ^0) conjunct2(378)-holds(conjunct2(378),1349,0)
GEO329 ( -0 +1 _0 ^0) 379-holds(379,1350,0)
GEO330 ( -0 +1 _0 ^0) 380-holds(380,1351,0)
GEO331 ( -0 +1 _0 ^0) 384-holds(384,1360,0)
GEO332 ( -0 +1 _0 ^0) 390-qe(390)
GEO333 ( -0 +1 _0 ^0) conjunct2(391)-holds(conjunct2(391),1375,0)
GEO334 ( -0 +1 _0 ^0) 392-holds(392,1376,0)
GEO335 ( -0 +1 _0 ^0) 393-cont(393,0)
GEO336 ( -0 +1 _0 ^0) 396-qe(396)
GEO337 ( -0 +1 _0 ^0) conjunct2(397)-holds(conjunct2(397),1382,0)
GEO338 ( -0 +1 _0 ^0) 398-holds(398,1383,0)
GEO339 ( -0 +1 _0 ^0) 399-cont(399,0)
GEO340 ( -0 +1 _0 ^0) neg(403)-neg(neg(403))
GEO341 ( -0 +1 _0 ^0) 407-holds(407,1414,0)
GEO342 ( -0 +1 _0 ^0) the(408)-qe(thee(the(408),1))
GEO343 ( -0 +1 _0 ^0) the(408)-qu(theu(the(408),1),imp(the(408)))
GEO344 ( -0 +1 _0 ^0) the(409)-qu(theu(the(409),1),imp(the(409)))
GEO345 ( -0 +1 _0 ^0) 410-holds(410,1421,0)
GEO346 ( -0 +1 _0 ^0) 411-holds(411,1422,0)
GEO347 ( -0 +1 _0 ^0) 412-cont(412,0)
GEO348 ( -0 +1 _0 ^0) 416-holds(416,1440,0)
GEO349 ( -0 +1 _0 ^0) conseq_conjunct2(421)-holds(conseq_conjunct2(421),1473,0)
GEO350 ( -0 +1 _0 ^0) conseq_conjunct1(422)-holds(conseq_conjunct1(422),1474,0)
GEO351 ( -0 +1 _0 ^0) conseq_conjunct2(423)-holds(conseq_conjunct2(423),1480,0)
GEO352 ( -1 +0 _0 ^0) Tarski geometry axioms
GEO353 ( -0 +1 _0 ^0) Apartness geometry
GEO354 ( -0 +1 _0 ^0) Ordered affine geometry
GEO355 ( -0 +1 _0 ^0) Ordered affine geometry with definitions
GEO356 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CB1E024
GEO357 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CBAE019
GEO358 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CBAP177
GEO359 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CBAR091
GEO360 ( -0 +0 _0 ^1) Chart System Math I+A Red Book, Problem 07CR1P232
GEO361 ( -0 +0 _0 ^1) Chart System Math I+A Red Book, Problem 07CRAE057
GEO362 ( -0 +0 _0 ^1) Chart System Math I+A Red Book, Problem 07CRAR098
GEO363 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CW1E263
GEO364 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CW1E302
GEO365 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CWAE168
GEO366 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CWAR065
GEO367 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CWAR085
GEO368 ( -0 +0 _0 ^1) Chart System Math I+A Yellow Book, Problem 07CY1E217
GEO369 ( -0 +0 _0 ^1) Chart System Math I+A Yellow Book, Problem 07CY1R114
GEO370 ( -0 +0 _0 ^1) Chart System Math I+A Yellow Book, Problem 07CYAE146
GEO371 ( -0 +0 _0 ^1) Chart System Math I+A Yellow Book, Problem 07CYAE180
GEO372 ( -0 +0 _0 ^1) Chart System Math II+B Blue Book, Problem 08CB2E017
GEO373 ( -0 +0 _0 ^1) Chart System Math II+B Red Book, Problem 08CR2E050
GEO374 ( -0 +0 _0 ^1) Chart System Math II+B White Book, Problem 08CW2E130
GEO375 ( -0 +0 _0 ^1) Chart System Math II+B Yellow Book, Problem 08CY2E151
GEO376 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1959, Problem 3
GEO377 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1959, Problem 4
GEO378 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1959, Problem 5
GEO379 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1959, Problem 6
GEO380 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1960, Problem 5
GEO381 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1960, Problem 6
GEO382 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1960, Problem 7
GEO383 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1961, Problem 3
GEO384 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1961, Problem 6
GEO385 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1962, Problem 3
GEO386 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1962, Problem 4
GEO387 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1962, Problem 6
GEO388 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1962, Problem 7
GEO389 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1963, Problem 2
GEO390 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1965, Problem 1
GEO391 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1965, Problem 3
GEO392 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1965, Problem 5
GEO393 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1966, Problem 3
GEO394 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1967, Problem 1
GEO395 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1968, Problem 1
GEO396 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1968, Problem 4
GEO397 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1969, Problem 3
GEO398 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1969, Problem 4
GEO399 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1972, Problem 6
GEO400 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1976, Problem 1
GEO401 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1977, Problem 1
GEO402 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1977, Problem 4
GEO403 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1978, Problem 2
GEO404 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1979, Problem 4
GEO405 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1982, Problem 2
GEO406 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1982, Problem 5
GEO407 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1983, Problem 2
GEO408 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1983, Problem 4
GEO409 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1985, Problem 1
GEO410 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1986, Problem 2
GEO411 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1987, Problem 2
GEO412 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1989, Problem 4
GEO413 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1990, Problem 1
GEO414 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1992, Problem 4
GEO415 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1993, Problem 2
GEO416 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1995, Problem 5
GEO417 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1996, Problem 5
GEO418 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1999, Problem 1
GEO419 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1999, Problem 5
GEO420 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2000, Problem 1
GEO421 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2003, Problem 3
GEO422 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2005, Problem 5
GEO423 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2006, Problem 1
GEO424 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2006, Problem 6
GEO425 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2009, Problem 2
GEO426 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2009, Problem 4
GEO427 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2010, Problem 2
GEO428 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2010, Problem 4
GEO429 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2013, Problem 4
GEO430 ( -0 +0 _0 ^1) Hokkaido University, 2011, Humanities Course, Problem 3
GEO431 ( -0 +0 _0 ^1) Kyoto University, 2007, Science Course, Problem 4
GEO432 ( -0 +0 _0 ^1) Kyushu University, 2009, Humanities Course, Problem 1
GEO433 ( -0 +0 _0 ^1) Kyushu University, 2013, Humanities Course, Problem 2
GEO434 ( -0 +0 _0 ^1) Tohoku University, 2007, Humanities Course, Problem 3
GEO435 ( -0 +0 _0 ^1) The University of Tokyo, 1989, Humanities Course, Problem 1
GEO436 ( -0 +0 _0 ^1) The University of Tokyo, 1991, Humanities Course, Problem 4
GEO437 ( -0 +0 _0 ^1) The University of Tokyo, 2011, Science Course, Problem 4
GEO438 ( -0 +0 _0 ^1) The University of Tokyo, 2013, Humanities Course, Problem 3
GEO439 ( -0 +0 _0 ^1) The University of Tokyo, 2014, Science Course, Problem 6
GEO440 ( -0 +1 _0 ^0) Flyspeck project step
GEO441 ( -0 +1 _0 ^0) Flyspeck project step
GEO442 ( -0 +1 _0 ^0) Flyspeck project step
GEO443 ( -0 +1 _0 ^0) Flyspeck project step
GEO444 ( -0 +1 _0 ^0) Flyspeck project step
GEO445 ( -0 +1 _0 ^0) Flyspeck project step
GEO446 ( -0 +1 _0 ^0) Flyspeck project step
GEO447 ( -0 +1 _0 ^0) Flyspeck project step
GEO448 ( -0 +1 _0 ^0) Flyspeck project step
GEO449 ( -0 +1 _0 ^0) Flyspeck project step
GEO450 ( -0 +1 _0 ^0) Flyspeck project step
GEO451 ( -0 +1 _0 ^0) Flyspeck project step
GEO452 ( -0 +1 _0 ^0) Flyspeck project step
GEO453 ( -0 +1 _0 ^0) Flyspeck project step
GEO454 ( -0 +1 _0 ^0) Flyspeck project step
GEO455 ( -0 +1 _0 ^0) Flyspeck project step
GEO456 ( -0 +1 _0 ^0) Flyspeck project step
GEO457 ( -0 +1 _0 ^0) Flyspeck project step
GEO458 ( -0 +1 _0 ^0) Flyspeck project step
GEO459 ( -0 +1 _0 ^0) Flyspeck project step
GEO460 ( -0 +1 _0 ^0) Flyspeck project step
GEO461 ( -0 +1 _0 ^0) Flyspeck project step
GEO462 ( -0 +1 _0 ^0) Flyspeck project step
GEO463 ( -0 +1 _0 ^0) Flyspeck project step
GEO464 ( -0 +1 _0 ^0) Flyspeck project step
GEO465 ( -0 +1 _0 ^0) Flyspeck project step
GEO466 ( -0 +1 _0 ^0) Flyspeck project step
GEO467 ( -0 +1 _0 ^0) Flyspeck project step
GEO468 ( -0 +1 _0 ^0) Flyspeck project step
GEO469 ( -0 +1 _0 ^0) Flyspeck project step
GEO470 ( -0 +1 _0 ^0) Flyspeck project step
GEO471 ( -0 +1 _0 ^0) Flyspeck project step
GEO472 ( -0 +1 _0 ^0) Flyspeck project step
GEO473 ( -0 +1 _0 ^0) Flyspeck project step
GEO474 ( -0 +1 _0 ^0) Flyspeck project step
GEO475 ( -0 +1 _0 ^0) Flyspeck project step
GEO476 ( -0 +1 _0 ^0) Flyspeck project step
GEO477 ( -0 +1 _0 ^0) Flyspeck project step
GEO478 ( -0 +1 _0 ^0) Flyspeck project step
GEO479 ( -0 +1 _0 ^0) Flyspeck project step
GEO480 ( -0 +1 _0 ^0) Flyspeck project step
GEO481 ( -0 +1 _0 ^0) Flyspeck project step
GEO482 ( -0 +1 _0 ^0) Flyspeck project step
GEO483 ( -0 +1 _0 ^0) Flyspeck project step
GEO484 ( -0 +1 _0 ^0) Flyspeck project step
GEO485 ( -0 +1 _0 ^0) Flyspeck project step
GEO486 ( -0 +1 _0 ^0) Flyspeck project step
GEO487 ( -0 +1 _0 ^0) Flyspeck project step
GEO488 ( -0 +1 _0 ^0) Flyspeck project step
GEO489 ( -0 +1 _0 ^0) Flyspeck project step
GEO490 ( -0 +1 _0 ^0) Inner 5-segment theorem
GEO491 ( -0 +1 _0 ^0) Simple theorem on congruence and betweenness
GEO492 ( -0 +1 _0 ^0) Simple theorem on congruence and betweenness
GEO493 ( -0 +1 _0 ^0) Connectivity of betweenness; inequality of segments, left to right
GEO494 ( -0 +1 _0 ^0) Transitivity of less-equals
GEO495 ( -0 +1 _0 ^0) Theorem about less-equal
GEO496 ( -0 +1 _0 ^0) Property of a and b being on the same side of point p
GEO497 ( -0 +1 _0 ^0) Property of a and b being on the same side of point p
GEO498 ( -0 +1 _0 ^0) Midpoint of the base of an isosceles triangle
GEO499 ( -0 +1 _0 ^0) Betweenness preserves reflection
GEO500 ( -0 +1 _0 ^0) Midpoint of the base of an isosceles triangle
GEO501 ( -0 +1 _0 ^0) Diagonals bisect
GEO502 ( -0 +1 _0 ^0) Krippenlemma
GEO503 ( -0 +1 _0 ^0) Base of isosceles triangle has a midpoint
GEO504 ( -0 +1 _0 ^0) Right angle abc implies rightangle cba
GEO505 ( -0 +1 _0 ^0) Left to right of right angle theorem
GEO506 ( -0 +1 _0 ^0) Right to left of right angle theorem
GEO507 ( -0 +1 _0 ^0) Perpendicular lines are distinct, part a
GEO508 ( -0 +1 _0 ^0) Right angles and midpoints
GEO509 ( -0 +1 _0 ^0) Every segment has a midpoint, case b
GEO510 ( -0 +1 _0 ^0) Segment with midpoint, case a
GEO511 ( -0 +1 _0 ^0) Segment with midpoint
GEO512 ( -0 +1 _0 ^0) External perpendicular
GEO513 ( -0 +1 _0 ^0) External same side
GEO514 ( -0 +1 _0 ^0) External same side
GEO515 ( -0 +1 _0 ^0) Opposite-side ray theorem, case a
GEO516 ( -0 +1 _0 ^0) Case r=s of sides of a line theorem
GEO517 ( -0 +1 _0 ^0) Lemma 9.4 part 1
GEO518 ( -0 +1 _0 ^0) Inner Pasch implies outer Pasch
GEO519 ( -0 +1 _0 ^0) Transitivity of samesideline
GEO520 ( -0 +1 _0 ^0) Transitivity of samesideline, lemma g
GEO521 ( -0 +1 _0 ^0) Transitivity of samesideline, lemma f case 1
GEO522 ( -0 +1 _0 ^0) Existence of reflection in line
GEO523 ( -0 +1 _0 ^0) reflect(a,b,p)=q implies reflect(a,b,q)=p
GEO524 ( -0 +1 _0 ^0) Reflection in line(a,b) is one-to-one
GEO525 ( -0 +1 _0 ^0) Right triangle theorem (Euclid 4)
GEO526 ( -0 +1 _0 ^0) Congruent legs have congruent hypotenuses
GEO527 ( -0 +1 _0 ^0) Two right triangles with congruent legs have congruent hypotenuses
GEO528 ( -0 +1 _0 ^0) Points on opposite sides of a line
GEO529 ( -0 +1 _0 ^0) Triangle construction
GEO530 ( -0 +1 _0 ^0) Angle congruence theorem
GEO531 ( -0 +1 _0 ^0) Congruence and comparison of angles
GEO532 ( -0 +1 _0 ^0) Congruence and comparison of angles
GEO533 ( -0 +1 _0 ^0) Congruence and comparison of angles
GEO534 ( -0 +1 _0 ^0) Angle transport (uniqueness)
GEO535 ( -0 +1 _0 ^0) First half of SAS congruence theorem (opposite sides congruent)
GEO536 ( -0 +1 _0 ^0) Second half of SAS congruence theorem (opposite sides congruent)
GEO537 ( -0 +1 _0 ^0) Parallel lines and points
GEO538 ( -0 +1 _0 ^0) Hilbert’s parallel axiom, case 2
GEO539 ( -0 +1 _0 ^0) Hilbert’s parallel axiom, case 1
-------------------------------------------------------------------------------
Domain GRA = Graph Theory
127 problems (75 abstract), 1 CNF, 33 FOF, 0 TFF, 93 THF
-------------------------------------------------------------------------------
GRA001 ( -1 +0 _0 ^0) Clauses from a labelled graph
GRA002 ( -0 +4 _0 ^0) Maximal shortest path length in terms of triangles
GRA003 ( -0 +1 _0 ^0) Parts of paths
GRA004 ( -0 +1 _0 ^0) Maximal shortest path length in terms of triangles
GRA005 ( -0 +1 _0 ^0) Maximal shortest path length in terms of triangles
GRA006 ( -0 +1 _0 ^0) Maximal shortest path length in terms of triangles
GRA007 ( -0 +2 _0 ^0) Maximal shortest path length in terms of triangles
GRA008 ( -0 +2 _0 ^0) Maximal shortest path length in terms of triangles
GRA009 ( -0 +2 _0 ^0) Maximal shortest path length in terms of triangles
GRA010 ( -0 +2 _0 ^0) Maximal shortest path length in terms of triangles
GRA011 ( -0 +1 _0 ^0) Maximal shortest path length in terms of triangles
GRA012 ( -0 +1 _0 ^0) Maximal shortest path length in terms of triangles
GRA013 ( -0 +1 _0 ^0) 2-colored completed graph size 5 without subgraph of size 3
GRA014 ( -0 +1 _0 ^0) 2-colored completed graph size 6 without subgraph of size 3
GRA015 ( -0 +1 _0 ^0) 2-colored completed graph size 11 without subgraph of size 4
GRA016 ( -0 +1 _0 ^0) 2-colored completed graph size 12 without subgraph of size 4
GRA017 ( -0 +1 _0 ^0) 2-colored completed graph size 13 without subgraph of size 4
GRA018 ( -0 +1 _0 ^0) 2-colored completed graph size 17 without subgraph of size 4
GRA019 ( -0 +1 _0 ^0) 2-colored completed graph size 18 without subgraph of size 4
GRA020 ( -0 +1 _0 ^0) 2-colored completed graph size 11 without subgraph of size 5
GRA021 ( -0 +1 _0 ^0) 2-colored completed graph size 12 without subgraph of size 5
GRA022 ( -0 +1 _0 ^0) 2-colored completed graph size 13 without subgraph of size 5
GRA023 ( -0 +1 _0 ^0) 2-colored completed graph size 16 without subgraph of size 5
GRA024 ( -0 +1 _0 ^0) 2-colored completed graph size 11 without subgraph of size 6
GRA025 ( -0 +1 _0 ^0) 2-colored completed graph size 14 without subgraph of size 6
GRA026 ( -0 +1 _0 ^0) 2-colored completed graph size 20 without subgraph of size 6
GRA027 ( -0 +0 _0 ^1) R(3,3) > 4
GRA028 ( -0 +0 _0 ^1) R(2,4) <= 4
GRA029 ( -0 +0 _0 ^2) R(4,4) > 16
GRA030 ( -0 +0 _0 ^1) R(2,5) > 4
GRA031 ( -0 +0 _0 ^2) R(3,5) <= 16
GRA032 ( -0 +0 _0 ^2) R(3,6) > 16
GRA033 ( -0 +0 _0 ^2) R(6,6) <= 256
GRA034 ( -0 +0 _0 ^2) R(6,7) > 256
GRA035 ( -0 +0 _0 ^2) R(6,7) <= 256
GRA036 ( -0 +0 _0 ^2) R(7,7) > 256
GRA037 ( -0 +0 _0 ^2) R(7,7) <= 256
GRA038 ( -0 +0 _0 ^2) R(5,8) <= 256
GRA039 ( -0 +0 _0 ^2) R(6,8) > 256
GRA040 ( -0 +0 _0 ^2) R(6,8) <= 256
GRA041 ( -0 +0 _0 ^2) R(7,8) > 256
GRA042 ( -0 +0 _0 ^2) R(7,8) <= 256
GRA043 ( -0 +0 _0 ^2) R(8,8) > 256
GRA044 ( -0 +0 _0 ^2) R(5,9) > 256
GRA045 ( -0 +0 _0 ^2) R(5,9) <= 256
GRA046 ( -0 +0 _0 ^2) R(6,9) > 256
GRA047 ( -0 +0 _0 ^2) R(6,9) <= 256
GRA048 ( -0 +0 _0 ^2) R(7,9) > 256
GRA049 ( -0 +0 _0 ^2) R(7,9) <= 256
GRA050 ( -0 +0 _0 ^2) R(5,10) > 256
GRA051 ( -0 +0 _0 ^2) R(5,10) <= 256
GRA052 ( -0 +0 _0 ^2) R(6,10) > 256
GRA053 ( -0 +0 _0 ^2) R(6,10) <= 256
GRA054 ( -0 +0 _0 ^2) R(7,10) > 256
GRA055 ( -0 +0 _0 ^2) R(5,11) > 256
GRA056 ( -0 +0 _0 ^2) R(5,11) <= 256
GRA057 ( -0 +0 _0 ^2) R(6,11) > 256
GRA058 ( -0 +0 _0 ^2) R(6,11) <= 256
GRA059 ( -0 +0 _0 ^2) R(4,12) <= 256
GRA060 ( -0 +0 _0 ^2) R(5,12) > 256
GRA061 ( -0 +0 _0 ^2) R(5,12) <= 256
GRA062 ( -0 +0 _0 ^2) R(6,12) > 256
GRA063 ( -0 +0 _0 ^2) R(4,13) > 256
GRA064 ( -0 +0 _0 ^2) R(4,13) <= 256
GRA065 ( -0 +0 _0 ^2) R(5,13) > 256
GRA066 ( -0 +0 _0 ^2) R(5,13) <= 256
GRA067 ( -0 +0 _0 ^2) R(4,14) > 256
GRA068 ( -0 +0 _0 ^2) R(4,14) <= 256
GRA069 ( -0 +0 _0 ^2) R(5,14) > 256
GRA070 ( -0 +0 _0 ^2) R(5,14) <= 256
GRA071 ( -0 +0 _0 ^2) R(3,15) <= 256
GRA072 ( -0 +0 _0 ^2) R(4,15) > 256
GRA073 ( -0 +0 _0 ^2) R(4,15) <= 256
GRA074 ( -0 +0 _0 ^2) R(5,15) > 256
GRA075 ( -0 +1 _0 ^0) Directed graphs and paths
-------------------------------------------------------------------------------
Domain GRP = Groups
1091 problems (781 abstract), 888 CNF, 202 FOF, 0 TFF, 1 THF
-------------------------------------------------------------------------------
GRP001 ( -5 +1 _0 ^1) X^2 = identity => commutativity
GRP002 ( -4 +0 _0 ^0) Commutator equals identity in groups of order 3
GRP003 ( -2 +0 _0 ^0) The left identity is also a right identity
GRP004 ( -2 +0 _0 ^0) Left inverse and identity => Right inverse exists
GRP005 ( -1 +0 _0 ^0) Identity is in this subset of a group
GRP006 ( -1 +0 _0 ^0) Inverse is in this group
GRP007 ( -1 +0 _0 ^0) The identity element is unique
GRP008 ( -1 +0 _0 ^0) Unknown meaning
GRP009 ( -1 +0 _0 ^0) The left inverse of an element is unique
GRP010 ( -2 +0 _0 ^0) Inverse is a symmetric relationship
GRP011 ( -1 +0 _0 ^0) Left cancellation
GRP012 ( -4 +1 _0 ^0) Inverse of products = Product of inverses
GRP013 ( -1 +0 _0 ^0) Commutator equals identity in these conditions
GRP014 ( -1 +0 _0 ^0) Product is associative in this group theory
GRP015 ( -1 +0 _0 ^0) x,<<x x,X> x,X> is a group
GRP016 ( -1 +0 _0 ^0) There is a homomorphism from a group to itself
GRP017 ( -1 +0 _0 ^0) The inverse of each element is unique
GRP018 ( -1 +0 _0 ^0) X times identity is X
GRP019 ( -1 +0 _0 ^0) Identity times X is X
GRP020 ( -1 +0 _0 ^0) Inverse of X times X is the identity
GRP021 ( -1 +0 _0 ^0) X times inverse of X is the identity
GRP022 ( -2 +0 _0 ^0) Inverse is an involution
GRP023 ( -2 +0 _0 ^0) The inverse of the identity is the identity
GRP024 ( -2 +0 _0 ^0) Associativity of commutator
GRP025 ( -4 +0 _0 ^0) All groups of order 2 are isomorphic
GRP026 ( -4 +0 _0 ^0) All groups of order 3 are isomorphic
GRP027 ( -2 +0 _0 ^0) All groups of order 5 are cyclic
GRP028 ( -4 +0 _0 ^0) In semigroups, left and right solutions => right id exists
GRP029 ( -2 +0 _0 ^0) In semigroups, left id and inverse => right id exists
GRP030 ( -1 +0 _0 ^0) In semigroups, left id and inverse => left id=right id
GRP031 ( -2 +0 _0 ^0) In semigroups, left inverse and id => right inverse exists
GRP032 ( -1 +0 _0 ^0) In subgroups, there is an identity
GRP033 ( -2 +0 _0 ^0) In subgroups, the identity is the group identity
GRP034 ( -2 +0 _0 ^0) In subgroups, inverse is closed
GRP035 ( -1 +0 _0 ^0) In subgroups, product is closed
GRP036 ( -1 +0 _0 ^0) In subgroups, the identity element is unique
GRP037 ( -1 +0 _0 ^0) In subgroups, the inverse of an element is unique
GRP038 ( -1 +0 _0 ^0) In subgroups, if a and b are members, then a.b^-1 is a member
GRP039 ( -7 +0 _0 ^0) Subgroups of index 2 are normal
GRP040 ( -2 +0 _0 ^0) In subgroups of order 2, inverse is an involution
GRP041 ( -1 +0 _0 ^0) Reflexivity is dependent
GRP042 ( -1 +0 _0 ^0) Symmetry is dependent
GRP043 ( -1 +0 _0 ^0) Transitivity is dependent
GRP044 ( -1 +0 _0 ^0) Product subsitution 1 is dependent
GRP045 ( -1 +0 _0 ^0) Product subsitution 2 is dependent
GRP046 ( -1 +0 _0 ^0) Multiply substitution 1 is dependent
GRP047 ( -1 +0 _0 ^0) Multiply substitution 2 is dependent
GRP048 ( -1 +0 _0 ^0) Inverse substitution is dependent
GRP049 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP050 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP051 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP052 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP053 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP054 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP055 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP056 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP057 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP058 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP059 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP060 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP061 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP062 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP063 ( -1 +0 _0 ^0) Single axiom for group theory, in division
GRP064 ( -1 +0 _0 ^0) Single axiom for group theory, in division
GRP065 ( -1 +0 _0 ^0) Single axiom for group theory, in division
GRP066 ( -1 +0 _0 ^0) Single axiom for group theory, in division and identity
GRP067 ( -1 +0 _0 ^0) Single axiom for group theory, in division and identity
GRP068 ( -1 +0 _0 ^0) Single axiom for group theory, in division and identity
GRP069 ( -1 +0 _0 ^0) Single axiom for group theory, in division and identity
GRP070 ( -1 +0 _0 ^0) Single axiom for group theory, in division and inverse
GRP071 ( -1 +0 _0 ^0) Single axiom for group theory, in division and inverse
GRP072 ( -1 +0 _0 ^0) Single axiom for group theory, in division and inverse
GRP073 ( -1 +0 _0 ^0) Single axiom for group theory, in division and inverse
GRP074 ( -1 +0 _0 ^0) Single axiom for group theory, in division and inverse
GRP075 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and identity
GRP076 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and identity
GRP077 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and identity
GRP078 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and identity
GRP079 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and identity
GRP080 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and identity
GRP081 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and inverse
GRP082 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and inverse
GRP083 ( -1 +0 _0 ^0) Single axiom for group theory, in double division and inverse
GRP084 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in product and inverse
GRP085 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in product and inverse
GRP086 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in product and inverse
GRP087 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in product and inverse
GRP088 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division
GRP089 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division
GRP090 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division
GRP091 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division
GRP092 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division
GRP093 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division and identity
GRP094 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division and identity
GRP095 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division and identity
GRP096 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division and inverse
GRP097 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division and inverse
GRP098 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in division and inverse
GRP099 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and id
GRP100 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and id
GRP101 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and id
GRP102 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and id
GRP103 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and id
GRP104 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and inv
GRP105 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and inv
GRP106 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and inv
GRP107 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and inv
GRP108 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and inv
GRP109 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and inv
GRP110 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and inv
GRP111 ( -1 +0 _0 ^0) Single axiom for Abelian group theory, in double div and inv
GRP112 ( -1 +0 _0 ^0) Single axiom for group theory, in product & inverse
GRP113 ( -1 +0 _0 ^0) Lemma for proving all groups of order 4 are cyclic
GRP114 ( -1 +0 _0 ^0) Product of positive and negative parts of X equals X
GRP115 ( -1 +0 _0 ^0) Derive order 3 from a single axiom for groups order 3
GRP116 ( -1 +0 _0 ^0) Derive left identity from a single axiom for groups order 3
GRP117 ( -1 +0 _0 ^0) Derive right identity from a single axiom for groups order 3
GRP118 ( -1 +0 _0 ^0) Derive associativity from a single axiom for groups order 3
GRP119 ( -1 +0 _0 ^0) Derive order 4 from a single axiom for groups order 4
GRP120 ( -1 +0 _0 ^0) Derive left identity from a single axiom for groups order 4
GRP121 ( -1 +0 _0 ^0) Derive right identity from a single axiom for groups order 4
GRP122 ( -1 +0 _0 ^0) Derive associativity from a single axiom for groups order 4
GRP123 (-16 +0 _0 ^0) (3,2,1) conjugate orthogonality
GRP124 (-16 +0 _0 ^0) (3,1,2) conjugate orthogonality
GRP125 ( -8 +0 _0 ^0) (a.b).(b.a) = a
GRP126 ( -8 +0 _0 ^0) (a.b).(b.a) = b
GRP127 ( -8 +0 _0 ^0) ((b.a).b).b) = a
GRP128 ( -8 +0 _0 ^0) (a.b).b = a.(a.b)
GRP129 ( -8 +0 _0 ^0) a.(b.a) = (b.a).b
GRP130 ( -8 +0 _0 ^0) (a.(a.b)).b = a
GRP131 ( -4 +0 _0 ^0) (3,2,1) conjugate orthogonality, no idempotence
GRP132 ( -4 +0 _0 ^0) (3,1,2) conjugate orthogonality, no idempotence
GRP133 ( -4 +0 _0 ^0) (a.b).(b.a) = a, no idempotence
GRP134 ( -4 +0 _0 ^0) (a.b).(b.a) = b, no idempotence
GRP135 ( -4 +0 _0 ^0) ((b.a).b).b) = a, no idempotence
GRP136 ( -1 +0 _0 ^0) Prove anti-symmetry axiom using the LUB transformation
GRP137 ( -1 +0 _0 ^0) Prove anti-symmetry axiom using the GLB transformation
GRP138 ( -1 +0 _0 ^0) Prove greatest lower-bound axiom using the LUB transformation
GRP139 ( -1 +0 _0 ^0) Prove greatest lower-bound axiom using the GLB transformation
GRP140 ( -1 +0 _0 ^0) Prove greatest lower-bound axiom using a transformation
GRP141 ( -1 +0 _0 ^0) Prove greatest lower-bound axiom using a transformation
GRP142 ( -1 +0 _0 ^0) Prove greatest lower-bound axiom using the LUB transformation
GRP143 ( -1 +0 _0 ^0) Prove greatest lower-bound axiom using the GLB transformation
GRP144 ( -1 +0 _0 ^0) Prove greatest lower-bound axiom using the LUB transformation
GRP145 ( -1 +0 _0 ^0) Prove greatest lower-bound axiom using the GLB transformation
GRP146 ( -1 +0 _0 ^0) Prove least upper-bound axiom using the LUB transformation
GRP147 ( -1 +0 _0 ^0) Prove least upper-bound axiom using the GLB transformation
GRP148 ( -1 +0 _0 ^0) Prove least upper-bound axiom using a transformation
GRP149 ( -1 +0 _0 ^0) Prove least upper-bound axiom using a transformation
GRP150 ( -1 +0 _0 ^0) Prove least upper-bound axiom using the LUB transformation
GRP151 ( -1 +0 _0 ^0) Prove least upper-bound axiom using the GLB transformation
GRP152 ( -1 +0 _0 ^0) Prove least upper-bound axiom using the LUB transformation
GRP153 ( -1 +0 _0 ^0) Prove least upper-bound axiom using the GLB transformation
GRP154 ( -1 +0 _0 ^0) Prove monotonicity axiom using the LUB transformation
GRP155 ( -1 +0 _0 ^0) Prove monotonicity axiom using the GLB transformation
GRP156 ( -1 +0 _0 ^0) Prove monotonicity axiom using a transformation
GRP157 ( -1 +0 _0 ^0) Prove monotonicity axiom using the LUB transformation
GRP158 ( -1 +0 _0 ^0) Prove monotonicity axiom using the GLB transformation
GRP159 ( -1 +0 _0 ^0) Prove monotonicity axiom using a transformation
GRP160 ( -1 +0 _0 ^0) Prove reflexivity axiom using the LUB transformation
GRP161 ( -1 +0 _0 ^0) Prove reflexivity axiom using the GLB transformation
GRP162 ( -1 +0 _0 ^0) Prove transitivity axiom using the LUB transformation
GRP163 ( -1 +0 _0 ^0) Prove transitivity axiom using the GLB transformation
GRP164 ( -2 +0 _0 ^0) The lattice of each LOG is distributive
GRP165 ( -2 +0 _0 ^0) An application of monotonicity
GRP166 ( -4 +0 _0 ^0) Multiplication with a positive element increases a value
GRP167 ( -5 +0 _0 ^0) Product of positive and negative parts
GRP168 ( -2 +0 _0 ^0) Inner group automorphisms are order preserving
GRP169 ( -2 +0 _0 ^0) Inverses reverse inequalities
GRP170 ( -4 +0 _0 ^0) General form of monotonicity
GRP171 ( -2 +0 _0 ^0) Positive elements form a semigroup
GRP172 ( -2 +0 _0 ^0) Negative elements form a semigroup
GRP173 ( -1 +0 _0 ^0) Each subgroup of negative elements is trivial
GRP174 ( -1 +0 _0 ^0) Each subgroup of positive elements is trivial
GRP175 ( -4 +0 _0 ^0) Positivity is preserved under inner automorphisms
GRP176 ( -2 +0 _0 ^0) General form of distributivity
GRP177 ( -2 +0 _0 ^0) A consequence of monotonicity
GRP178 ( -2 +0 _0 ^0) A consequence of monotonicity
GRP179 ( -3 +0 _0 ^0) For converting between GLB and LUB
GRP180 ( -2 +0 _0 ^0) Consequence of converting between GLB and LUB
GRP181 ( -4 +0 _0 ^0) Distributivity of a lattice
GRP182 ( -4 +0 _0 ^0) Positive part of the negative part is identity
GRP183 ( -4 +0 _0 ^0) Orthogonal elements form a subgroup with orthogonal parts
GRP184 ( -4 +0 _0 ^0) Orthogonal elements commute and form a subgroup
GRP185 ( -4 +0 _0 ^0) Application of monotonicity and distributivity
GRP186 ( -4 +0 _0 ^0) Application of distributivity and group theory
GRP187 ( -1 +0 _0 ^0) Orthogonal elements commute
GRP188 ( -2 +0 _0 ^0) Consequence of lattice theory
GRP189 ( -2 +0 _0 ^0) Consequence of lattice theory
GRP190 ( -2 +0 _0 ^0) Something useful for estimations
GRP191 ( -2 +0 _0 ^0) Something useful for estimations
GRP192 ( -1 +0 _0 ^0) Even elements implies trivial group
GRP193 ( -2 +0 _0 ^0) A combination of distributivity and monotonicity
GRP194 ( -0 +1 _0 ^0) In semigroups, a surjective homomorphism maps the zero
GRP195 ( -1 +0 _0 ^0) In semigroups, xyy=yyx -> (uv)^4 = u^4v^4.
GRP196 ( -1 +0 _0 ^0) In semigroups, xyyy=yyyx -> (uy)^9 = u^9v^9.
GRP197 ( -1 +0 _0 ^0) In cancellative semigroups, xxxyy=yxxyx -> bbaaa = abaab.
GRP198 ( -1 +0 _0 ^0) In cancellative semigroups, xyyyxy=yyyyxx -> babbba=aabbbb.
GRP199 ( -1 +0 _0 ^0) Nilpotent CS satisfy the quotient condition.
GRP200 ( -1 +0 _0 ^0) In Loops, Moufang-1 => Moufang-2.
GRP201 ( -1 +0 _0 ^0) In Loops, Moufang-2 => Moufang-3.
GRP202 ( -1 +0 _0 ^0) In Loops, Moufang-3 => Moufang-1.
GRP203 ( -1 +0 _0 ^0) Left identity, left inverse, Moufang-3 => Moufang-2
GRP204 ( -1 +0 _0 ^0) A non-basis for Moufang loops.
GRP205 ( -1 +0 _0 ^0) In Loops, Moufang-3 => Moufang-4.
GRP206 ( -1 +0 _0 ^0) In Loops, Moufang-4 => Moufang-1.
GRP207 ( -1 +0 _0 ^0) Single non-axiom for group theory, in product & inverse
GRP208 ( -1 +0 _0 ^0) An identity generated by HR, number 00335
GRP209 ( -1 +0 _0 ^0) An identity generated by HR, number 00336
GRP210 ( -1 +0 _0 ^0) An identity generated by HR, number 00348
GRP211 ( -1 +0 _0 ^0) An identity generated by HR, number 00349
GRP212 ( -1 +0 _0 ^0) An identity generated by HR, number 00360
GRP213 ( -1 +0 _0 ^0) An identity generated by HR, number 00385
GRP214 ( -1 +0 _0 ^0) An identity generated by HR, number 00387
GRP215 ( -1 +0 _0 ^0) An identity generated by HR, number 00396
GRP216 ( -1 +0 _0 ^0) An identity generated by HR, number 00407
GRP217 ( -1 +0 _0 ^0) An identity generated by HR, number 00443
GRP218 ( -1 +0 _0 ^0) An identity generated by HR, number 00446
GRP219 ( -1 +0 _0 ^0) An identity generated by HR, number 00448
GRP220 ( -1 +0 _0 ^0) An identity generated by HR, number 00450
GRP221 ( -1 +0 _0 ^0) An identity generated by HR, number 00451
GRP222 ( -1 +0 _0 ^0) An identity generated by HR, number 00453
GRP223 ( -1 +0 _0 ^0) An identity generated by HR, number 00456
GRP224 ( -1 +0 _0 ^0) An identity generated by HR, number 00457
GRP225 ( -1 +0 _0 ^0) An identity generated by HR, number 00459
GRP226 ( -1 +0 _0 ^0) An identity generated by HR, number 00460
GRP227 ( -1 +0 _0 ^0) An identity generated by HR, number 00461
GRP228 ( -1 +0 _0 ^0) An identity generated by HR, number 00462
GRP229 ( -1 +0 _0 ^0) An identity generated by HR, number 00463
GRP230 ( -1 +0 _0 ^0) An identity generated by HR, number 00466
GRP231 ( -1 +0 _0 ^0) An identity generated by HR, number 00478
GRP232 ( -1 +0 _0 ^0) An identity generated by HR, number 00512
GRP233 ( -1 +0 _0 ^0) An identity generated by HR, number 00536
GRP234 ( -1 +0 _0 ^0) An identity generated by HR, number 00574
GRP235 ( -1 +0 _0 ^0) An identity generated by HR, number 00597
GRP236 ( -1 +0 _0 ^0) An identity generated by HR, number 00602
GRP237 ( -1 +0 _0 ^0) An identity generated by HR, number 00605
GRP238 ( -1 +0 _0 ^0) An identity generated by HR, number 00606
GRP239 ( -1 +0 _0 ^0) An identity generated by HR, number 00607
GRP240 ( -1 +0 _0 ^0) An identity generated by HR, number 00638
GRP241 ( -1 +0 _0 ^0) An identity generated by HR, number 00639
GRP242 ( -1 +0 _0 ^0) An identity generated by HR, number 00702
GRP243 ( -1 +0 _0 ^0) An identity generated by HR, number 00712
GRP244 ( -1 +0 _0 ^0) An identity generated by HR, number 00713
GRP245 ( -1 +0 _0 ^0) An identity generated by HR, number 00714
GRP246 ( -1 +0 _0 ^0) An identity generated by HR, number 00715
GRP247 ( -1 +0 _0 ^0) An identity generated by HR, number 00716
GRP248 ( -1 +0 _0 ^0) An identity generated by HR, number 00717
GRP249 ( -1 +0 _0 ^0) An identity generated by HR, number 00718
GRP250 ( -1 +0 _0 ^0) An identity generated by HR, number 00719
GRP251 ( -1 +0 _0 ^0) An identity generated by HR, number 00720
GRP252 ( -1 +0 _0 ^0) An identity generated by HR, number 00721
GRP253 ( -1 +0 _0 ^0) An identity generated by HR, number 00722
GRP254 ( -1 +0 _0 ^0) An identity generated by HR, number 00723
GRP255 ( -1 +0 _0 ^0) An identity generated by HR, number 00747
GRP256 ( -1 +0 _0 ^0) An identity generated by HR, number 00799
GRP257 ( -1 +0 _0 ^0) An identity generated by HR, number 00800
GRP258 ( -1 +0 _0 ^0) An identity generated by HR, number 00802
GRP259 ( -1 +0 _0 ^0) An identity generated by HR, number 00839
GRP260 ( -1 +0 _0 ^0) An identity generated by HR, number 00925
GRP261 ( -1 +0 _0 ^0) An identity generated by HR, number 00926
GRP262 ( -1 +0 _0 ^0) An identity generated by HR, number 00951
GRP263 ( -1 +0 _0 ^0) An identity generated by HR, number 01004
GRP264 ( -1 +0 _0 ^0) An identity generated by HR, number 01099
GRP265 ( -1 +0 _0 ^0) An identity generated by HR, number 01100
GRP266 ( -1 +0 _0 ^0) An identity generated by HR, number 01104
GRP267 ( -1 +0 _0 ^0) An identity generated by HR, number 01105
GRP268 ( -1 +0 _0 ^0) An identity generated by HR, number 01106
GRP269 ( -1 +0 _0 ^0) An identity generated by HR, number 01109
GRP270 ( -1 +0 _0 ^0) An identity generated by HR, number 01179
GRP271 ( -1 +0 _0 ^0) An identity generated by HR, number 01316
GRP272 ( -1 +0 _0 ^0) An identity generated by HR, number 01392
GRP273 ( -1 +0 _0 ^0) An identity generated by HR, number 01542
GRP274 ( -1 +0 _0 ^0) An identity generated by HR, number 01608
GRP275 ( -1 +0 _0 ^0) An identity generated by HR, number 01744
GRP276 ( -1 +0 _0 ^0) An identity generated by HR, number 01746
GRP277 ( -1 +0 _0 ^0) An identity generated by HR, number 01755
GRP278 ( -1 +0 _0 ^0) An identity generated by HR, number 02518
GRP279 ( -1 +0 _0 ^0) An identity generated by HR, number 02737
GRP280 ( -1 +0 _0 ^0) An identity generated by HR, number 02916
GRP281 ( -1 +0 _0 ^0) An identity generated by HR, number 02922
GRP282 ( -1 +0 _0 ^0) An identity generated by HR, number 02924
GRP283 ( -1 +0 _0 ^0) An identity generated by HR, number 02941
GRP284 ( -1 +0 _0 ^0) An identity generated by HR, number 02999
GRP285 ( -1 +0 _0 ^0) An identity generated by HR, number 03055
GRP286 ( -1 +0 _0 ^0) An identity generated by HR, number 03163
GRP287 ( -1 +0 _0 ^0) An identity generated by HR, number 03165
GRP288 ( -1 +0 _0 ^0) An identity generated by HR, number 03168
GRP289 ( -1 +0 _0 ^0) An identity generated by HR, number 03169
GRP290 ( -1 +0 _0 ^0) An identity generated by HR, number 03227
GRP291 ( -1 +0 _0 ^0) An identity generated by HR, number 03387
GRP292 ( -1 +0 _0 ^0) An identity generated by HR, number 03445
GRP293 ( -1 +0 _0 ^0) An identity generated by HR, number 03543
GRP294 ( -1 +0 _0 ^0) An identity generated by HR, number 03545
GRP295 ( -1 +0 _0 ^0) An identity generated by HR, number 03549
GRP296 ( -1 +0 _0 ^0) An identity generated by HR, number 03605
GRP297 ( -1 +0 _0 ^0) An identity generated by HR, number 03730
GRP298 ( -1 +0 _0 ^0) An identity generated by HR, number 03742
GRP299 ( -1 +0 _0 ^0) An identity generated by HR, number 03746
GRP300 ( -1 +0 _0 ^0) An identity generated by HR, number 03748
GRP301 ( -1 +0 _0 ^0) An identity generated by HR, number 03786
GRP302 ( -1 +0 _0 ^0) An identity generated by HR, number 04549
GRP303 ( -1 +0 _0 ^0) An identity generated by HR, number 04703
GRP304 ( -1 +0 _0 ^0) An identity generated by HR, number 05204
GRP305 ( -1 +0 _0 ^0) An identity generated by HR, number 05617
GRP306 ( -1 +0 _0 ^0) An identity generated by HR, number 17237
GRP307 ( -1 +0 _0 ^0) An identity generated by HR, number 17387
GRP308 ( -1 +0 _0 ^0) An identity generated by HR, number 17388
GRP309 ( -1 +0 _0 ^0) An identity generated by HR, number 17391
GRP310 ( -1 +0 _0 ^0) An identity generated by HR, number 17399
GRP311 ( -1 +0 _0 ^0) An identity generated by HR, number 17454
GRP312 ( -1 +0 _0 ^0) An identity generated by HR, number 18125
GRP313 ( -1 +0 _0 ^0) An identity generated by HR, number 18127
GRP314 ( -1 +0 _0 ^0) An identity generated by HR, number 18186
GRP315 ( -1 +0 _0 ^0) An identity generated by HR, number 18383
GRP316 ( -1 +0 _0 ^0) An identity generated by HR, number 18432
GRP317 ( -1 +0 _0 ^0) An identity generated by HR, number 18541
GRP318 ( -1 +0 _0 ^0) An identity generated by HR, number 18617
GRP319 ( -1 +0 _0 ^0) An identity generated by HR, number 18618
GRP320 ( -1 +0 _0 ^0) An identity generated by HR, number 18620
GRP321 ( -1 +0 _0 ^0) An identity generated by HR, number 18621
GRP322 ( -1 +0 _0 ^0) An identity generated by HR, number 18627
GRP323 ( -1 +0 _0 ^0) An identity generated by HR, number 18628
GRP324 ( -1 +0 _0 ^0) An identity generated by HR, number 18630
GRP325 ( -1 +0 _0 ^0) An identity generated by HR, number 18669
GRP326 ( -1 +0 _0 ^0) An identity generated by HR, number 18694
GRP327 ( -1 +0 _0 ^0) An identity generated by HR, number 18695
GRP328 ( -1 +0 _0 ^0) An identity generated by HR, number 18700
GRP329 ( -1 +0 _0 ^0) An identity generated by HR, number 18789
GRP330 ( -1 +0 _0 ^0) An identity generated by HR, number 18793
GRP331 ( -1 +0 _0 ^0) An identity generated by HR, number 18987
GRP332 ( -1 +0 _0 ^0) An identity generated by HR, number 19000
GRP333 ( -1 +0 _0 ^0) An identity generated by HR, number 19058
GRP334 ( -1 +0 _0 ^0) An identity generated by HR, number 19095
GRP335 ( -1 +0 _0 ^0) An identity generated by HR, number 19295
GRP336 ( -1 +0 _0 ^0) An identity generated by HR, number 19511
GRP337 ( -1 +0 _0 ^0) An identity generated by HR, number 19514
GRP338 ( -1 +0 _0 ^0) An identity generated by HR, number 19518
GRP339 ( -1 +0 _0 ^0) An identity generated by HR, number 19533
GRP340 ( -1 +0 _0 ^0) An identity generated by HR, number 19567
GRP341 ( -1 +0 _0 ^0) An identity generated by HR, number 19569
GRP342 ( -1 +0 _0 ^0) An identity generated by HR, number 19583
GRP343 ( -1 +0 _0 ^0) An identity generated by HR, number 19584
GRP344 ( -1 +0 _0 ^0) An identity generated by HR, number 19587
GRP345 ( -1 +0 _0 ^0) An identity generated by HR, number 19603
GRP346 ( -1 +0 _0 ^0) An identity generated by HR, number 19604
GRP347 ( -1 +0 _0 ^0) An identity generated by HR, number 19607
GRP348 ( -1 +0 _0 ^0) An identity generated by HR, number 19633
GRP349 ( -1 +0 _0 ^0) An identity generated by HR, number 19761
GRP350 ( -1 +0 _0 ^0) An identity generated by HR, number 22551
GRP351 ( -1 +0 _0 ^0) An identity generated by HR, number 22711
GRP352 ( -1 +0 _0 ^0) An identity generated by HR, number 22712
GRP353 ( -1 +0 _0 ^0) An identity generated by HR, number 22878
GRP354 ( -1 +0 _0 ^0) An identity generated by HR, number 22891
GRP355 ( -1 +0 _0 ^0) An identity generated by HR, number 22926
GRP356 ( -1 +0 _0 ^0) An identity generated by HR, number 22946
GRP357 ( -1 +0 _0 ^0) An identity generated by HR, number 23345
GRP358 ( -1 +0 _0 ^0) An identity generated by HR, number 23528
GRP359 ( -1 +0 _0 ^0) An identity generated by HR, number 23534
GRP360 ( -1 +0 _0 ^0) An identity generated by HR, number 23564
GRP361 ( -1 +0 _0 ^0) An identity generated by HR, number 23574
GRP362 ( -1 +0 _0 ^0) An identity generated by HR, number 23870
GRP363 ( -1 +0 _0 ^0) An identity generated by HR, number 24611
GRP364 ( -1 +0 _0 ^0) An identity generated by HR, number 27037
GRP365 ( -1 +0 _0 ^0) An identity generated by HR, number 27038
GRP366 ( -1 +0 _0 ^0) An identity generated by HR, number 27075
GRP367 ( -1 +0 _0 ^0) An identity generated by HR, number 27078
GRP368 ( -1 +0 _0 ^0) An identity generated by HR, number 27097
GRP369 ( -1 +0 _0 ^0) An identity generated by HR, number 27187
GRP370 ( -1 +0 _0 ^0) An identity generated by HR, number 27192
GRP371 ( -1 +0 _0 ^0) An identity generated by HR, number 27194
GRP372 ( -1 +0 _0 ^0) An identity generated by HR, number 27631
GRP373 ( -1 +0 _0 ^0) An identity generated by HR, number 27856
GRP374 ( -1 +0 _0 ^0) An identity generated by HR, number 27861
GRP375 ( -1 +0 _0 ^0) An identity generated by HR, number 28530
GRP376 ( -1 +0 _0 ^0) An identity generated by HR, number 28643
GRP377 ( -1 +0 _0 ^0) An identity generated by HR, number 28737
GRP378 ( -1 +0 _0 ^0) An identity generated by HR, number 30775
GRP379 ( -1 +0 _0 ^0) An identity generated by HR, number 35362
GRP380 ( -1 +0 _0 ^0) An identity generated by HR, number 35444
GRP381 ( -1 +0 _0 ^0) An identity generated by HR, number 35657
GRP382 ( -1 +0 _0 ^0) An identity generated by HR, number 37018
GRP383 ( -1 +0 _0 ^0) An identity generated by HR, number 37052
GRP384 ( -1 +0 _0 ^0) An identity generated by HR, number 37124
GRP385 ( -1 +0 _0 ^0) An identity generated by HR, number 37357
GRP386 ( -1 +0 _0 ^0) An identity generated by HR, number 37389
GRP387 ( -1 +0 _0 ^0) An identity generated by HR, number 37390
GRP388 ( -1 +0 _0 ^0) An identity generated by HR, number 40940
GRP389 ( -1 +0 _0 ^0) An identity generated by HR, number 45739
GRP390 ( -1 +0 _0 ^0) An identity generated by HR, number 45740
GRP391 ( -1 +0 _0 ^0) An identity generated by HR, number 45750
GRP392 ( -1 +0 _0 ^0) Monoid axioms
GRP393 ( -2 +0 _0 ^0) Semigroup axioms
GRP394 ( -3 +1 _0 ^0) Group theory (equality) axioms
GRP395 ( -1 +0 _0 ^0) Group theory (Named groups) axioms
GRP396 ( -0 +1 _0 ^0) Group theory (Named Semigroups) axioms
GRP397 ( -1 +0 _0 ^0) Cancellative semigroups axioms
GRP398 ( -3 +0 _0 ^0) Subgroup axioms for the GRP003 group theory axioms
GRP399 ( -1 +0 _0 ^0) Lattice ordered group (equality) axioms
GRP400 ( -1 +0 _0 ^0) Prove associativity implies distribution in cancellative semigroup
GRP401 ( -1 +0 _0 ^0) Prove distributivity implies nilpotent in cancellative semigroup
GRP402 ( -1 +0 _0 ^0) Prove nilpotent implies associativity in cancellative semigroup
GRP403 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP404 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP405 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP406 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP407 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP408 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP409 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP410 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP411 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP412 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP413 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP414 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP415 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP416 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP417 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP418 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP419 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP420 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP421 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP422 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP423 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP424 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP425 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP426 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP427 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP428 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP429 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP430 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP431 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP432 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP433 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP434 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP435 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP436 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP437 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP438 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP439 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP440 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP441 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP442 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 1
GRP443 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 2
GRP444 ( -1 +0 _0 ^0) Axiom for group theory, in product & inverse, part 3
GRP445 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 1
GRP446 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 2
GRP447 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 3
GRP448 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 1
GRP449 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 2
GRP450 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 3
GRP451 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 1
GRP452 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 2
GRP453 ( -1 +0 _0 ^0) Axiom for group theory, in division, part 3
GRP454 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 1
GRP455 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 2
GRP456 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 3
GRP457 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 1
GRP458 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 2
GRP459 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 3
GRP460 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 1
GRP461 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 2
GRP462 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 3
GRP463 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 1
GRP464 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 2
GRP465 ( -1 +0 _0 ^0) Axiom for group theory, in division and identity, part 3
GRP466 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 1
GRP467 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 2
GRP468 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 3
GRP469 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 1
GRP470 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 2
GRP471 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 3
GRP472 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 1
GRP473 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 2
GRP474 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 3
GRP475 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 1
GRP476 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 2
GRP477 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 3
GRP478 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 1
GRP479 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 2
GRP480 ( -1 +0 _0 ^0) Axiom for group theory, in division and inverse, part 3
GRP481 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 1
GRP482 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 2
GRP483 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 3
GRP484 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 1
GRP485 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 2
GRP486 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 3
GRP487 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 1
GRP488 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 2
GRP489 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 3
GRP490 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 1
GRP491 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 2
GRP492 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 3
GRP493 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 1
GRP494 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 2
GRP495 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 3
GRP496 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 1
GRP497 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 2
GRP498 ( -1 +0 _0 ^0) Axiom for group theory, in double division and identity, part 3
GRP499 ( -1 +0 _0 ^0) Axiom for group theory, in double division and inverse, part 1
GRP500 ( -1 +0 _0 ^0) Axiom for group theory, in double division and inverse, part 2
GRP501 ( -1 +0 _0 ^0) Axiom for group theory, in double division and inverse, part 3
GRP502 ( -1 +0 _0 ^0) Axiom for group theory, in double division and inverse, part 1
GRP503 ( -1 +0 _0 ^0) Axiom for group theory, in double division and inverse, part 2
GRP504 ( -1 +0 _0 ^0) Axiom for group theory, in double division and inverse, part 3
GRP505 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 1
GRP506 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 2
GRP507 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 3
GRP508 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 4
GRP509 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 1
GRP510 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 2
GRP511 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 3
GRP512 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 4
GRP513 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 1
GRP514 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 2
GRP515 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 3
GRP516 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 4
GRP517 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 1
GRP518 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 2
GRP519 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 3
GRP520 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in product and inverse, part 4
GRP521 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 1
GRP522 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 2
GRP523 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 3
GRP524 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 4
GRP525 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 1
GRP526 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 2
GRP527 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 3
GRP528 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 4
GRP529 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 1
GRP530 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 2
GRP531 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 3
GRP532 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 4
GRP533 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 1
GRP534 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 2
GRP535 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 3
GRP536 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 4
GRP537 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 1
GRP538 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 2
GRP539 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 3
GRP540 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division, part 4
GRP541 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 1
GRP542 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 2
GRP543 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 3
GRP544 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 4
GRP545 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 1
GRP546 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 2
GRP547 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 3
GRP548 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 4
GRP549 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 1
GRP550 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 2
GRP551 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 3
GRP552 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and identity, part 4
GRP553 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 1
GRP554 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 2
GRP555 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 3
GRP556 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 4
GRP557 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 1
GRP558 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 2
GRP559 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 3
GRP560 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 4
GRP561 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 1
GRP562 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 2
GRP563 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 3
GRP564 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in division and inverse, part 4
GRP565 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 1
GRP566 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 2
GRP567 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 3
GRP568 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 4
GRP569 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 1
GRP570 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 2
GRP571 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 3
GRP572 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 4
GRP573 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 1
GRP574 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 2
GRP575 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 3
GRP576 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 4
GRP577 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 1
GRP578 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 2
GRP579 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 3
GRP580 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 4
GRP581 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 1
GRP582 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 2
GRP583 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 3
GRP584 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and id, part 4
GRP585 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 1
GRP586 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 2
GRP587 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 3
GRP588 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 4
GRP589 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 1
GRP590 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 2
GRP591 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 3
GRP592 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 4
GRP593 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 1
GRP594 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 2
GRP595 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 3
GRP596 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 4
GRP597 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 1
GRP598 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 2
GRP599 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 3
GRP600 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 4
GRP601 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 1
GRP602 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 2
GRP603 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 3
GRP604 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 4
GRP605 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 1
GRP606 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 2
GRP607 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 3
GRP608 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 4
GRP609 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 1
GRP610 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 2
GRP611 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 3
GRP612 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 4
GRP613 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 1
GRP614 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 2
GRP615 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 3
GRP616 ( -1 +0 _0 ^0) Axiom for Abelian group theory, in double div and inv, part 4
GRP617 ( -1 +0 _0 ^0) PQEx lemma
GRP618 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T01
GRP619 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T03
GRP620 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T07
GRP621 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T08
GRP622 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T12
GRP623 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T14
GRP624 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T15
GRP625 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T16
GRP626 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T17
GRP627 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T18
GRP628 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T22
GRP629 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T26
GRP630 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T28
GRP631 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T29
GRP632 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T30
GRP633 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T31
GRP634 ( -0 +4 _0 ^0) On the Group of Inner Automorphisms T32
GRP635 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T06
GRP636 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T07
GRP637 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T10
GRP638 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T11
GRP639 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T12
GRP640 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T13
GRP641 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T19
GRP642 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T20
GRP643 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T21
GRP644 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T22
GRP645 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T24
GRP646 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T25
GRP647 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T26
GRP648 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T31
GRP649 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T32
GRP650 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T33
GRP651 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T34
GRP652 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T35
GRP653 ( -0 +4 _0 ^0) On the Lattice of Subgroups of a Group T38
GRP654 ( -0 +3 _0 ^0) A quasigroup satisfying Moufang 1 is a loop
GRP655 ( -0 +3 _0 ^0) A quasigroup satisfying Moufang 2 is a loop
GRP656 ( -0 +1 _0 ^0) A quasigroup satisfying Moufang 3 is a loop
GRP657 ( -0 +1 _0 ^0) A quasigroup satisfying Moufang 4 is a loop
GRP658 ( -0 +1 _0 ^0) Bol-Moufang identity 1 implies the existence of a unit element
GRP659 ( -0 +1 _0 ^0) Bol-Moufang identity 2 implies the existence of a unit element
GRP660 ( -0 +3 _0 ^0) Bol-Moufang identity 3 implies a unit element
GRP661 ( -1 +0 _0 ^0) Conjugacy closed with ab = 1 implies ba is in the nucleus - a
GRP662 ( -1 +0 _0 ^0) Conjugacy closed with ab = 1 implies ba is in the nucleus - b
GRP663 ( -1 +0 _0 ^0) Conjugacy closed with ab = 1 implies ba is in the nucleus - c
GRP664 ( -0 +1 _0 ^0) Conjugacy closed with ab = 1 implies ba is in the nucleus - a
GRP665 ( -0 +1 _0 ^0) Conjugacy closed implies commutant in the nucleus
GRP666 ( -4 +2 _0 ^0) Inverse property A-loops are Moufang
GRP667 ( -4 +2 _0 ^0) 2-divisible ARIF loops are Moufang
GRP668 ( -1 +0 _0 ^0) Flexible C-loops are ARIF
GRP669 ( -1 +0 _0 ^0) Moufang loops are RIF
GRP670 ( -1 +0 _0 ^0) RIF loops are ARIF - a
GRP671 ( -1 +0 _0 ^0) RIF loops are ARIF - b
GRP672 ( -0 +1 _0 ^0) Extra loop commutation property 1
GRP673 ( -0 +1 _0 ^0) Extra loop commutation property 2
GRP674 ( -0 +1 _0 ^0) Extra loop commutation property 3
GRP675 ( -1 +0 _0 ^0) In CC-loops, associators are in the center of the nucleus - 1a
GRP676 ( -1 +0 _0 ^0) In CC-loops, associators are in the center of the nucleus - 1b
GRP677 ( -1 +0 _0 ^0) In CC-loops, associators are in the center of the nucleus - 1c
GRP678 ( -1 +0 _0 ^0) In CC-loops, associators are in the center of the nucleus - 2
GRP679 ( -1 +0 _0 ^0) Commutants in Bol loops 1
GRP680 ( -1 +0 _0 ^0) Commutants in Bol loops 2
GRP681 ( -1 +0 _0 ^0) Commutants in Bol loops 3
GRP682 ( -0 +1 _0 ^0) Axioms of rectangular loops - a
GRP683 ( -0 +1 _0 ^0) Axioms of rectangular loops - b
GRP684 ( -1 +0 _0 ^0) Axioms of rectangular loops - c
GRP685 ( -0 +1 _0 ^0) Axioms of rectangular loops - d
GRP686 ( -1 +0 _0 ^0) x(y.yz) = (x.yy)z is equivalent to xx.yz = (x.xy)z part 1
GRP687 ( -1 +0 _0 ^0) x(y.yz) = (x.yy)z is equivalent to xx.yz = (x.xy)z part 2
GRP688 ( -1 +0 _0 ^0) Bruck loop elements of order 2^2 commute with elements of order 3
GRP689 ( -1 +0 _0 ^0) Bruck loop elements of order 2^2 commute with elems of order 3^2
GRP690 ( -1 +0 _0 ^0) Bruck loop elements of order 2^4 commute with elems of order 3^2
GRP691 ( -1 +0 _0 ^0) In a power associative conjugacy closed loop, c^3 is WIP
GRP692 ( -1 +0 _0 ^0) In a power associative conjugacy closed loop, c^6 is extra
GRP693 ( -1 +0 _0 ^0) In power associative conjugacy closed loop c^12 is in nucleus - a
GRP694 ( -1 +0 _0 ^0) In power associative conjugacy closed loop c^12 is in nucleus - b
GRP695 ( -1 +0 _0 ^0) In power associative conjugacy closed loop c^12 is in nucleus - c
GRP696 ( -1 +0 _0 ^0) Variety of power associative, WIP conjugacy closed loops - 1a
GRP697 ( -1 +0 _0 ^0) Variety of power associative, WIP conjugacy closed loops - 1b
GRP698 ( -1 +0 _0 ^0) Variety of power associative, WIP conjugacy closed loops - 2a
GRP699 ( -1 +0 _0 ^0) Variety of power associative, WIP conjugacy closed loops - 2b
GRP700 ( -0 +1 _0 ^0) Variety of power associative, WIP conjugacy closed loops - 2c
GRP701 ( -1 +0 _0 ^0) Variety of power associative, WIP conjugacy closed loops - 3
GRP702 ( -0 +1 _0 ^0) In C-loops the nucleus is normal - a
GRP703 ( -0 +1 _0 ^0) In C-loops the nucleus is normal - b
GRP704 ( -0 +1 _0 ^0) In C-loops the nucleus is normal - c
GRP705 ( -1 +0 _0 ^0) Property of commutative C-loop
GRP706 ( -1 +0 _0 ^0) Every F-quasigroup is isotopic to a Moufang loop
GRP707 ( -1 +0 _0 ^0) A C-loop of exponent four with central squares is flexible
GRP708 ( -1 +0 _0 ^0) Bol loop commutant element squared in left and right nucleus - 1
GRP709 ( -1 +0 _0 ^0) Bol loop commutant element squared in left and right nucleus - 2
GRP710 ( -0 +1 _0 ^0) A magma with 2-sided inverses satisfying the C-law is a loop - 1a
GRP711 ( -0 +1 _0 ^0) A magma with 2-sided inverses satisfying the C-law is a loop - 1b
GRP712 ( -1 +0 _0 ^0) In Buchsteiner loops fourth powers are nuclear - a
GRP713 ( -1 +0 _0 ^0) In Buchsteiner loops fourth powers are nuclear - b
GRP714 ( -1 +0 _0 ^0) In Buchsteiner loops fourth powers are nuclear - c
GRP715 ( -0 +1 _0 ^0) Strongly right alternative rings 1
GRP716 ( -1 +0 _0 ^0) Strongly right alternative rings 2a
GRP717 ( -1 +0 _0 ^0) Strongly right alternative rings 2b
GRP718 ( -1 +0 _0 ^0) In a commutative RIF loop, all squares are Moufang elements
GRP719 ( -1 +0 _0 ^0) In a commutative RIF loop, all cubes are C-elements
GRP720 ( -1 +1 _0 ^0) In commutative A-loops, squares form a subloop
GRP721 ( -1 +0 _0 ^0) In commutative A-loops squares form a subloop - a witnessing term
GRP722 ( -1 +0 _0 ^0) In commutative A-loops square-subloop operation is commutative
GRP723 ( -1 +0 _0 ^0) In commutative A-loops of exp 2 square-subloop is associative
GRP724 ( -1 +0 _0 ^0) Loops with abelian inner mapping group - associativity
GRP725 ( -1 +0 _0 ^0) Loops with abelian inner mapping group - commutativity
GRP726 ( -1 +0 _0 ^0) Bruck loops that are centrally nilpotent - hard part
GRP727 ( -1 +0 _0 ^0) Bruck loops that are centrally nilpotent - 1st easy part
GRP728 ( -1 +0 _0 ^0) Bruck loops that are centrally nilpotent - 2nd easy part a
GRP729 ( -1 +0 _0 ^0) Bruck loops that are centrally nilpotent - 2nd easy part b
GRP730 ( -1 +0 _0 ^0) Bruck loops that are centrally nilpotent - 2nd easy part c
GRP731 ( -1 +0 _0 ^0) Bruck loops that are centrally nilpotent - 2nd easy part d
GRP732 ( -1 +0 _0 ^0) Basarab's theorem on CC loops
GRP733 ( -0 +1 _0 ^0) Non-flexible non-commutative DTS loop.
GRP734 ( -0 +1 _0 ^0) Non-commutative pure DTS loop.
GRP735 ( -1 +0 _0 ^0) Nonmedial left distributive quasigroup
GRP736 ( -1 +0 _0 ^0) Nonmedial left distributive left 3-symmetric quasigroup
GRP737 ( -1 +0 _0 ^0) Nonmedial left distributive left 2-symmetric quasigroup
GRP738 ( -1 +0 _0 ^0) Proper Buchsteiner loop
GRP739 ( -1 +0 _0 ^0) Proper commutative A-loop of odd order.
GRP740 ( -1 +0 _0 ^0) Proper commutative Moufang loop
GRP741 ( -1 +0 _0 ^0) Proper Moufang loop
GRP742 ( -1 +0 _0 ^0) Proper power associative CC loop
GRP743 ( -1 +0 _0 ^0) Biassociative non-associative Steiner loop
GRP744 ( -1 +0 _0 ^0) Biassociative non-associative commutative loop of exponent 2
GRP745 ( -0 +1 _0 ^0) Right alternative loop rings: the extra case
GRP746 ( -0 +1 _0 ^0) Right alternative loop rings: the group case
GRP747 ( -0 +1 _0 ^0) Right alternative loop rings: the abelian group case
GRP748 ( -4 +1 _0 ^0) Right alternative loop rings: a lemma
GRP749 ( -1 +0 _0 ^0) Simplifying a basis for trimedial quasigroups: part 1
GRP750 ( -1 +0 _0 ^0) Simplifying a basis for trimedial quasigroups: part 2
GRP751 ( -1 +0 _0 ^0) A new basis for trimedial quasigroups: part 1a
GRP752 ( -1 +0 _0 ^0) A new basis for trimedial quasigroups: part 1b
GRP753 ( -1 +0 _0 ^0) A new basis for trimedial quasigroups: part 2a
GRP754 ( -1 +0 _0 ^0) A new basis for trimedial quasigroups: part 2b
GRP755 ( -1 +0 _0 ^0) In char>2, right alternative loop rings are left alternative
GRP756 ( -1 +0 _0 ^0) Quasigroups satisfying certain Bol-Moufang identity are groups
GRP757 ( -0 +1 _0 ^0) A DTS loop of 16 elements
GRP758 ( -0 +1 _0 ^0) A DTS loop of 18 elements
GRP759 ( -0 +1 _0 ^0) A 4-element non-abelian group
GRP760 ( -0 +1 _0 ^0) A group that must be infinite
GRP761 ( -0 +1 _0 ^0) Non-discrete partially ordered group
GRP762 ( -0 +1 _0 ^0) Linearly ordered group
GRP763 ( -0 +1 _0 ^0) Lattice ordered group
GRP764 ( -1 +0 _0 ^0) Buchsteiner loop lemma 1
GRP765 ( -1 +0 _0 ^0) Buchsteiner loop lemma 2
GRP766 ( -1 +0 _0 ^0) Buchsteiner loop lemma 3
GRP767 ( -1 +0 _0 ^0) Buchsteiner loop lemma 4
GRP768 ( -1 +0 _0 ^0) Buchsteiner loop lemma 5
GRP769 ( -1 +0 _0 ^0) Buchsteiner loop lemma 6
GRP770 ( -1 +0 _0 ^0) Buchsteiner loop lemma 7
GRP771 ( -1 +0 _0 ^0) Buchsteiner loop lemma 8
GRP772 ( -1 +0 _0 ^0) Buchsteiner loop lemma 9
GRP773 ( -1 +0 _0 ^0) Buchsteiner loop problem
GRP774 ( -0 +1 _0 ^0) Green's relation D is a congruence
GRP775 ( -0 +1 _0 ^0) Equivalent definition for Green's relation D
GRP776 ( -0 +1 _0 ^0) A homomorphic mapping between two groups 
GRP777 ( -0 +1 _0 ^0) Napoleon's quasigroups: the centroid relation
GRP778 ( -0 +1 _0 ^0) Napoleon's quasigroups: Gruenbaum's theorem 1
GRP779 ( -0 +1 _0 ^0) Napoleon's quasigroups: Gruenbaum's theorem 2
GRP780 ( -0 +1 _0 ^0) Napoleon's quasigroups: Lamoen's theorem
GRP781 ( -1 +0 _0 ^0) Distributivity of commutator in cancellative semigroups
-------------------------------------------------------------------------------
Domain HAL = Homological Alg
10 problems (7 abstract), 0 CNF, 10 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
HAL001 ( -0 +2 _0 ^0) Short Five Lemma, Part 1
HAL002 ( -0 +1 _0 ^0) Equivalence of injection axioms
HAL003 ( -0 +3 _0 ^0) Short Five Lemma, Part 2
HAL004 ( -0 +1 _0 ^0) Lemma for the short Five Lemma, Part 2
HAL005 ( -0 +1 _0 ^0) Lemma for the short Five Lemma, Part 2
HAL006 ( -0 +1 _0 ^0) Lemma for the short Five Lemma, Part 2
HAL007 ( -0 +1 _0 ^0) Standard homological algebra axioms
-------------------------------------------------------------------------------
Domain HEN = Henkin Models
67 problems (13 abstract), 67 CNF, 0 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
HEN001 ( -3 +0 _0 ^0) X/identity = zero
HEN002 ( -5 +0 _0 ^0) zero/X = zero
HEN003 ( -5 +0 _0 ^0) X/X = zero
HEN004 ( -6 +0 _0 ^0) X/zero = X
HEN005 ( -6 +0 _0 ^0) The relation less_equal is transitive
HEN006 ( -7 +0 _0 ^0) X/Y <= Z => X/Z <= Y
HEN007 ( -6 +0 _0 ^0) X <= Y => Z/Y <= Z/X
HEN008 ( -6 +0 _0 ^0) X <= Y => X/Z <= Y/Z
HEN009 ( -6 +0 _0 ^0) Define X' as identity/X. Then X' = X'''
HEN010 ( -7 +0 _0 ^0) Define X' as identity/X. Then X' = X'/(identity/X')
HEN011 ( -5 +0 _0 ^0) This operation is commutative
HEN012 ( -2 +0 _0 ^0) X <= X
HEN013 ( -3 +0 _0 ^0) Henkin model axioms
-------------------------------------------------------------------------------
Domain HWC = Hardware Creation
6 problems (4 abstract), 6 CNF, 0 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
HWC001 ( -1 +0 _0 ^0) Design an OR gate using NAND gates
HWC002 ( -1 +0 _0 ^0) Interchange inputs to outputs
HWC003 ( -2 +0 _0 ^0) Invert 3 inputs with 2 not gates
HWC004 ( -2 +0 _0 ^0) Definitions of AND, OR and NOT
-------------------------------------------------------------------------------
Domain HWV = Hardware Verification
511 problems (134 abstract), 203 CNF, 108 FOF, 200 TFF, 0 THF
-------------------------------------------------------------------------------
HWV001 ( -1 +0 _0 ^0) Interchange inputs to outputs
HWV002 ( -1 +0 _0 ^0) Invert 3 inputs with 2 not gates
HWV003 ( -3 +0 _0 ^0) One bit Full Adder
HWV004 ( -1 +0 _0 ^0) Two bit Full Adder
HWV005 ( -2 +0 _0 ^0) A halfadder built from and, or and not gates
HWV006 ( -2 +0 _0 ^0) A fulladder built from two halfadders and an or gate
HWV007 ( -2 +0 _0 ^0) A fulladder built from two halfadders and an or gate
HWV008 ( -4 +0 _0 ^0) 1 bit ripple carry adder
HWV009 ( -4 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV010 ( -3 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV011 ( -3 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV012 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV013 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV014 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV015 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV016 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV017 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV018 ( -3 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV019 ( -3 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV020 ( -3 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV021 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV022 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV023 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV024 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV025 ( -3 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV026 ( -3 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV027 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV028 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV029 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV030 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV031 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV032 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV033 ( -2 +0 _0 ^0) Safelogic VHDL design verification obligation
HWV034 ( -2 +0 _0 ^0) Connections, faults, and gates.
HWV035 ( -2 +0 _0 ^0) Half-adder.
HWV036 ( -2 +0 _0 ^0) Full-adder.
HWV037 ( -1 +0 _0 ^0) Axioms from a VHDL design description
HWV038 ( -1 +0 _0 ^0) Axioms from a VHDL design description
HWV039 ( -2 +2 _8 ^0) Robot verification problem 1
HWV040 ( -2 +2 _8 ^0) Robot verification problem 2
HWV041 ( -2 +2 _8 ^0) Robot verification problem 3
HWV042 ( -2 +2 _8 ^0) Robot verification problem 4
HWV043 ( -2 +2 _8 ^0) Robot verification problem 5
HWV044 ( -2 +2 _8 ^0) Robot verification problem 6
HWV045 ( -2 +2 _8 ^0) Robot verification problem 7
HWV046 ( -2 +2 _8 ^0) Robot verification problem 8
HWV047 ( -2 +2 _8 ^0) Robot verification problem 9
HWV048 ( -2 +2 _8 ^0) Robot verification problem 10
HWV049 ( -2 +2 _8 ^0) Robot verification problem 11
HWV050 ( -2 +2 _8 ^0) Robot verification problem 12
HWV051 ( -2 +2 _8 ^0) Robot verification problem 13
HWV052 (-12 +0 _0 ^0) Faulty channel 1 1
HWV053 ( -1 +1 _0 ^0) QBFLib formula from the Adder family
HWV054 ( -1 +1 _0 ^0) QBFLib formula from the Adder family
HWV055 ( -1 +1 _0 ^0) QBFLib problem from the blackbox-01X-QBF family
HWV056 ( -1 +1 _0 ^0) QBFLib problem from the blackbox-01X-QBF family
HWV057 ( -1 +1 _0 ^0) QBFLib problem from the blackbox-01X-QBF family
HWV058 ( -1 +1 _0 ^0) QBFLib problem from the blackbox-01X-QBF family
HWV059 ( -1 +1 _0 ^0) QBFLib problem from the blackbox-01X-QBF family
HWV060 ( -1 +1 _0 ^0) QBFLib problem from the blackbox-01X-QBF family
HWV061 ( -1 +1 _0 ^0) QBFLib problem from the BMC family
HWV062 ( -1 +1 _0 ^0) QBFLib problem from the BMC family
HWV063 ( -1 +1 _0 ^0) QBFLib problem from the BMC family
HWV064 ( -1 +1 _0 ^0) QBFLib problem from the BMC family
HWV065 ( -1 +1 _0 ^0) QBFLib problem from the C5315 family
HWV066 ( -1 +1 _0 ^0) QBFLib problem from the C5315 family
HWV067 ( -1 +1 _0 ^0) QBFLib problem from the C5315 family
HWV068 ( -1 +1 _0 ^0) QBFLib problem from the C5315 family
HWV069 ( -1 +1 _0 ^0) QBFLib problem from the C5315 family
HWV070 ( -1 +1 _0 ^0) QBFLib problem from the Counter family
HWV071 ( -1 +1 _0 ^0) QBFLib problem from the Counter family
HWV072 ( -1 +1 _0 ^0) QBFLib problem from the Counter family
HWV073 ( -1 +1 _0 ^0) QBFLib problem from the Counter family
HWV074 ( -1 +1 _0 ^0) QBFLib problem from the tipdiam family
HWV075 ( -1 +1 _0 ^0) QBFLib problem from the tipdiam family
HWV076 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
HWV077 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
HWV078 ( -1 +1 _0 ^0) QBFLib problem from the FPGA_PLB_FIT_SLOW family
HWV079 ( -1 +1 _0 ^0) BFLib problem from the FPGA_PLB_FIT_FAST family
HWV080 ( -1 +1 _0 ^0) QBFLib problem from the tipdiam
HWV081 ( -1 +1 _0 ^0) QBFLib problem from the s27 family
HWV082 ( -1 +1 _0 ^0) QBFLib problem from the s298 family
HWV083 ( -1 +1 _0 ^0) QBFLib problem from the term1 family
HWV084 ( -1 +1 _0 ^0) QBFLib problem from the jmc_quant family
HWV085 ( -1 +1 _0 ^0) QBFLib problem from the jmc_quant_squaring family
HWV086 ( -1 +1 _0 ^0) QBFLib problem from the tipdiam family
HWV087 ( -1 +1 _2 ^0) dmu_dmc property 3 cone of influence 5_b20
HWV088 ( -1 +1 _2 ^0) dmu_dmc property 3 cone of influence 10_b20
HWV089 ( -1 +1 _2 ^0) dmu_dmc property 4 cone of influence 5_b20
HWV090 ( -1 +1 _2 ^0) dmu_dmc property 4 cone of influence 8_b20
HWV091 ( -1 +1 _2 ^0) dmu_dmc property 5 cone of influence 5_b20
HWV092 ( -1 +1 _2 ^0) dmu_dmc property 5 cone of influence 8_b20
HWV093 ( -1 +1 _2 ^0) dmu_dmc property 6 cone of influence 5_b20
HWV094 ( -1 +1 _2 ^0) dmu_dmc property 6 cone of influence 10_b20
HWV095 ( -1 +1 _2 ^0) dmu_dmc property 7 cone of influence 5_b20
HWV096 ( -1 +1 _2 ^0) dmu_dmc property 7 cone of influence 10_b20
HWV097 ( -1 +1 _2 ^0) dmu_dmc property 8 cone of influence 5_b20
HWV098 ( -1 +1 _2 ^0) dmu_dmc property 8 cone of influence 8_b20
HWV099 ( -1 +1 _2 ^0) dmu_dmc property 12 cone of influence 5_b20
HWV100 ( -1 +1 _2 ^0) dmu_dmc property 12 cone of influence 8_b20
HWV101 ( -1 +1 _2 ^0) dmu_dmc property 14 cone of influence 5_b20
HWV102 ( -1 +1 _2 ^0) dmu_dmc property 14 cone of influence 7_b20
HWV103 ( -1 +1 _2 ^0) dmu_dmc property 15 cone of influence 5_b20
HWV104 ( -1 +1 _2 ^0) dmu_dmc property 15 cone of influence 7_b20
HWV105 ( -1 +1 _2 ^0) dmu_dmc property 17 cone of influence 5_b20
HWV106 ( -1 +1 _2 ^0) dmu_dmc property 17 cone of influence 8_b20
HWV107 ( -1 +1 _2 ^0) dmu_dmc property 18 cone of influence 3_b20
HWV108 ( -1 +1 _2 ^0) dmu_dmc property 18 cone of influence 5_b20
HWV109 ( -1 +1 _2 ^0) dmu_dmc property 19 cone of influence 3_b20
HWV110 ( -1 +1 _2 ^0) dmu_dmc property 19 cone of influence 5_b20
HWV111 ( -1 +1 _2 ^0) dmu_rmu_rrm property 1 cone of influence 5_b20
HWV112 ( -1 +1 _2 ^0) dmu_rmu_rrm property 1 cone of influence 5_b50
HWV113 ( -1 +1 _2 ^0) dmu_rmu_rrm property 1 cone of influence 5_b100
HWV114 ( -1 +1 _2 ^0) dmu_rmu_rrm property 1 cone of influence 10_b20
HWV115 ( -1 +1 _2 ^0) dmu_rmu_rrm property 1 cone of influence 10_b50
HWV116 ( -1 +1 _2 ^0) dmu_rmu_rrm property 1 cone of influence 10_b100
HWV117 ( -1 +1 _2 ^0) dmu_tmu_dim property 1 cone of influence 5_b20
HWV118 ( -1 +1 _2 ^0) dmu_tmu_dim property 1 cone of influence 5_b50
HWV119 ( -1 +1 _2 ^0) dmu_tmu_dim property 1 cone of influence 5_b100
HWV120 ( -1 +1 _2 ^0) dmu_tmu_dim property 1 cone of influence 10_b20
HWV121 ( -1 +1 _2 ^0) dmu_tmu_dim property 1 cone of influence 10_b50
HWV122 ( -1 +1 _2 ^0) dmu_tmu_dim property 1 cone of influence 10_b100
HWV123 ( -1 +1 _2 ^0) mcu property 1 cone of influence 5_b20
HWV124 ( -1 +1 _2 ^0) mcu property 1 cone of influence 5_b50
HWV125 ( -1 +1 _2 ^0) mcu property 1 cone of influence 5_b100
HWV126 ( -1 +1 _2 ^0) mcu property 1 cone of influence 10_b20
HWV127 ( -1 +1 _2 ^0) mcu property 1 cone of influence 10_b50
HWV128 ( -1 +1 _2 ^0) mcu property 1 cone of influence 10_b100
HWV129 ( -1 +1 _2 ^0) niu_rxc property 1 cone of influence 5_b20
HWV130 ( -1 +1 _2 ^0) niu_rxc property 1 cone of influence 5_b50
HWV131 ( -1 +1 _2 ^0) niu_rxc property 1 cone of influence 5_b100
HWV132 ( -1 +1 _2 ^0) niu_rxc property 1 cone of influence 10_b20
HWV133 ( -1 +1 _2 ^0) niu_rxc property 1 cone of influence 10_b50
HWV134 ( -1 +1 _2 ^0) niu_rxc property 1 cone of influence 10_b100
-------------------------------------------------------------------------------
Domain KLE = Kleene Algebra
241 problems (182 abstract), 0 CNF, 241 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
KLE001 ( -0 +1 _0 ^0) Addition is isotone
KLE002 ( -0 +1 _0 ^0) Multiplication is isotone
KLE003 ( -0 +1 _0 ^0) A semiring is idempotent iff 1 is idempotent
KLE004 ( -0 +1 _0 ^0) Complement - 1 is the complement of 0
KLE005 ( -0 +1 _0 ^0) Complement - 0 is the complement of 1
KLE006 ( -0 +1 _0 ^0) Split 1 with p
KLE007 ( -0 +4 _0 ^0) Split 1 with q and split the parts with p
KLE008 ( -0 +1 _0 ^0) A simple law to eliminate the complement
KLE009 ( -0 +4 _0 ^0) Split 1 into all combinations of p,q and their complements
KLE010 ( -0 +4 _0 ^0) Split 1 into all combinations of p,q and their complements
KLE011 ( -0 +4 _0 ^0) Split 1 into p,q and the product of their complements
KLE012 ( -0 +1 _0 ^0) The multiplication of tests is commutative
KLE013 ( -0 +1 _0 ^0) The complement of a product is the sum of the complements
KLE014 ( -0 +2 _0 ^0) The complement of a product is the sum of the complements
KLE015 ( -0 +1 _0 ^0) The complement of a product is the sum of the complements
KLE016 ( -0 +2 _0 ^0) The complement of a product is the sum of the complements
KLE017 ( -0 +1 _0 ^0) Product of tests is their meet
KLE018 ( -0 +1 _0 ^0) Move a term from the left of an implication to the right and back
KLE019 ( -0 +1 _0 ^0) Move a term from the left of an implication to the right and back
KLE020 ( -0 +2 _0 ^0) On tests addition distributes over multiplication
KLE021 ( -0 +4 _0 ^0) Decompose splitting
KLE022 ( -0 +4 _0 ^0) Decompose x into parts ending in p and p's complement
KLE023 ( -0 +2 _0 ^0) Two ways of expressing the Hoare triple {p}x{q}
KLE024 ( -0 +2 _0 ^0) Two ways of expressing the Hoare triple {p}x{q}
KLE025 ( -0 +2 _0 ^0) Two ways of expressing the Hoare triple {p}x{q}
KLE026 ( -0 +2 _0 ^0) Two ways of expressing the Hoare triple {p}x{q}
KLE027 ( -0 +4 _0 ^0) Simplify conditional
KLE028 ( -0 +4 _0 ^0) Switch nested conditions and rearrange branches of conditional
KLE029 ( -0 +1 _0 ^0) Characterisations of meet
KLE030 ( -0 +1 _0 ^0) Restriction can be pulled out of meet
KLE031 ( -0 +1 _0 ^0) Restriction distributes through meet
KLE032 ( -0 +1 _0 ^0) Meet of restrictions is restriction by meet
KLE033 ( -0 +1 _0 ^0) Disjoint tests induce disjoint restrictions
KLE034 ( -0 +2 _0 ^0) Hoare rule product
KLE035 ( -0 +2 _0 ^0) Hoare rule sum
KLE036 ( -0 +1 _0 ^0) Star recursion
KLE037 ( -0 +1 _0 ^0) Star reflexivity
KLE038 ( -0 +1 _0 ^0) Star extensivity
KLE039 ( -0 +2 _0 ^0) Star idempotence
KLE040 ( -0 +2 _0 ^0) The star of an element is multiplicatively idempotent
KLE041 ( -0 +1 _0 ^0) Star isotony
KLE042 ( -0 +2 _0 ^0) Star sliding
KLE043 ( -0 +2 _0 ^0) Star recursion
KLE044 ( -0 +2 _0 ^0) Star simplification
KLE045 ( -0 +1 _0 ^0) Semi-commutation
KLE046 ( -0 +1 _0 ^0) Church-Rosser theorem
KLE047 ( -0 +1 _0 ^0) Star simplification
KLE048 ( -0 +1 _0 ^0) The star of a test is always 1
KLE049 ( -0 +2 _0 ^0) Hoare rule while
KLE050 ( -0 +4 _0 ^0) Loop denesting
KLE051 ( -0 +1 _0 ^0) Every domain semiring is automatically isotone
KLE052 ( -0 +1 _0 ^0) Domain is a left invariant
KLE053 ( -0 +1 _0 ^0) Domain is a projection
KLE054 ( -0 +1 _0 ^0) Domain is prefix increasing
KLE055 ( -0 +1 _0 ^0) Domain expands subidentities
KLE056 ( -0 +1 _0 ^0) Domain is very strict
KLE057 ( -0 +1 _0 ^0) Domain is very strict
KLE058 ( -0 +1 _0 ^0) Domain is costrict
KLE059 ( -0 +1 _0 ^0) Domain is isotone
KLE060 ( -0 +1 _0 ^0) Domain elements can be exported
KLE061 ( -0 +1 _0 ^0) Domain elements are multiplicatively idempotent
KLE062 ( -0 +1 _0 ^0) Domain elements are multiplicatively commutative
KLE063 ( -0 +1 _0 ^0) Domain elements are least left preservers
KLE064 ( -0 +1 _0 ^0) Domain elements are least left preservers
KLE065 ( -0 +1 _0 ^0) Domain is weakly local
KLE066 ( -0 +1 _0 ^0) Domain is weakly local
KLE067 ( -0 +1 _0 ^0) Domain elements are closed under addition
KLE068 ( -0 +1 _0 ^0) Domain elements are closed under multiplication
KLE069 ( -0 +1 _0 ^0) Domain elements satisfy the first lattice absorption law
KLE070 ( -0 +1 _0 ^0) Domain elements satisfy the second lattice absorption law
KLE071 ( -0 +1 _0 ^0) Domain elements satisfy one of the lattice distributivity laws
KLE072 ( -0 +1 _0 ^0) Domain elements satisfy the first axiom of Kleene modules
KLE073 ( -0 +1 _0 ^0) Domain elements satisfy the second Kleene module axiom
KLE074 ( -0 +1 _0 ^0) Domain elements satisfy the third Kleene module axiom.
KLE075 ( -0 +1 _0 ^0) Domain elements satisfy the fourth Kleene module axiom
KLE076 ( -0 +1 _0 ^0) Domain elements satisfy the fifth Kleene module axiom
KLE077 ( -0 +1 _0 ^0) Domain elements satisfy the sixth Kleene module axiom
KLE078 ( -0 +1 _0 ^0) Antidomain elements are domain elements
KLE079 ( -0 +1 _0 ^0) Domain and antidomain elements are complements
KLE080 ( -0 +1 _0 ^0) Another complementation property of domain and antidomain elements
KLE081 ( -0 +1 _0 ^0) Antidomain elements are left annihilators
KLE082 ( -0 +1 _0 ^0) Antidomain is local with respect to multiplication
KLE083 ( -0 +1 _0 ^0) Domain is a left invariant
KLE084 ( -0 +1 _0 ^0) Domain is local with respect to multiplication
KLE085 ( -0 +1 _0 ^0) Domain elements are subidenties
KLE086 ( -0 +1 _0 ^0) Domain is strict
KLE087 ( -0 +1 _0 ^0) Domain is additive
KLE088 ( -0 +1 _0 ^0) Antidomain elements are greatest left annihilators
KLE089 ( -0 +1 _0 ^0) Antidomain elements are greatest left annihilators
KLE090 ( -0 +1 _0 ^0) Antidomain elements are antitone
KLE091 ( -0 +1 _0 ^0) Codomain closure
KLE092 ( -0 +1 _0 ^0) Coantidomain closure
KLE093 ( -0 +1 _0 ^0) Domain of star
KLE094 ( -0 +1 _0 ^0) Segerberg
KLE095 ( -0 +1 _0 ^0) Modal operators satisfy a star unfold law
KLE096 ( -0 +1 _0 ^0) Modal operators satisfy a star unfold law
KLE097 ( -0 +1 _0 ^0) Modal operators at left hand-sides can be eliminated
KLE098 ( -0 +1 _0 ^0) Modal operators at left hand-sides can be eliminated
KLE099 ( -0 +1 _0 ^0) Modal operators at left hand-sides can be eliminated
KLE100 ( -0 +1 _0 ^0) Modal operators at left hand-sides can be eliminated
KLE101 ( -0 +1 _0 ^0) Forward and backward diamonds are conjugates
KLE102 ( -0 +1 _0 ^0) Forward and backward diamonds are conjugates
KLE103 ( -0 +1 _0 ^0) Forward and backward boxes are conjugates
KLE104 ( -0 +1 _0 ^0) Forward and backward boxes are conjugates
KLE105 ( -0 +1 _0 ^0) Galois
KLE106 ( -0 +1 _0 ^0) Galois
KLE107 ( -0 +1 _0 ^0) Galois
KLE108 ( -0 +1 _0 ^0) Galois
KLE109 ( -0 +1 _0 ^0) Forward diamonds and backward boxes satisfy a cancellation law
KLE110 ( -0 +1 _0 ^0) Forward diamonds and backward boxes satisfy a cancellation law
KLE111 ( -0 +1 _0 ^0) Backward diamonds and forward boxes satisfy a cancellation law
KLE112 ( -0 +1 _0 ^0) Backward diamonds and forward boxes satisfy a cancellation law
KLE113 ( -0 +1 _0 ^0) Diamonds are strict
KLE114 ( -0 +1 _0 ^0) Boxes are costrict
KLE115 ( -0 +1 _0 ^0) Diamonds are additive
KLE116 ( -0 +1 _0 ^0) Boxes are multiplicative
KLE117 ( -0 +1 _0 ^0) Diamonds are isotone
KLE118 ( -0 +1 _0 ^0) Boxes are antitone
KLE119 ( -0 +1 _0 ^0) Validity of abort rule
KLE120 ( -0 +1 _0 ^0) Validity of skip rule
KLE121 ( -0 +1 _0 ^0) Validity of composition rule
KLE122 ( -0 +1 _0 ^0) Validity of conditional rule
KLE123 ( -0 +1 _0 ^0) Validity of while rule
KLE124 ( -0 +1 _0 ^0) Validity of weakening rule
KLE125 ( -0 +1 _0 ^0) Quasicommutation theorem
KLE126 ( -0 +1 _0 ^0) Lazy commutation theorem
KLE127 ( -0 +1 _0 ^0) Loop refinement theorem
KLE128 ( -0 +1 _0 ^0) Comparison of two different notions of termination
KLE129 ( -0 +1 _0 ^0) Comparison of two different notions of termination
KLE130 ( -0 +1 _0 ^0) Two notions of termination
KLE131 ( -0 +1 _0 ^0) Two notions of termination
KLE132 ( -0 +1 _0 ^0) Every element that satisfies Loeb's formula is wellfounded
KLE133 ( -0 +1 _0 ^0) Loeb's formula and wellfoundedness
KLE134 ( -0 +1 _0 ^0) A no name lemma
KLE135 ( -0 +1 _0 ^0) Two notions of termination
KLE136 ( -0 +1 _0 ^0) Newman's lemma holds in divergence Kleene algebras
KLE137 ( -0 +1 _0 ^0) There is a greatest element, namely 1^infty
KLE138 ( -0 +1 _0 ^0) Strong iteration of a abort is miracle
KLE139 ( -0 +2 _0 ^0) Dual unfold
KLE140 ( -0 +1 _0 ^0) Isotonicity of strong iteration
KLE141 ( -0 +2 _0 ^0) The greatest is left annihilator
KLE142 ( -0 +2 _0 ^0) If strong iteration is applied twice, a miracle occurs.
KLE143 ( -0 +2 _0 ^0) Strong iteration is idempotent w.r.t. multiplication
KLE144 ( -0 +2 _0 ^0) Strong iteration applied after finite iteration is magic.
KLE145 ( -0 +2 _0 ^0) Finite iteration after strong iteration is strong iteration
KLE146 ( -0 +1 _0 ^0) Skip is part of strong iteration
KLE147 ( -0 +2 _0 ^0) Sliding of strong iteration
KLE148 ( -0 +2 _0 ^0) Blocking law
KLE149 ( -0 +2 _0 ^0) Strong version of unfold
KLE150 ( -0 +2 _0 ^0) Iterating non-terminating elements reduces to the element itself
KLE151 ( -0 +1 _0 ^0) Sliding of strong iteration
KLE152 ( -0 +1 _0 ^0) Sliding of strong iteration
KLE153 ( -0 +1 _0 ^0) Sliding of strong iteration
KLE154 ( -0 +2 _0 ^0) Denesting of strong iteration
KLE155 ( -0 +2 _0 ^0) Denesting of strong iteration
KLE156 ( -0 +2 _0 ^0) Semicommuation law of finite iteration
KLE157 ( -0 +2 _0 ^0) Semicommuation law of finite iteration
KLE158 ( -0 +1 _0 ^0) Simulation law for data refinement
KLE159 ( -0 +1 _0 ^0) Simulation law for data refinement
KLE160 ( -0 +1 _0 ^0) Simulation law for data refinement
KLE161 ( -0 +1 _0 ^0) Data refinement
KLE162 ( -0 +1 _0 ^0) Part 1 of Back's atomicity refinement theorem
KLE163 ( -0 +1 _0 ^0) Part 2 of Back's atomicity refinement theorem
KLE164 ( -0 +1 _0 ^0) Back's atomicity refinement theorem
KLE165 ( -0 +2 _0 ^0) Denest for weakly quasi commutation
KLE166 ( -0 +1 _0 ^0) Strong iteration
KLE167 ( -0 +1 _0 ^0) Blocking law
KLE168 ( -0 +1 _0 ^0) If x quasicommutes over y then x^infty quasicommutes over y^infty
KLE169 ( -0 +1 _0 ^0) Exponential automata
KLE170 ( -0 +3 _0 ^0) a^N <= a*, N=2
KLE171 ( -0 +1 _0 ^0) Ben's problem 1
KLE172 ( -0 +1 _0 ^0) Ben's problem 2
KLE173 ( -0 +1 _0 ^0) Idempotent semirings with tests
KLE174 ( -0 +1 _0 ^0) Idempotent semirings with domain/codomain, modal
KLE175 ( -0 +1 _0 ^0) Idempotent semirings with tests
KLE176 ( -0 +1 _0 ^0) Kleene algebra
KLE177 ( -0 +1 _0 ^0) Kleene algebra
KLE178 ( -0 +1 _0 ^0) Kleene Algebra
KLE179 ( -0 +1 _0 ^0) Omega algebra
KLE180 ( -0 +1 _0 ^0) Omega algebra
KLE181 ( -0 +1 _0 ^0) Omega algebra
KLE182 ( -0 +1 _0 ^0) Demonic Refinement Algebra
-------------------------------------------------------------------------------
Domain KRS = Knowledge Representation
305 problems (291 abstract), 30 CNF, 268 FOF, 1 TFF, 6 THF
-------------------------------------------------------------------------------
KRS001 ( -1 +0 _0 ^0) Paramasivam problem T-Box 1a
KRS002 ( -1 +0 _0 ^0) Paramasivam problem T-Box 1b
KRS003 ( -1 +0 _1 ^0) Paramasivam problem T-Box 1c
KRS004 ( -1 +0 _0 ^0) Paramasivam problem T-Box 1d
KRS005 ( -1 +0 _0 ^0) Paramasivam problem T-Box 2a
KRS006 ( -1 +0 _0 ^0) Paramasivam problem T-Box 2b
KRS007 ( -1 +0 _0 ^0) Paramasivam problem T-Box 3a
KRS008 ( -1 +0 _0 ^0) Paramasivam problem T-Box 3b
KRS009 ( -1 +0 _0 ^0) Paramasivam problem T-Box 3c
KRS010 ( -1 +0 _0 ^0) Paramasivam problem T-Box 3d
KRS011 ( -1 +0 _0 ^0) Paramasivam problem T-Box 3e
KRS012 ( -1 +0 _0 ^0) Paramasivam problem T-Box 4a
KRS013 ( -1 +0 _0 ^0) Paramasivam problem T-Box 4b
KRS014 ( -1 +0 _0 ^0) Paramasivam problem T-Box 5a
KRS015 ( -1 +0 _0 ^0) Paramasivam problem T-Box 5b
KRS016 ( -1 +0 _0 ^0) Paramasivam problem T-Box 5c
KRS017 ( -1 +0 _0 ^0) Paramasivam problem T-Box 7a
KRS018 ( -0 +1 _0 ^0) Nothing can be defined using OWL Lite restrictions
KRS019 ( -0 +1 _0 ^0) The complement of a class can be defined using OWL Lite
KRS020 ( -0 +1 _0 ^0) The union of two classes can be defined using OWL Lite
KRS021 ( -0 +1 _0 ^0) Informal semantics for RDF container are not respected by OWL
KRS022 ( -0 +1 _0 ^0) Informal semantics for RDF container are not respected by OWL
KRS023 ( -0 +1 _0 ^0) A minimal OWL Lite version of I5.3-005
KRS024 ( -0 +1 _0 ^0) An OWL Lite version of I5.3-007
KRS025 ( -0 +1 _0 ^0) Classes can be the object of annotation properties
KRS026 ( -0 +1 _0 ^0) The extension of OWL Thing may be a singleton in OWL DL
KRS027 ( -0 +1 _0 ^0) An example of use
KRS028 ( -0 +1 _0 ^0) DL Test: fact4.2
KRS029 ( -0 +1 _0 ^0) DL Test: t1.1
KRS030 ( -0 +1 _0 ^0) DL Test: t10.1
KRS031 ( -0 +1 _0 ^0) DL Test: t2.1
KRS032 ( -0 +1 _0 ^0) DL Test: t3.1
KRS033 ( -0 +1 _0 ^0) DL Test: t3a.1
KRS034 ( -0 +1 _0 ^0) DL Test: t3a.2
KRS035 ( -0 +1 _0 ^0) DL Test: t5.1 Non-finite model example from paper
KRS036 ( -0 +1 _0 ^0) DL Test: t5f.1 Non-finite model example from paper
KRS037 ( -0 +1 _0 ^0) DL Test: t7.1
KRS038 ( -0 +1 _0 ^0) DL Test: t7f.1
KRS039 ( -0 +1 _0 ^0) DL Test: t8.1
KRS040 ( -0 +1 _0 ^0) Example of use
KRS041 ( -0 +1 _0 ^0) A different encoding of description-logic-501
KRS042 ( -0 +1 _0 ^0) DL Test: fact4.2
KRS043 ( -0 +1 _0 ^0) DL Test: t1.1
KRS044 ( -0 +1 _0 ^0) DL Test: t10.1
KRS045 ( -0 +1 _0 ^0) DL Test: t2.1
KRS046 ( -0 +1 _0 ^0) DL Test: t5.1 Non-finite model example from paper
KRS047 ( -0 +1 _0 ^0) DL Test: t5f.1 Non-finite model example from paper
KRS048 ( -0 +1 _0 ^0) DL Test: t7.1
KRS049 ( -0 +1 _0 ^0) DL Test: t7f.1
KRS050 ( -0 +1 _0 ^0) DL Test: t8.1
KRS051 ( -0 +1 _0 ^0) Integer multiplication in OWL DL
KRS052 ( -0 +1 _0 ^0) Integer multiplication in OWL DL, interacting with infinity
KRS053 ( -0 +1 _0 ^0) owl:disjointWith edges may be within OWL DL
KRS054 ( -0 +1 _0 ^0) owl:disjointWith edges may be within OWL DL
KRS055 ( -0 +1 _0 ^0) owl:disjointWith edges may be within OWL DL
KRS056 ( -0 +1 _0 ^0) owl:disjointWith edges may be within OWL DL
KRS057 ( -0 +1 _0 ^0) A possible mapping of the EquivalentClasses axiom
KRS058 ( -0 +1 _0 ^0) A simple test for infinite loops in imports processing code
KRS059 ( -0 +1 _0 ^0) Abstract syntax restrictions with multiple components
KRS060 ( -0 +1 _0 ^0) Description cannot be expressed as a multicomponent restriction
KRS061 ( -0 +1 _0 ^0) User labels in a variety of languages with ruby annotation
KRS062 ( -0 +1 _0 ^0) dc:creator may be declared as an annotation property
KRS063 ( -0 +1 _0 ^0) An example combining owl:oneOf and owl:inverseOf
KRS064 ( -0 +1 _0 ^0) Something of type owl:Nothing
KRS065 ( -0 +1 _0 ^0) The syntax for using the same restriction twice in OWL Lite
KRS066 ( -0 +1 _0 ^0) The extension of OWL Thing may not be emtpy in OWL Lite
KRS067 ( -0 +1 _0 ^0) DL Test: fact1.1
KRS068 ( -0 +1 _0 ^0) DL Test: fact2.1
KRS069 ( -0 +1 _0 ^0) DL Test: fact3.1
KRS070 ( -0 +1 _0 ^0) DL Test: fact4.1
KRS071 ( -0 +1 _0 ^0) DL Test: t1.2
KRS072 ( -0 +1 _0 ^0) DL Test: t1.3
KRS073 ( -0 +1 _0 ^0) DL Test: t10.2
KRS074 ( -0 +1 _0 ^0) DL Test: t10.3
KRS075 ( -0 +1 _0 ^0) DL Test: t10.4
KRS076 ( -0 +1 _0 ^0) DL Test: t10.5
KRS077 ( -0 +1 _0 ^0) DL Test: t11.1
KRS078 ( -0 +1 _0 ^0) DL Test: t12.1
KRS079 ( -0 +1 _0 ^0) DL Test: t2.2
KRS080 ( -0 +1 _0 ^0) DL Test: t3.2
KRS081 ( -0 +1 _0 ^0) DL Test: t3a.3
KRS082 ( -0 +1 _0 ^0) DL Test: t4.1 Dynamic blocking example
KRS083 ( -0 +1 _0 ^0) DL Test: t6.1 Double blocking example
KRS084 ( -0 +1 _0 ^0) DL Test: t6f.1 Double blocking example
KRS085 ( -0 +1 _0 ^0) DL Test: t7.2
KRS086 ( -0 +1 _0 ^0) DL Test: t7.3
KRS087 ( -0 +1 _0 ^0) DL Test: t7f.2
KRS088 ( -0 +1 _0 ^0) DL Test: t7f.3
KRS089 ( -0 +1 _0 ^0) A test for the interaction of one-of and inverse
KRS090 ( -0 +1 _0 ^0) A pattern comes up a lot in more complex ontologies
KRS091 ( -0 +1 _0 ^0) DL Test: heinsohn1.1
KRS092 ( -0 +1 _0 ^0) DL Test: heinsohn1.2
KRS093 ( -0 +1 _0 ^0) DL Test: heinsohn1.3
KRS094 ( -0 +1 _0 ^0) DL Test: heinsohn1.4
KRS095 ( -0 +1 _0 ^0) DL Test: heinsohn2.1
KRS096 ( -0 +1 _0 ^0) DL Test: heinsohn2.2
KRS097 ( -0 +1 _0 ^0) DL Test: heinsohn3.1
KRS098 ( -0 +1 _0 ^0) DL Test: heinsohn3.2
KRS099 ( -0 +1 _0 ^0) DL Test: heinsohn3c.1
KRS100 ( -0 +1 _0 ^0) DL Test: heinsohn4.1
KRS101 ( -0 +1 _0 ^0) DL Test: heinsohn4.2
KRS102 ( -0 +1 _0 ^0) This is the classic 3 SAT problem
KRS103 ( -0 +1 _0 ^0) A different encoding of description-logic-502
KRS104 ( -0 +1 _0 ^0) DL Test: fact1.1
KRS105 ( -0 +1 _0 ^0) DL Test: fact2.1
KRS106 ( -0 +1 _0 ^0) DL Test: fact3.1
KRS107 ( -0 +1 _0 ^0) DL Test: fact4.1
KRS108 ( -0 +1 _0 ^0) DL Test: t1.3
KRS109 ( -0 +1 _0 ^0) DL Test: t10.2
KRS110 ( -0 +1 _0 ^0) DL Test: t10.3
KRS111 ( -0 +1 _0 ^0) DL Test: t10.4
KRS112 ( -0 +1 _0 ^0) DL Test: t10.5
KRS113 ( -0 +1 _0 ^0) DL Test: t11.1
KRS114 ( -0 +1 _0 ^0) DL Test: t12.1
KRS115 ( -0 +1 _0 ^0) DL Test: t2.2
KRS116 ( -0 +1 _0 ^0) DL Test: t4.1 Dynamic blocking example
KRS117 ( -0 +1 _0 ^0) DL Test: t6.1 Double blocking example
KRS118 ( -0 +1 _0 ^0) DL Test: t6f.1 Double blocking example
KRS119 ( -0 +1 _0 ^0) DL Test: t7.2
KRS120 ( -0 +1 _0 ^0) DL Test: t7.3
KRS121 ( -0 +1 _0 ^0) DL Test: t7f.2
KRS122 ( -0 +1 _0 ^0) DL Test: t7f.3
KRS123 ( -0 +1 _0 ^0) DL Test: heinsohn1.1
KRS124 ( -0 +1 _0 ^0) DL Test: heinsohn1.2
KRS125 ( -0 +1 _0 ^0) DL Test: heinsohn1.3
KRS126 ( -0 +1 _0 ^0) DL Test: heinsohn1.4
KRS127 ( -0 +1 _0 ^0) DL Test: heinsohn2.2
KRS128 ( -0 +1 _0 ^0) DL Test: heinsohn4.1
KRS129 ( -0 +1 _0 ^0) An example combinging owl:oneOf and owl:inverseOf
KRS130 ( -0 +1 _0 ^0) owl:Nothing can be defined using OWL Lite restrictions
KRS131 ( -0 +1 _0 ^0) The complement of a class can be defined
KRS132 ( -0 +1 _0 ^0) The union of two classes can be defined
KRS133 ( -0 +1 _0 ^0) How to express mutual disjointness between classes
KRS134 ( -0 +1 _0 ^0) This is a typical definition of range from description logic
KRS135 ( -0 +1 _0 ^0) This is a typical definition of range from description logic
KRS136 ( -0 +1 _0 ^0) Some set theory
KRS137 ( -0 +1 _0 ^0) A variation of equivalentClass-001
KRS138 ( -0 +1 _0 ^0) Extensional semantics of owl:SymmetricProperty
KRS139 ( -0 +1 _0 ^0) A Lite version of test SymmetricProperty-001
KRS140 ( -0 +1 _0 ^0) Test illustrating extensional semantics of owl:TransitiveProperty
KRS141 ( -0 +1 _0 ^0) A simple example
KRS142 ( -0 +1 _0 ^0) An owl:cardinality constraint is simply shorthand
KRS143 ( -0 +1 _0 ^0) An owl:cardinality constraint is simply shorthand
KRS144 ( -0 +1 _0 ^0) An owl:cardinality constraint is simply shorthand
KRS145 ( -0 +1 _0 ^0) An owl:cardinality constraint is simply shorthand
KRS146 ( -0 +1 _0 ^0) DL Test: k_branch ABox test from DL98 systems comparison
KRS147 ( -0 +1 _0 ^0) DL Test: k_d4 ABox test from DL98 systems comparison
KRS148 ( -0 +1 _0 ^0) DL Test: k_dum ABox test from DL98 systems comparison
KRS149 ( -0 +1 _0 ^0) DL Test: k_grz ABox test from DL98 systems comparison
KRS150 ( -0 +1 _0 ^0) DL Test: k_lin ABox test from DL98 systems comparison
KRS151 ( -0 +1 _0 ^0) DL Test: k_path ABox test from DL98 systems comparison
KRS152 ( -0 +1 _0 ^0) DL Test: k_ph ABox test from DL98 systems comparison
KRS153 ( -0 +1 _0 ^0) DL Test: k_poly ABox test from DL98 systems comparison
KRS154 ( -0 +1 _0 ^0) DL Test: k_branch ABox test from DL98 systems comparison
KRS155 ( -0 +1 _0 ^0) DL Test: k_d4 ABox test from DL98 systems comparison
KRS156 ( -0 +1 _0 ^0) DL Test: k_dum ABox test from DL98 systems comparison
KRS157 ( -0 +1 _0 ^0) ABox test from DL98 systems comparison
KRS158 ( -0 +1 _0 ^0) DL Test: k_lin ABox test from DL98 systems comparison
KRS159 ( -0 +1 _0 ^0) DL Test: k_path ABox test from DL98 systems comparison
KRS160 ( -0 +1 _0 ^0) DL Test: k_ph ABox test from DL98 systems comparison
KRS161 ( -0 +1 _0 ^0) DL Test: k_poly ABox test from DL98 systems comparison
KRS162 ( -0 +1 _0 ^0) Entailment for three natural numbers
KRS163 ( -0 +1 _0 ^0) Disjoint classes have different members
KRS164 ( -0 +1 _0 ^0) Two classes may have the same class extension
KRS165 ( -0 +1 _0 ^0) Two classes may be different names for the same set of individuals
KRS166 ( -0 +1 _0 ^0) Two classes may be different names for the same set of individuals
KRS167 ( -0 +1 _0 ^0) Two classes with the same complete description are equivalent
KRS168 ( -0 +1 _0 ^0) De Morgan's law
KRS169 ( -0 +1 _0 ^0) hasLeader may be stated as the owl:equivalentProperty of hasHead
KRS170 ( -0 +1 _0 ^0) Deduction from hasLeader
KRS171 ( -0 +1 _0 ^0) The inverse entailment of test 002 also holds
KRS172 ( -0 +1 _0 ^0) The same property extension means equivalentProperty
KRS173 ( -0 +1 _0 ^0) A simple infinite loop for implementors to avoid
KRS174 ( -0 +1 _0 ^0) Sets with appropriate extensions are related by unionOf
KRS175 ( -0 +1 _0 ^0) An inverse to test unionOf-003
KRS176 ( -0 +1 _0 ^0) isa is reflexive
KRS177 ( -0 +1 _0 ^0) isa is transitive
KRS178 ( -0 +1 _0 ^0) isa is exclusive of nota, nevera, and xora
KRS179 ( -0 +1 _0 ^0) If S1 isa S2 and S1 is nota S3, then S2 is nota S3
KRS180 ( -0 +1 _0 ^0) isa is incompatible with nota, nevera, and xora
KRS181 ( -0 +1 _0 ^0) If S1 isa S2, and S1 nota S3, then S2 nota S3
KRS182 ( -0 +1 _0 ^0) UNP isa THM
KRS183 ( -0 +1 _0 ^0) SAP isa THM
KRS184 ( -0 +1 _0 ^0) ESA isa THM
KRS185 ( -0 +1 _0 ^0) SAT isa THM
KRS186 ( -0 +1 _0 ^0) EQV isa THM
KRS187 ( -0 +1 _0 ^0) TAC isa THM
KRS188 ( -0 +1 _0 ^0) WEC isa THM
KRS189 ( -0 +1 _0 ^0) ETH isa THM
KRS190 ( -0 +1 _0 ^0) TAU isa THM
KRS191 ( -0 +1 _0 ^0) WTC isa THM
KRS192 ( -0 +1 _0 ^0) WTH isa THM
KRS193 ( -0 +1 _0 ^0) CAX isa THM
KRS194 ( -0 +1 _0 ^0) SCA isa THM
KRS195 ( -0 +1 _0 ^0) TCA isa THM
KRS196 ( -0 +1 _0 ^0) WCA isa THM
KRS197 ( -0 +1 _0 ^0) CSA isa THM
KRS198 ( -0 +1 _0 ^0) UNS isa THM
KRS199 ( -0 +1 _0 ^0) NOC isa THM
KRS200 ( -0 +1 _0 ^0) UNP nota THM
KRS201 ( -0 +1 _0 ^0) SAP nota THM
KRS202 ( -0 +1 _0 ^0) ESA nota THM
KRS203 ( -0 +1 _0 ^0) SAT nota THM
KRS204 ( -0 +1 _0 ^0) EQV nota THM
KRS205 ( -0 +1 _0 ^0) TAC nota THM
KRS206 ( -0 +1 _0 ^0) WEC nota THM
KRS207 ( -0 +1 _0 ^0) ETH nota THM
KRS208 ( -0 +1 _0 ^0) TAU nota THM
KRS209 ( -0 +1 _0 ^0) WTC nota THM
KRS210 ( -0 +1 _0 ^0) WTH nota THM
KRS211 ( -0 +1 _0 ^0) CAX nota THM
KRS212 ( -0 +1 _0 ^0) SCA nota THM
KRS213 ( -0 +1 _0 ^0) TCA nota THM
KRS214 ( -0 +1 _0 ^0) WCA nota THM
KRS215 ( -0 +1 _0 ^0) CSA nota THM
KRS216 ( -0 +1 _0 ^0) UNS nota THM
KRS217 ( -0 +1 _0 ^0) NOC nota THM
KRS218 ( -0 +1 _0 ^0) UNP nevera THM
KRS219 ( -0 +1 _0 ^0) SAP nevera THM
KRS220 ( -0 +1 _0 ^0) ESA nevera THM
KRS221 ( -0 +1 _0 ^0) SAT nevera THM
KRS222 ( -0 +1 _0 ^0) EQV nevera THM
KRS223 ( -0 +1 _0 ^0) TAC nevera THM
KRS224 ( -0 +1 _0 ^0) WEC nevera THM
KRS225 ( -0 +1 _0 ^0) ETH nevera THM
KRS226 ( -0 +1 _0 ^0) TAU nevera THM
KRS227 ( -0 +1 _0 ^0) WTC nevera THM
KRS228 ( -0 +1 _0 ^0) WTH nevera THM
KRS229 ( -0 +1 _0 ^0) CAX nevera THM
KRS230 ( -0 +1 _0 ^0) SCA nevera THM
KRS231 ( -0 +1 _0 ^0) TCA nevera THM
KRS232 ( -0 +1 _0 ^0) WCA nevera THM
KRS233 ( -0 +1 _0 ^0) CSA nevera THM
KRS234 ( -0 +1 _0 ^0) UNS nevera THM
KRS235 ( -0 +1 _0 ^0) NOC nevera THM
KRS236 ( -0 +1 _0 ^0) UNP xora THM
KRS237 ( -0 +1 _0 ^0) SAP xora THM
KRS238 ( -0 +1 _0 ^0) ESA xora THM
KRS239 ( -0 +1 _0 ^0) SAT xora THM
KRS240 ( -0 +1 _0 ^0) EQV xora THM
KRS241 ( -0 +1 _0 ^0) TAC xora THM
KRS242 ( -0 +1 _0 ^0) WEC xora THM
KRS243 ( -0 +1 _0 ^0) ETH xora THM
KRS244 ( -0 +1 _0 ^0) TAU xora THM
KRS245 ( -0 +1 _0 ^0) WTC xora THM
KRS246 ( -0 +1 _0 ^0) WTH xora THM
KRS247 ( -0 +1 _0 ^0) CAX xora THM
KRS248 ( -0 +1 _0 ^0) SCA xora THM
KRS249 ( -0 +1 _0 ^0) TCA xora THM
KRS250 ( -0 +1 _0 ^0) WCA xora THM
KRS251 ( -0 +1 _0 ^0) CSA xora THM
KRS252 ( -0 +1 _0 ^0) UNS xora THM
KRS253 ( -0 +1 _0 ^0) NOC xora THM
KRS254 ( -0 +1 _0 ^0) UNP mighta THM
KRS255 ( -0 +1 _0 ^0) SAP mighta THM
KRS256 ( -0 +1 _0 ^0) ESA mighta THM
KRS257 ( -0 +1 _0 ^0) SAT mighta THM
KRS258 ( -0 +1 _0 ^0) EQV mighta THM
KRS259 ( -0 +1 _0 ^0) TAC mighta THM
KRS260 ( -0 +1 _0 ^0) WEC mighta THM
KRS261 ( -0 +1 _0 ^0) ETH mighta THM
KRS262 ( -0 +1 _0 ^0) TAU mighta THM
KRS263 ( -0 +1 _0 ^0) WTC mighta THM
KRS264 ( -0 +1 _0 ^0) WTH mighta THM
KRS265 ( -0 +1 _0 ^0) CAX mighta THM
KRS266 ( -0 +1 _0 ^0) SCA mighta THM
KRS267 ( -0 +1 _0 ^0) TCA mighta THM
KRS268 ( -0 +1 _0 ^0) WCA mighta THM
KRS269 ( -0 +1 _0 ^0) CSA mighta THM
KRS270 ( -0 +1 _0 ^0) UNS mighta THM
KRS271 ( -0 +1 _0 ^0) NOC mighta THM
KRS272 ( -0 +0 _0 ^1) Generation of abstract instructions: enter a number in a(#box
KRS273 ( -0 +0 _0 ^1) Querying description logic knowledge bases
KRS274 ( -0 +0 _0 ^1) Querying description logic knowledge bases
KRS275 ( -0 +0 _0 ^1) Database querying
KRS276 ( -0 +0 _0 ^1) Database querying
KRS277 ( -0 +0 _0 ^1) Database querying
KRS278 ( -1 +1 _0 ^0) QBFLib problem from the Abduction family
KRS279 ( -1 +1 _0 ^0) QBFLib problem from the Abduction family
KRS280 ( -1 +1 _0 ^0) QBFLib problem from the Abduction family
KRS281 ( -1 +1 _0 ^0) QBFLib problem from the Abduction family
KRS282 ( -1 +1 _0 ^0) QBFLib problem from the Abduction family
KRS283 ( -0 +1 _0 ^0) QBFLib problem from the mqm family
KRS284 ( -1 +1 _0 ^0) QBFLib problem from the mqm family
KRS285 ( -1 +1 _0 ^0) QBFLib problem from the mqm family
KRS286 ( -1 +1 _0 ^0) QBFLib problem from the mqm family
KRS287 ( -1 +1 _0 ^0) QBFLib problem from the mqm family
KRS288 ( -1 +1 _0 ^0) QBFLib problem from the mqm family
KRS289 ( -1 +1 _0 ^0) QBFLib problem from the mqm family
KRS290 ( -1 +1 _0 ^0) QBFLib problem from the mqm family
KRS291 ( -1 +1 _0 ^0) QBFLib problem from the mqm family
-------------------------------------------------------------------------------
Domain LAT = Lattices
733 problems (396 abstract), 320 CNF, 413 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
LAT001 ( -1 +0 _0 ^0) If X' = U v V and Y' = U ^ V, then U' = X v (Y ^ V)
LAT002 ( -1 +0 _0 ^0) If X' = U v V and Y' = U ^ V, then U' exists
LAT003 ( -1 +0 _0 ^0) A fairly complex equation to establish
LAT004 ( -1 +0 _0 ^0) A fairly complex equation to establish
LAT005 ( -6 +0 _0 ^0) SAM's lemma
LAT006 ( -1 +0 _0 ^0) Sholander's basis for distributive lattices, part 2 (of 6).
LAT007 ( -1 +0 _0 ^0) Sholander's basis for distributive lattices, part 5 (of 6).
LAT008 ( -1 +0 _0 ^0) Sholander's basis for distributive lattices, part 5 (of 6).
LAT009 ( -1 +0 _0 ^0) A self-dual form of distributivity for lattice theory.
LAT010 ( -1 +0 _0 ^0) McKenzie's basis for the variety generated by N5.
LAT011 ( -1 +0 _0 ^0) Uniqueness of meet (dually join) in lattice theory
LAT012 ( -1 +0 _0 ^0) McKenzie's 4-basis for lattice theory, part 1 (of 3)
LAT013 ( -1 +0 _0 ^0) McKenzie's 4-basis for lattice theory, part 2 (of 3)
LAT014 ( -1 +0 _0 ^0) McKenzie's 4-basis for lattice theory, part 3 (of 3)
LAT015 ( -1 +0 _0 ^0) Single axiom for lattice theory
LAT016 ( -1 +0 _0 ^0) E1 fails for Ortholattices.
LAT017 ( -1 +0 _0 ^0) E2 holds in Ortholattices.
LAT018 ( -1 +0 _0 ^0) E3 holds in Ortholattices.
LAT019 ( -1 +0 _0 ^0) In quasilattices, a distributive law implies its dual.
LAT020 ( -1 +0 _0 ^0) Self-dual distributivity for quasilattices.
LAT021 ( -1 +0 _0 ^0) Bowden's inequality gives distributivity in lattice theory.
LAT022 ( -1 +0 _0 ^0) Self-dual modularity for quasilattices.
LAT023 ( -1 +0 _0 ^0) Yet another modularity equation for quasilattices.
LAT024 ( -1 +0 _0 ^0) Meet (dually join) is not necessarily unique for quasilattices.
LAT025 ( -1 +0 _0 ^0) Non-uniqueness of meet (dually join) in TNL
LAT026 ( -1 +0 _0 ^0) WAL + absorption gives LT, part 1.
LAT027 ( -1 +0 _0 ^0) WAL + absorption gives LT, part 2.
LAT028 ( -1 +0 _0 ^0) Uniqueness of meet (dually join) in WAL
LAT029 ( -1 +0 _0 ^0) Absorption basis for WAL
LAT030 ( -1 +0 _0 ^0) Single axiom for weakly associative lattices (WAL)
LAT031 ( -1 +0 _0 ^0) Distributivity of meet implies distributivity of join
LAT032 ( -1 +0 _0 ^0) Distributivity of join implies distributivity of meet
LAT033 ( -1 +0 _0 ^0) Idempotency of join
LAT034 ( -1 +0 _0 ^0) Idempotency of meet
LAT035 ( -1 +0 _0 ^0) Composition to form a join hemimorphism
LAT036 ( -1 +0 _0 ^0) Property of a distributive lattive with an antimorphism
LAT037 ( -1 +0 _0 ^0) Uniqueness of complement
LAT038 ( -1 +0 _0 ^0) Simplification rule in a distributive lattice
LAT039 ( -2 +0 _0 ^0) Every distributive lattice is modular
LAT040 ( -1 +0 _0 ^0) Another simplification rule for distributive lattices
LAT041 ( -1 +0 _0 ^0) A hyperbase for type <2,2> lattice hyperidentities
LAT042 ( -1 +0 _0 ^0) Lattice modularity from Boolean algebra
LAT043 ( -1 +0 _0 ^0) Lattice compatability from Boolean algebra
LAT044 ( -1 +0 _0 ^0) Lattice weak orthomodular law from orthomodular lattice
LAT045 ( -1 +0 _0 ^0) Lattice orthomodular law from modular lattice
LAT046 ( -1 +0 _0 ^0) Modular ortholattice is not Boolean algebra
LAT047 ( -1 +0 _0 ^0) Lattice is not modular lattice
LAT048 ( -1 +0 _0 ^0) Weakly orthomodular lattice is not orthomodular lattice
LAT049 ( -1 +0 _0 ^0) Ortholattice is not weakly orthomodular lattice
LAT050 ( -1 +0 _0 ^0) Orthomodular lattice is not modular lattice
LAT051 ( -1 +0 _0 ^0) Lattice is not ortholattice
LAT052 ( -1 +0 _0 ^0) Modular lattice is not modular ortholattice
LAT053 ( -1 +0 _0 ^0) Countermodel for Megill equation for weakly orthomodular lattices
LAT054 ( -1 +0 _0 ^0) Countermodel for Megill equation for ortholattices
LAT055 ( -2 +0 _0 ^0) Lattice theory axioms
LAT056 ( -1 +0 _0 ^0) Lattice theory modularity (equality) axioms
LAT057 ( -1 +0 _0 ^0) Lattice theory complement (equality) axioms
LAT058 ( -1 +0 _0 ^0) Lattice theory unique complement (equality) axioms
LAT059 ( -1 +0 _0 ^0) Ortholattice theory (equality) axioms
LAT060 ( -1 +0 _0 ^0) Quasilattice theory (equality) axioms
LAT061 ( -1 +0 _0 ^0) Weakly Associative Lattices theory (equality) axioms
LAT062 ( -1 +0 _0 ^0) E51 does not necessarily hold in ortholattices
LAT063 ( -1 +0 _0 ^0) E62 does not necessarily hold in ortholattices
LAT064 ( -1 +0 _0 ^0) Weak property 94-6 to make a uniquely complemented lattice Boolean
LAT065 ( -1 +0 _0 ^0) Weak property 94-37 to make uniquely complemented lattice Boolean
LAT066 ( -1 +0 _0 ^0) Weak property G61 to make a uniquely complemented lattice Boolean
LAT067 ( -1 +0 _0 ^0) Weak property 94-3 to make a uniquely complemented lattice Boolean
LAT068 ( -1 +0 _0 ^0) Weak property F53 to make a uniquely complemented lattice Boolean
LAT069 ( -1 +0 _0 ^0) Weak property G113 to make a uniquely complemented lattice Boolean
LAT070 ( -1 +0 _0 ^0) Given single axiom OL-23A, prove associativity
LAT071 ( -1 +0 _0 ^0) Given single axiom OML-21C, prove associativity
LAT072 ( -1 +0 _0 ^0) Given single axiom OML-23A, prove associativity
LAT073 ( -1 +0 _0 ^0) Given single axiom MOL-23C, prove modularity
LAT074 ( -1 +0 _0 ^0) Given single axiom MOL-25A, prove associativity
LAT075 ( -1 +0 _0 ^0) Given single axiom MOL-25A, prove modularity
LAT076 ( -1 +0 _0 ^0) Given single axiom MOL-27B1, prove associativity
LAT077 ( -1 +0 _0 ^0) Given single axiom MOL-27B1, prove modularity
LAT078 ( -1 +0 _0 ^0) Given single axiom MOL-27B2, prove associativity
LAT079 ( -1 +0 _0 ^0) Given single axiom MOL-27B2, prove modularity
LAT080 ( -1 +0 _0 ^0) Axiom for lattice theory, part 1
LAT081 ( -1 +0 _0 ^0) Axiom for lattice theory, part 2
LAT082 ( -1 +0 _0 ^0) Axiom for lattice theory, part 3
LAT083 ( -1 +0 _0 ^0) Axiom for lattice theory, part 4
LAT084 ( -1 +0 _0 ^0) Axiom for lattice theory, part 5
LAT085 ( -1 +0 _0 ^0) Axiom for lattice theory, part 6
LAT086 ( -1 +0 _0 ^0) Axiom for lattice theory, part 7
LAT087 ( -1 +0 _0 ^0) Axiom for lattice theory, part 8
LAT088 ( -1 +0 _0 ^0) Absorption basis for WAL, part 1
LAT089 ( -1 +0 _0 ^0) Absorption basis for WAL, part 2
LAT090 ( -1 +0 _0 ^0) Absorption basis for WAL, part 3
LAT091 ( -1 +0 _0 ^0) Absorption basis for WAL, part 4
LAT092 ( -1 +0 _0 ^0) Axiom for weakly associative lattices (WAL), part 1
LAT093 ( -1 +0 _0 ^0) Axiom for weakly associative lattices (WAL), part 2
LAT094 ( -1 +0 _0 ^0) Axiom for weakly associative lattices (WAL), part 3
LAT095 ( -1 +0 _0 ^0) Axiom for weakly associative lattices (WAL), part 4
LAT096 ( -1 +0 _0 ^0) Axiom for weakly associative lattices (WAL), part 5
LAT097 ( -1 +0 _0 ^0) Single axiom for weakly associative lattices (WAL), part 6
LAT098 ( -1 +0 _0 ^0) Huntington equation H3 is independent of H2
LAT099 ( -1 +0 _0 ^0) Huntington equation H2 is independent of H3
LAT100 ( -1 +0 _0 ^0) Huntington equation H4 is independent of H6
LAT101 ( -1 +0 _0 ^0) Huntington equation H10 is independent of H6
LAT102 ( -1 +0 _0 ^0) Huntington equation H4 is independent of H7
LAT103 ( -1 +0 _0 ^0) Huntington equation H6 is independent of H10
LAT104 ( -1 +0 _0 ^0) Huntington equation H3 is independent of H21
LAT105 ( -1 +0 _0 ^0) Huntington equation H10 is independent of H21
LAT106 ( -1 +0 _0 ^0) Huntington equation H3 is independent of H22
LAT107 ( -1 +0 _0 ^0) Huntington equation H17 is independent of H22
LAT108 ( -1 +0 _0 ^0) Huntington equation H42 is independent of H31
LAT109 ( -1 +0 _0 ^0) Huntington equation H40 is independent of H37
LAT110 ( -1 +0 _0 ^0) Huntington equation H42 is independent of H37
LAT111 ( -1 +0 _0 ^0) Huntington equation H40 is independent of H45
LAT112 ( -1 +0 _0 ^0) Huntington equation H42 is independent of H47
LAT113 ( -1 +0 _0 ^0) Huntington equation H40 is independent of H50
LAT114 ( -1 +0 _0 ^0) Huntington equation H56 is independent of H55
LAT115 ( -1 +0 _0 ^0) Huntington equation H59 is independent of H55
LAT116 ( -1 +0 _0 ^0) Huntington equation H60 is independent of H55
LAT117 ( -1 +0 _0 ^0) Huntington equation H69 is independent of H65
LAT118 ( -1 +0 _0 ^0) Huntington equation H69 is independent of H79
LAT119 ( -1 +0 _0 ^0) Huntington equation H3 is independent of H82
LAT120 ( -1 +0 _0 ^0) Huntington equation H58 is independent of H10_dual
LAT121 ( -1 +0 _0 ^0) Huntington equation H55 is independent of H18_dual
LAT122 ( -1 +0 _0 ^0) Huntington equation H55 is independent of H21_dual
LAT123 ( -1 +0 _0 ^0) Huntington equation H55 is independent of H22_dual
LAT124 ( -1 +0 _0 ^0) Huntington equation H69 is independent of H32_dual
LAT125 ( -1 +0 _0 ^0) Huntington equation H69 is independent of H34_dual
LAT126 ( -1 +0 _0 ^0) Huntington equation H69 is independent of H39_dual
LAT127 ( -1 +0 _0 ^0) Huntington equation H6 is independent of H55_dual
LAT128 ( -1 +0 _0 ^0) Huntington equation H3 is independent of H58_dual
LAT129 ( -1 +0 _0 ^0) Huntington equation H10 is independent of H58_dual
LAT130 ( -1 +0 _0 ^0) Huntington equation H39 is independent of H68_dual
LAT131 ( -1 +0 _0 ^0) Huntington equation H42 is independent of H68_dual
LAT132 ( -1 +0 _0 ^0) Huntington equation H42 is independent of H69_dual
LAT133 ( -1 +0 _0 ^0) Huntington equation H6_dual is independent of H55
LAT134 ( -1 +0 _0 ^0) Huntington equation H22_dual is independent of H61
LAT135 ( -1 +0 _0 ^0) Huntington equation H39_dual is independent of H68
LAT136 ( -1 +0 _0 ^0) Huntington equation H39_dual is independent of H69
LAT137 ( -1 +0 _0 ^0) Huntington equation H40_dual is independent of H69
LAT138 ( -1 +0 _0 ^0) Huntington equation H7 implies H6
LAT139 ( -1 +0 _0 ^0) Huntington equation H11 implies H10
LAT140 ( -1 +0 _0 ^0) Huntington equation H21 implies H2
LAT141 ( -1 +0 _0 ^0) Huntington equation H21 implies H6
LAT142 ( -1 +0 _0 ^0) Huntington equation H22 implies H6
LAT143 ( -1 +0 _0 ^0) Huntington equation H24 implies H15
LAT144 ( -1 +0 _0 ^0) Huntington equation H32 implies H2
LAT145 ( -1 +0 _0 ^0) Huntington equation H32 implies H6
LAT146 ( -1 +0 _0 ^0) Huntington equation H34 implies H28
LAT147 ( -1 +0 _0 ^0) Huntington equation H34 implies H45
LAT148 ( -1 +0 _0 ^0) Huntington equation H34 implies H7
LAT149 ( -1 +0 _0 ^0) Huntington equation H37 implies H43
LAT150 ( -1 +0 _0 ^0) Huntington equation H39 implies H40
LAT151 ( -1 +0 _0 ^0) Huntington equation H39 implies H42
LAT152 ( -1 +0 _0 ^0) Huntington equation H40 implies H6
LAT153 ( -1 +0 _0 ^0) Huntington equation H40 implies H7
LAT154 ( -1 +0 _0 ^0) Huntington equation H42 implies H6
LAT155 ( -1 +0 _0 ^0) Huntington equation H49 implies H2
LAT156 ( -1 +0 _0 ^0) Huntington equation H49 implies H6
LAT157 ( -1 +0 _0 ^0) Huntington equation H50 implies H2
LAT158 ( -1 +0 _0 ^0) Huntington equation H50 implies H49
LAT159 ( -1 +0 _0 ^0) Huntington equation H50 implies H7
LAT160 ( -1 +0 _0 ^0) Huntington equation H52 implies H51
LAT161 ( -1 +0 _0 ^0) Huntington equation H58 implies H59
LAT162 ( -1 +0 _0 ^0) Huntington equation H68 implies H73
LAT163 ( -1 +0 _0 ^0) Huntington equation H76 implies H32
LAT164 ( -1 +0 _0 ^0) Huntington equation H76 implies H6
LAT165 ( -1 +0 _0 ^0) Huntington equation H76 implies H77
LAT166 ( -1 +0 _0 ^0) Huntington equation H77 implies H78
LAT167 ( -1 +0 _0 ^0) Huntington equation H78 implies H77
LAT168 ( -1 +0 _0 ^0) Huntington equation H18_dual implies H58
LAT169 ( -1 +0 _0 ^0) Huntington equation H21_dual implies H58
LAT170 ( -1 +0 _0 ^0) Huntington equation H49_dual implies H58
LAT171 ( -1 +0 _0 ^0) Huntington equation H61_dual implies H6
LAT172 ( -1 +0 _0 ^0) Huntington equation H76_dual implies H32
LAT173 ( -1 +0 _0 ^0) Huntington equation H76_dual implies H40
LAT174 ( -1 +0 _0 ^0) Huntington equation H76_dual implies H6
LAT175 ( -1 +0 _0 ^0) Huntington equation H79_dual implies H32
LAT176 ( -1 +0 _0 ^0) Huntington equation H79_dual implies H42
LAT177 ( -1 +0 _0 ^0) Huntington equation H79_dual implies H6
LAT178 ( -1 +0 _0 ^0) Equation H1 is Huntington by distributivity
LAT179 ( -1 +0 _0 ^0) Equation H2 is Huntington by distributivity
LAT180 ( -1 +0 _0 ^0) Equation H3 is Huntington by distributivity
LAT181 ( -1 +0 _0 ^0) Equation H4 is Huntington by distributivity
LAT182 ( -1 +0 _0 ^0) Equation H6 is Huntington by distributivity
LAT183 ( -1 +0 _0 ^0) Equation H7 is Huntington by distributivity
LAT184 ( -1 +0 _0 ^0) Equation H8 is Huntington by distributivity
LAT185 ( -1 +0 _0 ^0) Equation H10 is Huntington by distributivity
LAT186 ( -1 +0 _0 ^0) Equation H11 is Huntington by distributivity
LAT187 ( -1 +0 _0 ^0) Equation H15 is Huntington by distributivity
LAT188 ( -1 +0 _0 ^0) Equation H16 is Huntington by distributivity
LAT189 ( -1 +0 _0 ^0) Equation H17 is Huntington by distributivity
LAT190 ( -1 +0 _0 ^0) Equation H18 is Huntington by distributivity
LAT191 ( -1 +0 _0 ^0) Equation H21 is Huntington by distributivity
LAT192 ( -1 +0 _0 ^0) Equation H22 is Huntington by distributivity
LAT193 ( -1 +0 _0 ^0) Equation H24 is Huntington by distributivity
LAT194 ( -1 +0 _0 ^0) Equation H32 is Huntington by distributivity
LAT195 ( -1 +0 _0 ^0) Equation H34 is Huntington by distributivity
LAT196 ( -1 +0 _0 ^0) Equation H39 is Huntington by distributivity
LAT197 ( -1 +0 _0 ^0) Equation H40 is Huntington by distributivity
LAT198 ( -1 +0 _0 ^0) Equation H42 is Huntington by distributivity
LAT199 ( -1 +0 _0 ^0) Equation H49 is Huntington by distributivity
LAT200 ( -1 +0 _0 ^0) Equation H50 is Huntington by distributivity
LAT201 ( -1 +0 _0 ^0) Equation H51 is Huntington by distributivity
LAT202 ( -1 +0 _0 ^0) Equation H55 is Huntington by distributivity
LAT203 ( -1 +0 _0 ^0) Equation H57 is Huntington by distributivity
LAT204 ( -1 +0 _0 ^0) Equation H58 is Huntington by distributivity
LAT205 ( -1 +0 _0 ^0) Equation H59 is Huntington by distributivity
LAT206 ( -1 +0 _0 ^0) Equation H60 is Huntington by distributivity
LAT207 ( -1 +0 _0 ^0) Equation H61 is Huntington by distributivity
LAT208 ( -1 +0 _0 ^0) Equation H63 is Huntington by distributivity
LAT209 ( -1 +0 _0 ^0) Equation H64 is Huntington by distributivity
LAT210 ( -1 +0 _0 ^0) Equation H68 is Huntington by distributivity
LAT211 ( -1 +0 _0 ^0) Equation H69 is Huntington by distributivity
LAT212 ( -1 +0 _0 ^0) Equation H70 is Huntington by distributivity
LAT213 ( -1 +0 _0 ^0) Equation H76 is Huntington by distributivity
LAT214 ( -1 +0 _0 ^0) Equation H79 is Huntington by distributivity
LAT215 ( -1 +0 _0 ^0) Equation H80 is Huntington by distributivity
LAT216 ( -1 +0 _0 ^0) Equation H81 is Huntington by distributivity
LAT217 ( -1 +0 _0 ^0) Equation H82 is Huntington by distributivity
LAT218 ( -1 +0 _0 ^0) Equation H1 is Huntington by implication
LAT219 ( -1 +0 _0 ^0) Equation H2 is Huntington by implication
LAT220 ( -1 +0 _0 ^0) Equation H3 is Huntington by implication
LAT221 ( -1 +0 _0 ^0) Equation H4 is Huntington by implication
LAT222 ( -1 +0 _0 ^0) Equation H6 is Huntington by implication
LAT223 ( -1 +0 _0 ^0) Equation H7 is Huntington by implication
LAT224 ( -1 +0 _0 ^0) Equation H8 is Huntington by implication
LAT225 ( -1 +0 _0 ^0) Equation H10 is Huntington by implication
LAT226 ( -1 +0 _0 ^0) Equation H11 is Huntington by implication
LAT227 ( -1 +0 _0 ^0) Equation H15 is Huntington by implication
LAT228 ( -1 +0 _0 ^0) Equation H16 is Huntington by implication
LAT229 ( -1 +0 _0 ^0) Equation H17 is Huntington by implication
LAT230 ( -1 +0 _0 ^0) Equation H18 is Huntington by implication
LAT231 ( -1 +0 _0 ^0) Equation H21 is Huntington by implication
LAT232 ( -1 +0 _0 ^0) Equation H22 is Huntington by implication
LAT233 ( -1 +0 _0 ^0) Equation H24 is Huntington by implication
LAT234 ( -1 +0 _0 ^0) Equation H32 is Huntington by implication
LAT235 ( -1 +0 _0 ^0) Equation H34 is Huntington by implication
LAT236 ( -1 +0 _0 ^0) Equation H39 is Huntington by implication
LAT237 ( -1 +0 _0 ^0) Equation H40 is Huntington by implication
LAT238 ( -1 +0 _0 ^0) Equation H42 is Huntington by implication
LAT239 ( -1 +0 _0 ^0) Equation H49 is Huntington by implication
LAT240 ( -1 +0 _0 ^0) Equation H50 is Huntington by implication
LAT241 ( -1 +0 _0 ^0) Equation H51 is Huntington by implication
LAT242 ( -1 +0 _0 ^0) Equation H55 is Huntington by implication
LAT243 ( -1 +0 _0 ^0) Equation H57 is Huntington by implication
LAT244 ( -1 +0 _0 ^0) Equation H58 is Huntington by implication
LAT245 ( -1 +0 _0 ^0) Equation H59 is Huntington by implication
LAT246 ( -1 +0 _0 ^0) Equation H60 is Huntington by implication
LAT247 ( -1 +0 _0 ^0) Equation H61 is Huntington by implication
LAT248 ( -1 +0 _0 ^0) Equation H63 is Huntington by implication
LAT249 ( -1 +0 _0 ^0) Equation H64 is Huntington by implication
LAT250 ( -1 +0 _0 ^0) Equation H68 is Huntington by implication
LAT251 ( -1 +0 _0 ^0) Equation H69 is Huntington by implication
LAT252 ( -1 +0 _0 ^0) Equation H70 is Huntington by implication
LAT253 ( -1 +0 _0 ^0) Equation H76 is Huntington by implication
LAT254 ( -1 +0 _0 ^0) Equation H79 is Huntington by implication
LAT255 ( -1 +0 _0 ^0) Equation H80 is Huntington by implication
LAT256 ( -1 +0 _0 ^0) Equation H81 is Huntington by implication
LAT257 ( -1 +0 _0 ^0) Equation H82 is Huntington by implication
LAT258 ( -0 +1 _0 ^0) A duality result on distributivity in lattices
LAT259 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT260 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT261 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT262 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT263 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT264 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT265 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT266 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT267 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT268 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT269 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT270 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT271 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT272 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT273 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT274 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT275 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT276 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT277 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT278 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT279 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT280 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT281 ( -2 +0 _0 ^0) Problem about Tarski's fixed point theorem
LAT282 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T10
LAT283 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T11
LAT284 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T12
LAT285 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T14
LAT286 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T15
LAT287 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T16
LAT288 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T19
LAT289 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T27
LAT290 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T30
LAT291 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T37
LAT292 ( -0 +4 _0 ^0) Representation Theorem for Boolean Algebras T44
LAT293 ( -0 +4 _0 ^0) Ideals T02
LAT294 ( -0 +4 _0 ^0) Ideals T04
LAT295 ( -0 +4 _0 ^0) Ideals T08
LAT296 ( -0 +4 _0 ^0) Ideals T12
LAT297 ( -0 +4 _0 ^0) Ideals T13
LAT298 ( -0 +4 _0 ^0) Ideals T16
LAT299 ( -0 +4 _0 ^0) Ideals T17
LAT300 ( -0 +4 _0 ^0) Ideals T24
LAT301 ( -0 +4 _0 ^0) Ideals T25
LAT302 ( -0 +4 _0 ^0) Ideals T26
LAT303 ( -0 +4 _0 ^0) Ideals T27
LAT304 ( -0 +4 _0 ^0) Ideals T28
LAT305 ( -0 +4 _0 ^0) Ideals T31
LAT306 ( -0 +4 _0 ^0) Ideals T32
LAT307 ( -0 +4 _0 ^0) Ideals T34
LAT308 ( -0 +4 _0 ^0) Ideals T35
LAT309 ( -0 +4 _0 ^0) Ideals T36
LAT310 ( -0 +4 _0 ^0) Ideals T39
LAT311 ( -0 +4 _0 ^0) Ideals T40
LAT312 ( -0 +4 _0 ^0) Ideals T41
LAT313 ( -0 +4 _0 ^0) Ideals T43
LAT314 ( -0 +4 _0 ^0) Ideals T48
LAT315 ( -0 +4 _0 ^0) Ideals T49
LAT316 ( -0 +4 _0 ^0) Ideals T50
LAT317 ( -0 +4 _0 ^0) Ideals T51
LAT318 ( -0 +4 _0 ^0) Ideals T52
LAT319 ( -0 +4 _0 ^0) Ideals T54
LAT320 ( -0 +4 _0 ^0) Ideals T56
LAT321 ( -0 +4 _0 ^0) Ideals T57
LAT322 ( -0 +4 _0 ^0) Ideals T58
LAT323 ( -0 +4 _0 ^0) Ideals T59
LAT324 ( -0 +4 _0 ^0) Ideals T60
LAT325 ( -0 +4 _0 ^0) Ideals T61
LAT326 ( -0 +4 _0 ^0) Ideals T62
LAT327 ( -0 +4 _0 ^0) Ideals T64
LAT328 ( -0 +4 _0 ^0) Ideals T65
LAT329 ( -0 +4 _0 ^0) Ideals T66
LAT330 ( -0 +4 _0 ^0) Ideals T67
LAT331 ( -0 +4 _0 ^0) Ideals T68
LAT332 ( -0 +4 _0 ^0) Ideals T72
LAT333 ( -0 +4 _0 ^0) Ideals T76
LAT334 ( -0 +4 _0 ^0) Ideals T77
LAT335 ( -0 +4 _0 ^0) Ideals T79
LAT336 ( -0 +4 _0 ^0) Ideals T85
LAT337 ( -0 +4 _0 ^0) Ideals T87
LAT338 ( -0 +4 _0 ^0) Dual Concept Lattices T04
LAT339 ( -0 +4 _0 ^0) Dual Concept Lattices T05
LAT340 ( -0 +4 _0 ^0) Dual Concept Lattices T06
LAT341 ( -0 +4 _0 ^0) Dual Concept Lattices T07
LAT342 ( -0 +4 _0 ^0) Dual Concept Lattices T08
LAT343 ( -0 +4 _0 ^0) Dual Concept Lattices T11
LAT344 ( -0 +4 _0 ^0) Dual Concept Lattices T16
LAT345 ( -0 +4 _0 ^0) Dual Concept Lattices T20
LAT346 ( -0 +4 _0 ^0) Dual Concept Lattices T22
LAT347 ( -0 +4 _0 ^0) Representation Theorem for Free Continuous Lattices T01
LAT348 ( -0 +4 _0 ^0) Representation Theorem for Free Continuous Lattices T06
LAT349 ( -0 +4 _0 ^0) Representation Theorem for Free Continuous Lattices T12
LAT350 ( -0 +4 _0 ^0) Representation Theorem for Free Continuous Lattices T13
LAT351 ( -0 +4 _0 ^0) Representation Theorem for Free Continuous Lattices T18
LAT352 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T02
LAT353 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T03
LAT354 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T04
LAT355 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T05
LAT356 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T07
LAT357 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T08
LAT358 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T09
LAT359 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T12
LAT360 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T17
LAT361 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T19
LAT362 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T20
LAT363 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T26
LAT364 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T29
LAT365 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T35
LAT366 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T37
LAT367 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T38
LAT368 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T41
LAT369 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T42
LAT370 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T43
LAT371 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T44
LAT372 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T45
LAT373 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T46
LAT374 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T49
LAT375 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T51
LAT376 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T57
LAT377 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T59
LAT378 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T63
LAT379 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T65
LAT380 ( -0 +4 _0 ^0) Duality Based on Galois Connection - Part I T71
LAT381 ( -0 +2 _0 ^0) Tarski-Knaster fixed point theorem 01, 00 expansion
LAT382 ( -0 +2 _0 ^0) Tarski-Knaster fixed point theorem 02, 00 expansion
LAT383 ( -0 +2 _0 ^0) Tarski-Knaster fixed point theorem 03+, 00 expansion
LAT384 ( -0 +2 _0 ^0) Tarski-Knaster fixed point theorem 03_01+, 00 expansion
LAT385 ( -0 +2 _0 ^0) Tarski-Knaster fixed point theorem 03_01_02, 00 expansion
LAT386 ( -0 +2 _0 ^0) Tarski-Knaster fixed point theorem 03_01_03, 00 expansion
LAT387 ( -0 +2 _0 ^0) Tarski-Knaster fixed point theorem 03_01_04, 00 expansion
LAT388 ( -0 +2 _0 ^0) Tarski-Knaster fixed point theorem 03_01_05, 00 expansion
LAT389 ( -1 +0 _0 ^0) Short axiom for lattice theory, part 1
LAT390 ( -1 +0 _0 ^0) Short axiom for lattice theory, part 2
LAT391 ( -1 +0 _0 ^0) Short axiom for lattice theory, part 3
LAT392 ( -1 +0 _0 ^0) Short axiom for lattice theory, part 4
LAT393 ( -2 +0 _0 ^0) Ortholattices in terms of Sheffer stroke + ops: associativity
LAT394 ( -2 +0 _0 ^0) Ortholattices in terms of Sheffer stroke + usual operations: unit
LAT395 ( -1 +0 _0 ^0) Lattice theory (equality) axioms
LAT396 ( -1 +0 _0 ^0) Lattice theory (equality) axioms
-------------------------------------------------------------------------------
Domain LCL = Logic Calculi
1376 problems (919 abstract), 687 CNF, 438 FOF, 100 TFF, 151 THF
-------------------------------------------------------------------------------
LCL001 ( -1 +0 _0 ^0) The Whitehead-Russell system => the Meredith axiom
LCL002 ( -1 +0 _0 ^0) AN-CAMerideth => AN-1
LCL003 ( -1 +0 _0 ^0) AN-CAMerideth => AN-2
LCL004 ( -1 +0 _0 ^0) AN-CAMerideth => AN-3
LCL005 ( -1 +0 _0 ^0) AN-CAMerideth => AN-4
LCL006 ( -1 +0 _0 ^0) EC-1 depends on the Wajsberg system
LCL007 ( -1 +0 _0 ^0) EC-2 depends on the Wajsberg system
LCL008 ( -1 +0 _0 ^0) EC-4 depends on YQL
LCL009 ( -1 +0 _0 ^0) EC-5 depends on YQL
LCL010 ( -1 +0 _0 ^0) YQL depends on YQF
LCL011 ( -1 +0 _0 ^0) YQF depends on YQJ
LCL012 ( -1 +0 _0 ^0) YQJ depends on UM
LCL013 ( -1 +0 _0 ^0) UM depends on XGF
LCL014 ( -1 +0 _0 ^0) XGF depends on WN
LCL015 ( -1 +0 _0 ^0) WN depends on YRM
LCL016 ( -1 +0 _0 ^0) YRM depends on YRO
LCL017 ( -1 +0 _0 ^0) YRO depends on PYO
LCL018 ( -1 +0 _0 ^0) PYO depends on PYM
LCL019 ( -1 +0 _0 ^0) PYM depends on XGK
LCL020 ( -1 +0 _0 ^0) XGK depends on XHK
LCL021 ( -1 +0 _0 ^0) XHK depends on XHN
LCL022 ( -1 +0 _0 ^0) EC-1 depends on YQL
LCL023 ( -1 +0 _0 ^0) EC-2 depends on YQL
LCL024 ( -1 +0 _0 ^0) PYO depends on XGK
LCL025 ( -1 +0 _0 ^0) C0-1 depends on the Church system
LCL026 ( -1 +0 _0 ^0) C0-3 depends on the Church system
LCL027 ( -1 +0 _0 ^0) C0-4 depends on the Church system
LCL028 ( -1 +0 _0 ^0) C0-CAMerideth depends on the Church system
LCL029 ( -1 +0 _0 ^0) C0-5 depends on the Tarski-Bernays system
LCL030 ( -1 +0 _0 ^0) C0-6 depends on the Tarski-Bernays system
LCL031 ( -1 +0 _0 ^0) C0-CAMerideth depends on the Tarski-Bernays system
LCL032 ( -1 +0 _0 ^0) C0-1 depends on the Merideth axiom
LCL033 ( -1 +0 _0 ^0) C0-2 depends on the Merideth axiom
LCL034 ( -1 +0 _0 ^0) C0-3 depends on the Merideth axiom
LCL035 ( -1 +0 _0 ^0) C0-4 depends on the Merideth axiom
LCL036 ( -1 +0 _0 ^0) C0-5 depends on the Merideth axiom
LCL037 ( -1 +0 _0 ^0) C0-6 depends on the Merideth axiom
LCL038 ( -1 +0 _0 ^0) C0-1 depends on a single axiom
LCL039 ( -1 +0 _0 ^0) A theorem from Morgan
LCL040 ( -1 +0 _0 ^0) CN-21 depends on the rest of Frege's system
LCL041 ( -1 +0 _0 ^0) CN-30 depends on the rest of Hilbert's system
LCL042 ( -1 +0 _0 ^0) CN-35 depends on Hilbert's system
LCL043 ( -1 +0 _0 ^0) CN-39 depends on Hilbert's system
LCL044 ( -1 +0 _0 ^0) CN-40 depends on Hilbert's system
LCL045 ( -1 +0 _0 ^0) CN-46 depends on Hilbert's system
LCL046 ( -1 +0 _0 ^0) CN-16 depends on the Lukasiewicz system
LCL047 ( -1 +0 _0 ^0) CN-18 depends on the Lukasiewicz system
LCL048 ( -1 +0 _0 ^0) CN-19 depends on the Lukasiewicz system
LCL049 ( -1 +0 _0 ^0) CN-20 depends on the Lukasiewicz system
LCL050 ( -1 +0 _0 ^0) CN-21 depends on the Lukasiewicz system
LCL051 ( -1 +0 _0 ^0) CN-22 depends on the Lukasiewicz system
LCL052 ( -1 +0 _0 ^0) CN-24 depends on the Lukasiewicz system
LCL053 ( -1 +0 _0 ^0) CN-30 depends on the Lukasiewicz system
LCL054 ( -1 +0 _0 ^0) CN-35 depends on the Lukasiewicz system
LCL055 ( -1 +0 _0 ^0) CN-37 depends on the Lukasiewicz system
LCL056 ( -1 +0 _0 ^0) CN-39 depends on the Lukasiewicz system
LCL057 ( -1 +0 _0 ^0) CN-40 depends on the Lukasiewicz system
LCL058 ( -1 +0 _0 ^0) CN-46 depends on the Lukasiewicz system
LCL059 ( -1 +0 _0 ^0) CN-49 depends on the Lukasiewicz system
LCL060 ( -1 +0 _0 ^0) CN-54 depends on the Lukasiewicz system
LCL061 ( -1 +0 _0 ^0) CN-59 depends on the Lukasiewicz system
LCL062 ( -1 +0 _0 ^0) CN-60 depends on the Lukasiewicz system
LCL063 ( -1 +0 _0 ^0) CN-CAMerideth depends on the Lukasiewicz system
LCL064 ( -2 +0 _0 ^0) CN-1 depends on the Church system
LCL065 ( -1 +0 _0 ^0) CN-2 depends on the Church system
LCL066 ( -1 +0 _0 ^0) CN-3 depends on the Church system
LCL067 ( -1 +0 _0 ^0) CN-1 depends on the second Lukasiewicz system
LCL068 ( -1 +0 _0 ^0) CN-2 depends on the second Lukasiewicz system
LCL069 ( -1 +0 _0 ^0) CN-3 depends on the second Lukasiewicz system
LCL070 ( -1 +0 _0 ^0) CN-1 depends on the Wos system
LCL071 ( -1 +0 _0 ^0) CN-2 depends on the Wos system
LCL072 ( -1 +0 _0 ^0) CN-3 depends on the Wos system
LCL073 ( -1 +0 _0 ^0) CN-1 depends on the single Merideth axiom
LCL074 ( -1 +0 _0 ^0) CN-2 depends on the single Merideth axiom
LCL075 ( -1 +0 _0 ^0) CN-3 depends on the single Merideth axiom
LCL076 ( -3 +0 _0 ^0) CN-40 depends on the Church system
LCL077 ( -2 +0 _0 ^0) CN-39 depends on the Church system
LCL078 ( -1 +0 _0 ^0) CN-40 depends on CN-18 CN-35 CN-46
LCL079 ( -1 +0 _0 ^0) Transitivity can be derived from Church's system
LCL080 ( -2 +0 _0 ^0) The 1st Lukasiewicz axiom depends on Tarski-Bernays system
LCL081 ( -1 +0 _0 ^0) IC-1 depends on the 1st Lukasiewicz axiom
LCL082 ( -1 +0 _0 ^0) IC-2 depends on the 1st Lukasiewicz axiom
LCL083 ( -2 +0 _0 ^0) IC-3 depends on the 1st Lukasiewicz axiom
LCL084 ( -2 +0 _0 ^0) IC-4 depends on the 1st Lukasiewicz axiom
LCL085 ( -1 +0 _0 ^0) IC-5 depends on the 1st Lukasiewicz axiom
LCL086 ( -1 +0 _0 ^0) IC-1 depends on the 4th Lukasiewicz axiom
LCL087 ( -1 +0 _0 ^0) IC-2 depends on the 4th Lukasiewicz axiom
LCL088 ( -1 +0 _0 ^0) IC-3 depends on the 4th Lukasiewicz axiom
LCL089 ( -1 +0 _0 ^0) IC-4 depends on the 4th Lukasiewicz axiom
LCL090 ( -1 +0 _0 ^0) IC-1 depends on the 5th Lukasiewicz axiom
LCL091 ( -1 +0 _0 ^0) IC-2 depends on the 5th Lukasiewicz axiom
LCL092 ( -1 +0 _0 ^0) IC-3 depends on the 5th Lukasiewicz axiom
LCL093 ( -1 +0 _0 ^0) IC-4 depends on the 5th Lukasiewicz axiom
LCL094 ( -1 +0 _0 ^0) IC-5 depends on the 4th Lukasiewicz axiom
LCL095 ( -1 +0 _0 ^0) IC-5 depends on the 5th Lukasiewicz axiom
LCL096 ( -1 +0 _0 ^0) LG-1 depends on LG-2, LG-3, LG-4
LCL097 ( -1 +0 _0 ^0) LG-4 depends on LG-2, LG-3
LCL098 ( -1 +0 _0 ^0) LG-4 depends on LG-3
LCL099 ( -1 +0 _0 ^0) LG-5 depends on the 1st McCune system
LCL100 ( -1 +0 _0 ^0) LG-3 depends on the 2nd McCune system
LCL101 ( -1 +0 _0 ^0) P-1 depends on the 3rd McCune system
LCL102 ( -1 +0 _0 ^0) P-1 depends on the 4th McCune system
LCL103 ( -1 +0 _0 ^0) LG-2 depends on the 5th McCune system
LCL104 ( -1 +0 _0 ^0) P-1 depends on the 6th McCune system
LCL105 ( -1 +0 _0 ^0) LG-2 depends on the 7th McCune system
LCL106 ( -1 +0 _0 ^0) Q-2 depends on Q-1, Q-4
LCL107 ( -1 +0 _0 ^0) P-1 depends on the single McCune axiom
LCL108 ( -1 +0 _0 ^0) Q-3 depends on the single McCune axiom
LCL109 ( -6 +0 _0 ^0) MV-4 depends on the Merideth system
LCL110 ( -2 +0 _0 ^0) MV-24 depnds on the Merideth system
LCL111 ( -2 +0 _0 ^0) MV-25 depends on the Merideth system
LCL112 ( -2 +0 _0 ^0) MV-29 depnds on the Merideth system
LCL113 ( -2 +0 _0 ^0) MV-33 depnds on the Merideth system
LCL114 ( -2 +0 _0 ^0) MV-36 depnds on the Merideth system
LCL115 ( -2 +0 _0 ^0) MV-39 depnds on the Merideth system
LCL116 ( -2 +0 _0 ^0) MV-50 depnds on the Merideth system
LCL117 ( -1 +0 _0 ^0) QYF depends on YQM
LCL118 ( -1 +0 _0 ^0) YQM depends on WO
LCL119 ( -1 +0 _0 ^0) WO depends on XGJ
LCL120 ( -1 +0 _0 ^0) XGJ depends on QYF
LCL121 ( -1 +0 _0 ^0) LG-1 depends on LG-2
LCL122 ( -1 +0 _0 ^0) LG-3 depends on LG-2
LCL123 ( -1 +0 _0 ^0) LG-4 depends on LG-2
LCL124 ( -1 +0 _0 ^0) LG-5 depends on LG-2
LCL125 ( -1 +0 _0 ^0) LG-2 depends on the 1st McCune system
LCL126 ( -1 +0 _0 ^0) Q-2 depends on the 2nd McCune system
LCL127 ( -1 +0 _0 ^0) LG-2 depends on S-2
LCL128 ( -1 +0 _0 ^0) LG-2 depends on S-3
LCL129 ( -1 +0 _0 ^0) LG-2 depends on S-4
LCL130 ( -1 +0 _0 ^0) LG-2 depends on P-4
LCL131 ( -1 +0 _0 ^0) LG-2 depends on S-6
LCL132 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL133 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL134 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL135 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL136 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL137 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL138 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL139 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL140 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL141 ( -1 +0 _0 ^0) A lemma in Wajsberg algebras
LCL142 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL143 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL144 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL145 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL146 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL147 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL148 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL149 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL150 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL151 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL152 ( -1 +0 _0 ^0) A theorem in the lattice structure of Wajsberg algebras
LCL153 ( -1 +0 _0 ^0) The 1st alternative Wajsberg algebra axiom
LCL154 ( -1 +0 _0 ^0) The 2nd alternative Wajsberg algebra axiom
LCL155 ( -1 +0 _0 ^0) The 3rd alternative Wajsberg algebra axiom
LCL156 ( -1 +0 _0 ^0) The 4th alternative Wajsberg algebra axiom
LCL157 ( -1 +0 _0 ^0) The 5th alternative Wajsberg algebra axiom
LCL158 ( -1 +0 _0 ^0) The 6th alternative Wajsberg algebra axiom
LCL159 ( -1 +0 _0 ^0) The 7th alternative Wajsberg algebra axiom
LCL160 ( -1 +0 _0 ^0) The 8th alternative Wajsberg algebra axiom
LCL161 ( -1 +0 _0 ^0) The 1st Wajsberg algebra axiom, from the alternative axioms
LCL162 ( -1 +0 _0 ^0) The 2nd Wajsberg algebra axiom, from the alternative axioms
LCL163 ( -1 +0 _0 ^0) The 3rd Wajsberg algebra axiom, from the alternative axioms
LCL164 ( -1 +0 _0 ^0) The 4th Wajsberg algebra axiom, from the alternative axioms
LCL165 ( -1 +0 _0 ^0) A theorem in Wajsberg algebras
LCL166 ( -1 +0 _0 ^0) UM depends on XHN
LCL167 ( -1 +0 _0 ^0) YRO depends on XHK
LCL168 ( -1 +0 _0 ^0) XEH is not a single axiom for the R-calculus
LCL169 ( -2 +0 _0 ^0) Principia Mathematica 2.01
LCL170 ( -2 +0 _0 ^0) Principia Mathematica 2.02
LCL171 ( -2 +0 _0 ^0) Principia Mathematica 2.03
LCL172 ( -2 +0 _0 ^0) Principia Mathematica 2.04
LCL173 ( -2 +0 _0 ^0) Principia Mathematica 2.05
LCL174 ( -2 +0 _0 ^0) Principia Mathematica 2.06
LCL175 ( -2 +0 _0 ^0) Principia Mathematica 2.07
LCL176 ( -2 +0 _0 ^0) Principia Mathematica 2.1 and 2.08
LCL177 ( -1 +0 _0 ^0) Principia Mathematica 2.11
LCL178 ( -2 +0 _0 ^0) Principia Mathematica 2.12
LCL179 ( -1 +0 _0 ^0) Principia Mathematica 2.13
LCL180 ( -2 +0 _0 ^0) Principia Mathematica 2.14
LCL181 ( -3 +1 _0 ^1) Principia Mathematica 2.15
LCL182 ( -2 +0 _0 ^0) Principia Mathematica 2.16
LCL183 ( -2 +0 _0 ^0) Principia Mathematica 2.17
LCL184 ( -1 +0 _0 ^0) Principia Mathematica 2.18
LCL185 ( -2 +0 _0 ^0) Principia Mathematica 2.2
LCL186 ( -2 +0 _0 ^0) Principia Mathematica 2.21
LCL187 ( -2 +0 _0 ^0) Principia Mathematica 2.24
LCL188 ( -2 +0 _0 ^0) Principia Mathematica 2.25
LCL189 ( -2 +0 _0 ^0) Principia Mathematica 2.26 and 2.27
LCL190 ( -2 +0 _0 ^0) Principia Mathematica 2.3
LCL191 ( -2 +0 _0 ^0) Principia Mathematica 2.31
LCL192 ( -2 +0 _0 ^0) Principia Mathematica 2.32 and 2.33
LCL193 ( -2 +0 _0 ^0) Principia Mathematica 2.36
LCL194 ( -2 +0 _0 ^0) Principia Mathematica 2.37
LCL195 ( -2 +0 _0 ^0) Principia Mathematica 2.38
LCL196 ( -2 +0 _0 ^0) Principia Mathematica 2.4
LCL197 ( -2 +0 _0 ^0) Principia Mathematica 2.41
LCL198 ( -2 +0 _0 ^0) Principia Mathematica 2.42 and 2.43
LCL199 ( -2 +0 _0 ^0) Principia Mathematica 2.45
LCL200 ( -1 +0 _0 ^0) Principia Mathematica 2.46
LCL201 ( -2 +0 _0 ^0) Principia Mathematica 2.47
LCL202 ( -2 +0 _0 ^0) Principia Mathematica 2.48
LCL203 ( -2 +0 _0 ^0) Principia Mathematica 2.49
LCL204 ( -1 +0 _0 ^0) Principia Mathematica 2.5
LCL205 ( -2 +0 _0 ^0) Principia Mathematica 2.51
LCL206 ( -2 +0 _0 ^0) Principia Mathematica 2.52
LCL207 ( -2 +0 _0 ^0) Principia Mathematica 2.521
LCL208 ( -2 +0 _0 ^0) Principia Mathematica 2.53
LCL209 ( -2 +0 _0 ^0) Principia Mathematica 2.54
LCL210 ( -2 +0 _0 ^0) Principia Mathematica 2.55
LCL211 ( -2 +0 _0 ^0) Principia Mathematica 2.56
LCL212 ( -2 +0 _0 ^0) Principia Mathematica 2.6
LCL213 ( -2 +0 _0 ^0) Principia Mathematica 2.61
LCL214 ( -2 +0 _0 ^0) Principia Mathematica 2.61
LCL215 ( -2 +0 _0 ^0) Principia Mathematica 2.62 and 2.63
LCL216 ( -2 +0 _0 ^0) Principia Mathematica 2.64
LCL217 ( -2 +0 _0 ^0) Principia Mathematica 2.65
LCL218 ( -2 +0 _0 ^0) Principia Mathematica 2.67
LCL219 ( -2 +0 _0 ^0) Principia Mathematica 2.68
LCL220 ( -2 +0 _0 ^0) Principia Mathematica 2.69
LCL221 ( -2 +0 _0 ^0) Principia Mathematica 2.73
LCL222 ( -2 +0 _0 ^0) Principia Mathematica 2.74
LCL223 ( -2 +0 _0 ^0) Principia Mathematica 2.75
LCL224 ( -2 +0 _0 ^0) Principia Mathematica 2.76
LCL225 ( -2 +0 _0 ^0) Principia Mathematica 2.77
LCL226 ( -2 +0 _0 ^0) Principia Mathematica 2.8
LCL227 ( -2 +0 _0 ^0) Principia Mathematica 2.81
LCL228 ( -2 +0 _0 ^0) Principia Mathematica 2.82
LCL229 ( -2 +0 _0 ^0) Principia Mathematica 2.83
LCL230 ( -3 +1 _0 ^1) Principia Mathematica 2.85
LCL231 ( -2 +0 _0 ^0) Principia Mathematica 2.86
LCL234 ( -2 +0 _0 ^0) Principia Mathematica 3.2 and 3.12
LCL235 ( -2 +0 _0 ^0) Principia Mathematica 3.13
LCL236 ( -2 +0 _0 ^0) Principia Mathematica 3.14
LCL237 ( -2 +0 _0 ^0) Principia Mathematica 3.21
LCL238 ( -2 +0 _0 ^0) Principia Mathematica 3.22
LCL239 ( -2 +0 _0 ^0) Principia Mathematica 3.24
LCL240 ( -2 +0 _0 ^0) Principia Mathematica 3.26
LCL241 ( -2 +0 _0 ^0) Principia Mathematica 3.27
LCL242 ( -2 +0 _0 ^0) Principia Mathematica 3.3
LCL243 ( -2 +0 _0 ^0) Principia Mathematica 3.31
LCL244 ( -1 +0 _0 ^0) Principia Mathematica 3.33
LCL245 ( -2 +0 _0 ^0) Principia Mathematica 3.34
LCL246 ( -2 +0 _0 ^0) Principia Mathematica 3.35
LCL247 ( -2 +0 _0 ^0) Principia Mathematica 3.37
LCL248 ( -2 +0 _0 ^0) Principia Mathematica 3.4
LCL249 ( -2 +0 _0 ^0) Principia Mathematica 3.41
LCL250 ( -2 +0 _0 ^0) Principia Mathematica 3.42
LCL251 ( -2 +0 _0 ^0) Principia Mathematica 3.43
LCL252 ( -2 +0 _0 ^0) Principia Mathematica 3.44
LCL253 ( -2 +0 _0 ^0) Principia Mathematica 3.45
LCL254 ( -2 +0 _0 ^0) Principia Mathematica 3.47
LCL255 ( -2 +0 _0 ^0) Principia Mathematica 3.48
LCL256 ( -1 +0 _0 ^0) A formula that can be derived from the Lukasiewicz system
LCL257 ( -1 +0 _0 ^0) XHN depends on YQL
LCL258 ( -1 +0 _0 ^0) Principia Mathematica 2.27
LCL259 ( -1 +0 _0 ^0) Principia Mathematica 2.43
LCL260 ( -1 +0 _0 ^0) Principia Mathematica 2.63
LCL261 ( -1 +0 _0 ^0) Principia Mathematica 3.12
LCL262 ( -1 +0 _0 ^0) Principia Mathematica 4.10
LCL263 ( -1 +0 _0 ^0) Principia Mathematica 4.11
LCL264 ( -1 +0 _0 ^0) Principia Mathematica 4.12
LCL265 ( -1 +0 _0 ^0) Principia Mathematica 4.13
LCL266 ( -1 +0 _0 ^0) Principia Mathematica 4.14
LCL267 ( -1 +0 _0 ^0) Principia Mathematica 4.15
LCL268 ( -1 +0 _0 ^0) Principia Mathematica 4.2
LCL269 ( -1 +0 _0 ^0) Principia Mathematica 4.21
LCL270 ( -1 +0 _0 ^0) Principia Mathematica 4.22
LCL271 ( -1 +0 _0 ^0) Principia Mathematica 4.24
LCL272 ( -1 +0 _0 ^0) Principia Mathematica 4.25
LCL273 ( -1 +0 _0 ^0) Principia Mathematica 4.3
LCL274 ( -1 +0 _0 ^0) Principia Mathematica 4.31
LCL275 ( -1 +0 _0 ^0) Principia Mathematica 4.32
LCL276 ( -1 +0 _0 ^0) Principia Mathematica 4.33
LCL277 ( -1 +0 _0 ^0) Principia Mathematica 4.36
LCL278 ( -1 +0 _0 ^0) Principia Mathematica 4.37
LCL279 ( -1 +0 _0 ^0) Principia Mathematica 4.38
LCL280 ( -1 +0 _0 ^0) Principia Mathematica 4.39
LCL281 ( -1 +0 _0 ^0) Principia Mathematica 4.4
LCL282 ( -1 +0 _0 ^0) Principia Mathematica 4.41
LCL283 ( -1 +0 _0 ^0) Principia Mathematica 4.42
LCL284 ( -1 +0 _0 ^0) Principia Mathematica 4.43
LCL285 ( -1 +0 _0 ^0) Principia Mathematica 4.44
LCL286 ( -1 +0 _0 ^0) Principia Mathematica 4.45
LCL287 ( -1 +0 _0 ^0) Principia Mathematica 4.5
LCL288 ( -1 +0 _0 ^0) Principia Mathematica 4.52
LCL289 ( -1 +0 _0 ^0) Principia Mathematica 4.53
LCL290 ( -1 +0 _0 ^0) Principia Mathematica 4.54
LCL291 ( -1 +0 _0 ^0) Principia Mathematica 4.55
LCL292 ( -1 +0 _0 ^0) Principia Mathematica 4.56
LCL293 ( -1 +0 _0 ^0) Principia Mathematica 4.57
LCL294 ( -1 +0 _0 ^0) Principia Mathematica 4.6
LCL295 ( -1 +0 _0 ^0) Principia Mathematica 4.61
LCL296 ( -1 +0 _0 ^0) Principia Mathematica 4.62
LCL297 ( -1 +0 _0 ^0) Principia Mathematica 4.63
LCL298 ( -1 +0 _0 ^0) Principia Mathematica 4.51
LCL299 ( -1 +0 _0 ^0) Principia Mathematica 4.65
LCL300 ( -1 +0 _0 ^0) Principia Mathematica 4.66
LCL301 ( -1 +0 _0 ^0) Principia Mathematica 4.67
LCL302 ( -1 +0 _0 ^0) Principia Mathematica 4.7
LCL303 ( -1 +0 _0 ^0) Principia Mathematica 4.71
LCL304 ( -1 +0 _0 ^0) Principia Mathematica 4.72
LCL305 ( -1 +0 _0 ^0) Principia Mathematica 4.73
LCL306 ( -1 +0 _0 ^0) Principia Mathematica 4.74
LCL307 ( -1 +0 _0 ^0) Principia Mathematica 4.76
LCL308 ( -1 +0 _0 ^0) Principia Mathematica 4.77
LCL309 ( -1 +0 _0 ^0) Principia Mathematica 4.78
LCL310 ( -1 +0 _0 ^0) Principia Mathematica 4.79
LCL311 ( -1 +0 _0 ^0) Principia Mathematica 4.8
LCL312 ( -1 +0 _0 ^0) Principia Mathematica 4.81
LCL313 ( -1 +0 _0 ^0) Principia Mathematica 4.82
LCL314 ( -1 +0 _0 ^0) Principia Mathematica 4.83
LCL315 ( -1 +0 _0 ^0) Principia Mathematica 4.84
LCL316 ( -1 +0 _0 ^0) Principia Mathematica 4.85
LCL317 ( -1 +0 _0 ^0) Principia Mathematica 4.86
LCL318 ( -1 +0 _0 ^0) Principia Mathematica 4.87
LCL319 ( -1 +0 _0 ^0) Principia Mathematica 5.1
LCL320 ( -1 +0 _0 ^0) Principia Mathematica 5.11
LCL321 ( -1 +0 _0 ^0) Principia Mathematica 5.12
LCL322 ( -1 +0 _0 ^0) Principia Mathematica 5.13
LCL323 ( -1 +0 _0 ^0) Principia Mathematica 5.14
LCL324 ( -1 +0 _0 ^0) Principia Mathematica 5.16
LCL325 ( -1 +0 _0 ^0) Principia Mathematica 5.17
LCL326 ( -1 +0 _0 ^0) Principia Mathematica 5.19
LCL327 ( -1 +0 _0 ^0) Principia Mathematica 5.21
LCL328 ( -1 +0 _0 ^0) Principia Mathematica 5.23
LCL329 ( -1 +0 _0 ^0) Principia Mathematica 5.24
LCL330 ( -1 +0 _0 ^0) Principia Mathematica 5.25
LCL331 ( -1 +0 _0 ^0) Principia Mathematica 5.3
LCL332 ( -1 +0 _0 ^0) Principia Mathematica 5.31
LCL333 ( -1 +0 _0 ^0) Principia Mathematica 5.32
LCL334 ( -1 +0 _0 ^0) Principia Mathematica 5.33
LCL335 ( -1 +0 _0 ^0) Principia Mathematica 5.35
LCL336 ( -1 +0 _0 ^0) Principia Mathematica 5.36
LCL337 ( -1 +0 _0 ^0) Principia Mathematica 5.4
LCL338 ( -1 +0 _0 ^0) Principia Mathematica 5.41
LCL339 ( -1 +0 _0 ^0) Principia Mathematica 5.42
LCL340 ( -1 +0 _0 ^0) Principia Mathematica 5.44
LCL341 ( -1 +0 _0 ^0) Principia Mathematica 5.5
LCL342 ( -1 +0 _0 ^0) Principia Mathematica 5.501
LCL343 ( -1 +0 _0 ^0) Principia Mathematica 5.53
LCL344 ( -1 +0 _0 ^0) Principia Mathematica 5.54
LCL345 ( -1 +0 _0 ^0) Principia Mathematica 5.55
LCL346 ( -1 +0 _0 ^0) Principia Mathematica 5.6
LCL347 ( -1 +0 _0 ^0) Principia Mathematica 5.61
LCL348 ( -1 +0 _0 ^0) Principia Mathematica 5.62
LCL349 ( -1 +0 _0 ^0) Principia Mathematica 5.63
LCL350 ( -1 +0 _0 ^0) Principia Mathematica 5.7
LCL351 ( -1 +0 _0 ^0) Principia Mathematica 5.71
LCL352 ( -1 +0 _0 ^0) Principia Mathematica 5.74
LCL353 ( -1 +0 _0 ^0) Principia Mathematica 5.75
LCL354 ( -0 +1 _0 ^0) Independence of an Axiom for Temporal Intervals
LCL355 ( -1 +0 _0 ^0) CN-04 depends on the Lukasiewicz system
LCL356 ( -1 +0 _0 ^0) CN-05 depends on the Lukasiewicz system
LCL357 ( -1 +0 _0 ^0) CN-06 depends on the Lukasiewicz system
LCL358 ( -1 +0 _0 ^0) CN-07 depends on the Lukasiewicz system
LCL359 ( -1 +0 _0 ^0) CN-08 depends on the Lukasiewicz system
LCL360 ( -1 +0 _0 ^0) CN-09 depends on the Lukasiewicz system
LCL361 ( -1 +0 _0 ^0) CN-10 depends on the Lukasiewicz system
LCL362 ( -1 +0 _0 ^0) CN-11 depends on the Lukasiewicz system
LCL363 ( -1 +0 _0 ^0) CN-12 depends on the Lukasiewicz system
LCL364 ( -1 +0 _0 ^0) CN-13 depends on the Lukasiewicz system
LCL365 ( -1 +0 _0 ^0) CN-14 depends on the Lukasiewicz system
LCL366 ( -1 +0 _0 ^0) CN-15 depends on the Lukasiewicz system
LCL367 ( -1 +0 _0 ^0) CN-17 depends on the Lukasiewicz system
LCL368 ( -1 +0 _0 ^0) CN-23 depends on the Lukasiewicz system
LCL369 ( -1 +0 _0 ^0) CN-25 depends on the Lukasiewicz system
LCL370 ( -1 +0 _0 ^0) CN-26 depends on the Lukasiewicz system
LCL371 ( -1 +0 _0 ^0) CN-27 depends on the Lukasiewicz system
LCL372 ( -1 +0 _0 ^0) CN-28 depends on the Lukasiewicz system
LCL373 ( -1 +0 _0 ^0) CN-29 depends on the Lukasiewicz system
LCL374 ( -1 +0 _0 ^0) CN-31 depends on the Lukasiewicz system
LCL375 ( -1 +0 _0 ^0) CN-32 depends on the Lukasiewicz system
LCL376 ( -1 +0 _0 ^0) CN-33 depends on the Lukasiewicz system
LCL377 ( -1 +0 _0 ^0) CN-34 depends on the Lukasiewicz system
LCL378 ( -1 +0 _0 ^0) CN-36 depends on the Lukasiewicz system
LCL379 ( -1 +0 _0 ^0) CN-38 depends on the Lukasiewicz system
LCL380 ( -1 +0 _0 ^0) CN-41 depends on the Lukasiewicz system
LCL381 ( -1 +0 _0 ^0) CN-42 depends on the Lukasiewicz system
LCL382 ( -1 +0 _0 ^0) CN-43 depends on the Lukasiewicz system
LCL383 ( -1 +0 _0 ^0) CN-44 depends on the Lukasiewicz system
LCL384 ( -1 +0 _0 ^0) CN-45 depends on the Lukasiewicz system
LCL385 ( -1 +0 _0 ^0) CN-47 depends on the Lukasiewicz system
LCL386 ( -1 +0 _0 ^0) CN-48 depends on the Lukasiewicz system
LCL387 ( -1 +0 _0 ^0) CN-50 depends on the Lukasiewicz system
LCL388 ( -1 +0 _0 ^0) CN-51 depends on the Lukasiewicz system
LCL389 ( -1 +0 _0 ^0) CN-52 depends on the Lukasiewicz system
LCL390 ( -1 +0 _0 ^0) CN-53 depends on the Lukasiewicz system
LCL391 ( -1 +0 _0 ^0) CN-55 depends on the Lukasiewicz system
LCL392 ( -1 +0 _0 ^0) CN-56 depends on the Lukasiewicz system
LCL393 ( -1 +0 _0 ^0) CN-57 depends on the Lukasiewicz system
LCL394 ( -1 +0 _0 ^0) CN-58 depends on the Lukasiewicz system
LCL395 ( -1 +0 _0 ^0) CN-61 depends on the Lukasiewicz system
LCL396 ( -1 +0 _0 ^0) CN-62 depends on the Lukasiewicz system
LCL397 ( -1 +0 _0 ^0) CN-63 depends on the Lukasiewicz system
LCL398 ( -1 +0 _0 ^0) CN-64 depends on the Lukasiewicz system
LCL399 ( -1 +0 _0 ^0) CN-65 depends on the Lukasiewicz system
LCL400 ( -1 +0 _0 ^0) CN-66 depends on the Lukasiewicz system
LCL401 ( -1 +0 _0 ^0) CN-67 depends on the Lukasiewicz system
LCL402 ( -1 +0 _0 ^0) CN-68 depends on the Lukasiewicz system
LCL403 ( -1 +0 _0 ^0) CN-69 depends on the Lukasiewicz system
LCL404 ( -1 +0 _0 ^0) CN-70 depends on the Lukasiewicz system
LCL405 ( -1 +0 _0 ^0) CN-71 depends on the Lukasiewicz system
LCL406 ( -1 +0 _0 ^0) Generate LTL structures of size 4
LCL407 ( -2 +0 _0 ^0) Wajsberg algebra axioms
LCL408 ( -1 +0 _0 ^0) Wajsberg algebra lattice structure definitions
LCL409 ( -1 +0 _0 ^0) Wajsberg algebra AND and OR definitions
LCL410 ( -1 +0 _0 ^0) Alternative Wajsberg algebra definitions
LCL411 ( -2 +0 _0 ^0) Propositional logic deduction axioms
LCL412 ( -1 +0 _0 ^0) Propositional logic deduction axioms for AND
LCL413 ( -1 +0 _0 ^0) Propositional logic deduction axioms for EQUIVALENT
LCL414 ( -1 +1 _0 ^1) Peter Andrews Problem THM147
LCL415 ( -1 +0 _0 ^0) Non-axiom for intuitionistic implication
LCL416 ( -1 +0 _0 ^0) Prove reflexivity from formula XCB by condensed detachment
LCL417 ( -2 +0 _0 ^0) XCB is a single axiom for the equivalential calculus
LCL418 ( -1 +0 _0 ^0) Is formula YQE a single axiom for the right group calculus?
LCL419 ( -1 +0 _0 ^0) Prove AK1 from MV1--MV4
LCL420 ( -1 +0 _0 ^0) Prove AK2 from MV1--MV4
LCL421 ( -1 +0 _0 ^0) Prove KA1 from MV1--MV4
LCL422 ( -1 +0 _0 ^0) Prove KA2 from MV1--MV4
LCL423 ( -1 +0 _0 ^0) Luka-23 is a single axiom
LCL424 ( -1 +0 _0 ^0) Mer-21 is a single axiom for two-valued logic
LCL425 ( -1 +0 _0 ^0) BCI+mingle implies Karpenko by condensed detachment
LCL426 ( -1 +0 _0 ^0) Prove the mingle formula by condensed detachment
LCL427 ( -1 +0 _0 ^0) ORG-D23 is a single axiom for propositional calculus
LCL428 ( -1 +0 _0 ^0) Prove the Harris/Rezus axiom from MV1-MV3 and MV5
LCL429 ( -2 +0 _0 ^0) Problem about propositional logic
LCL430 ( -2 +0 _0 ^0) Problem about propositional logic
LCL431 ( -2 +0 _0 ^0) Problem about propositional logic
LCL432 ( -2 +0 _0 ^0) Problem about propositional logic
LCL433 ( -2 +0 _0 ^0) Problem about propositional logic
LCL434 ( -2 +0 _0 ^0) Problem about propositional logic
LCL435 ( -2 +0 _0 ^0) Problem about propositional logic
LCL436 ( -2 +0 _0 ^0) Problem about propositional logic
LCL437 ( -2 +0 _0 ^0) Problem about propositional logic
LCL438 ( -2 +0 _0 ^0) Problem about propositional logic
LCL439 ( -2 +0 _0 ^0) Problem about propositional logic
LCL440 ( -2 +0 _0 ^0) Problem about propositional logic
LCL441 ( -2 +0 _0 ^0) Problem about propositional logic
LCL442 ( -2 +0 _0 ^0) Problem about propositional logic
LCL443 ( -2 +0 _0 ^0) Problem about propositional logic
LCL444 ( -2 +0 _0 ^0) Problem about propositional logic
LCL445 ( -2 +0 _0 ^0) Problem about propositional logic
LCL446 ( -2 +0 _0 ^0) Problem about propositional logic
LCL447 ( -2 +0 _0 ^0) Problem about propositional logic
LCL448 ( -0 +1 _0 ^0) Redundant axiom in Principia axiomatization
LCL449 ( -0 +1 _0 ^1) Congruence of equiv, to admit substitution of equivalents
LCL450 ( -0 +2 _0 ^1) Congruence of equiv lemmas, to admit substitution of equivalents
LCL451 ( -0 +1 _0 ^0) Prove Lukasiewicz's cn1 axiom from Hilbert's axiomatization
LCL452 ( -0 +1 _0 ^1) Prove Lukasiewicz's cn2 axiom from Hilbert's axiomatization
LCL453 ( -0 +1 _0 ^0) Prove Lukasiewicz's cn3 axiom from Hilbert's axiomatization
LCL454 ( -0 +1 _0 ^1) Prove Principia's r1 axiom from Hilbert's axiomatization
LCL455 ( -0 +1 _0 ^0) Prove Principia's r2 axiom from Hilbert's axiomatization
LCL456 ( -0 +1 _0 ^1) Prove Principia's r3 axiom from Hilbert's axiomatization
LCL457 ( -0 +1 _0 ^0) Prove Principia's r4 axiom from Hilbert's axiomatization
LCL458 ( -0 +1 _0 ^0) Prove Principia's r5 axiom from Hilbert's axiomatization
LCL459 ( -0 +1 _0 ^0) Prove Rosser's kn1 axiom from Hilbert's axiomatization
LCL460 ( -0 +1 _0 ^1) Prove Rosser's kn2 axiom from Hilbert's axiomatization
LCL461 ( -0 +1 _0 ^0) Prove Rosser's kn3 axiom from Hilbert's axiomatization
LCL462 ( -0 +1 _0 ^1) Prove Hilbert's modus_tollens axiom from Lukasiewicz's system
LCL463 ( -0 +1 _0 ^0) Prove Hilbert's implies_1 axiom from Lukasiewicz's axiomatization
LCL464 ( -0 +1 _0 ^1) Prove Hilbert's implies_2 axiom from Lukasiewicz's axiomatization
LCL465 ( -0 +1 _0 ^0) Prove Hilbert's implies_3 axiom from Lukasiewicz's axiomatization
LCL466 ( -0 +1 _0 ^1) Prove Hilbert's and_1 axiom from Lukasiewicz's axiomatization
LCL467 ( -0 +1 _0 ^1) Prove Hilbert's and_2 axiom from Lukasiewicz's axiomatization
LCL468 ( -0 +1 _0 ^0) Prove Hilbert's and_3 axiom from Lukasiewicz's axiomatization
LCL469 ( -0 +1 _0 ^0) Prove Hilbert's or_1 axiom from Lukasiewicz's axiomatization
LCL470 ( -0 +1 _0 ^0) Prove Hilbert's or_2 axiom from Lukasiewicz's axiomatization
LCL471 ( -0 +1 _0 ^0) Prove Hilbert's or_3 axiom from Lukasiewicz's axiomatization
LCL472 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_1 axiom from Lukasiewicz's system
LCL473 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_2 axiom from Lukasiewicz's system
LCL474 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_3 axiom from Lukasiewicz's system
LCL475 ( -0 +1 _0 ^0) Prove Principia's r1 axiom from Lukasiewicz's axiomatization
LCL476 ( -0 +1 _0 ^0) Prove Principia's r2 axiom from Lukasiewicz's axiomatization
LCL477 ( -0 +1 _0 ^0) Prove Principia's r3 axiom from Lukasiewicz's axiomatization
LCL478 ( -0 +1 _0 ^0) Prove Principia's r4 axiom from Lukasiewicz's axiomatization
LCL479 ( -0 +1 _0 ^0) Prove Principia's r5 axiom from Lukasiewicz's axiomatization
LCL480 ( -0 +1 _0 ^0) Prove Rosser's kn1 axiom from Lukasiewicz's axiomatization
LCL481 ( -0 +1 _0 ^0) Prove Rosser's kn2 axiom from Lukasiewicz's axiomatization
LCL482 ( -0 +1 _0 ^0) Prove Rosser's kn3 axiom from Lukasiewicz's axiomatization
LCL483 ( -0 +1 _0 ^0) Prove Hilbert's modus_tollens axiom from Principia's system
LCL484 ( -0 +1 _0 ^0) Prove Hilbert's implies_1 axiom from Principia's axiomatization
LCL485 ( -0 +1 _0 ^0) Prove Hilbert's implies_2 axiom from Principia's axiomatization
LCL486 ( -0 +1 _0 ^0) Prove Hilbert's implies_3 axiom from Principia's axiomatization
LCL487 ( -0 +1 _0 ^0) Prove Hilbert's and_1 axiom from Principia's axiomatization
LCL488 ( -0 +1 _0 ^0) Prove Hilbert's and_2 axiom from Principia's axiomatization
LCL489 ( -0 +1 _0 ^0) Prove Hilbert's and_3 axiom from Principia's axiomatization
LCL490 ( -0 +1 _0 ^0) Prove Hilbert's or_1 axiom from Principia's axiomatization
LCL491 ( -0 +1 _0 ^0) Prove Hilbert's or_2 axiom from Principia's axiomatization
LCL492 ( -0 +1 _0 ^0) Prove Hilbert's or_3 axiom from Principia's axiomatization
LCL493 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_1 axiom from Principia's system
LCL494 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_2 axiom from Principia's system
LCL495 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_3 axiom from Principia's system
LCL496 ( -0 +1 _0 ^0) Prove Lukasiewicz's cn1 axiom from Principia's axiomatization
LCL497 ( -0 +1 _0 ^0) Prove Lukasiewicz's cn2 axiom from Principia's axiomatization
LCL498 ( -0 +1 _0 ^0) Prove Lukasiewicz's cn3 axiom from Principia's axiomatization
LCL499 ( -0 +1 _0 ^0) Prove Rosser's kn1 axiom from Principia's axiomatization
LCL500 ( -0 +1 _0 ^0) Prove Rosser's kn2 axiom from Principia's axiomatization
LCL501 ( -0 +1 _0 ^0) Prove Rosser's kn3 axiom from Principia's axiomatization
LCL502 ( -0 +1 _0 ^0) Prove Hilbert's modus_tollens axiom from Rosser's system
LCL503 ( -0 +1 _0 ^0) Prove Hilbert's implies_1 axiom from Rosser's axiomatization
LCL504 ( -0 +1 _0 ^0) Prove Hilbert's implies_2 axiom from Rosser's axiomatization
LCL505 ( -0 +1 _0 ^0) Prove Hilbert's implies_3 axiom from Rosser's axiomatization
LCL506 ( -0 +1 _0 ^0) Prove Hilbert's and_1 axiom from Rosser's axiomatization
LCL507 ( -0 +1 _0 ^0) Prove Hilbert's and_2 axiom from Rosser's axiomatization
LCL508 ( -0 +1 _0 ^0) Prove Hilbert's and_3 axiom from Rosser's axiomatization
LCL509 ( -0 +1 _0 ^0) Prove Hilbert's or_1 axiom from Rosser's axiomatization
LCL510 ( -0 +1 _0 ^0) Prove Hilbert's or_2 axiom from Rosser's axiomatization
LCL511 ( -0 +1 _0 ^0) Prove Hilbert's or_3 axiom from Rosser's axiomatization
LCL512 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_1 axiom from Rosser's system
LCL513 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_2 axiom from Rosser's system
LCL514 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_3 axiom from Rosser's system
LCL515 ( -0 +1 _0 ^0) Prove Lukasiewicz's cn1 axiom from Rosser's axiomatization
LCL516 ( -0 +1 _0 ^0) Prove Lukasiewicz's cn2 axiom from Rosser's axiomatization
LCL517 ( -0 +1 _0 ^0) Prove Lukasiewicz's cn3 axiom from Rosser's axiomatization
LCL518 ( -0 +1 _0 ^0) Prove Principia's r1 axiom from Rosser's axiomatization
LCL519 ( -0 +1 _0 ^0) Prove Principia's r2 axiom from Rosser's axiomatization
LCL520 ( -0 +1 _0 ^0) Prove Principia's r3 axiom from Rosser's axiomatization
LCL521 ( -0 +1 _0 ^0) Prove Principia's r4 axiom from Rosser's axiomatization
LCL522 ( -0 +1 _0 ^0) Prove Principia's r5 axiom from Rosser's axiomatization
LCL523 ( -0 +1 _0 ^0) Prove axiom 4 from KM5 axiomatization of S5
LCL524 ( -0 +1 _0 ^0) Prove axiom B from KM5 axiomatization of S5
LCL525 ( -0 +1 _0 ^0) Prove strict implies modus ponens from KM5 axiomatization of S5
LCL526 ( -0 +1 _0 ^0) Prove SSE from KM5 axiomatization of S5
LCL527 ( -0 +1 _0 ^0) Prove adjunction from KM5 axiomatization of S5
LCL528 ( -0 +1 _0 ^0) Prove axiom m1 from KM5 axiomatization of S5
LCL529 ( -0 +1 _0 ^0) Prove axiom m2 from KM5 axiomatization of S5
LCL530 ( -0 +1 _0 ^0) Prove axiom m3 from KM5 axiomatization of S5
LCL531 ( -0 +1 _0 ^0) Prove axiom m4 from KM5 axiomatization of S5
LCL532 ( -0 +1 _0 ^0) Prove axiom m5 from KM5 axiomatization of S5
LCL533 ( -0 +1 _0 ^0) Prove axiom m6 from KM5 axiomatization of S5
LCL534 ( -0 +1 _0 ^0) Prove axiom s3 from KM5 axiomatization of S5
LCL535 ( -0 +1 _0 ^0) Prove axiom m9 from KM5 axiomatization of S5
LCL536 ( -0 +1 _0 ^0) Prove axiom m10 from KM5 axiomatization of S5
LCL537 ( -0 +1 _0 ^0) Prove axiom 5 from KM4B axiomatization of S5
LCL538 ( -0 +1 _0 ^0) Prove strict implies modus ponens from KM4B axiomatization of S5
LCL539 ( -0 +1 _0 ^0) Prove SSE from KM4B axiomatization of S5
LCL540 ( -0 +1 _0 ^0) Prove adjunction from KM4B axiomatization of S5
LCL541 ( -0 +1 _0 ^0) Prove axiom m1 from KM4B axiomatization of S5
LCL542 ( -0 +1 _0 ^0) Prove axiom m2 from KM4B axiomatization of S5
LCL543 ( -0 +1 _0 ^0) Prove axiom m3 from KM4B axiomatization of S5
LCL544 ( -0 +1 _0 ^0) Prove axiom m4 from KM4B axiomatization of S5
LCL545 ( -0 +1 _0 ^0) Prove axiom m5 from KM4B axiomatization of S5
LCL546 ( -0 +1 _0 ^0) Prove axiom m6 from KM4B axiomatization of S5
LCL547 ( -0 +1 _0 ^0) Prove axiom s3 from KM4B axiomatization of S5
LCL548 ( -0 +1 _0 ^0) Prove axiom m9 from KM4B axiomatization of S5
LCL549 ( -0 +1 _0 ^0) Prove axiom m10 from KM4B axiomatization of S5
LCL550 ( -0 +1 _0 ^0) Prove Hilbert's modus ponens rule from the S1-0 system
LCL551 ( -0 +1 _0 ^0) Prove Hilbert's modus_tollens axiom from the S1-0 system
LCL552 ( -0 +1 _0 ^0) Prove Hilbert's implies_1 axiom from the S1-0 system
LCL553 ( -0 +1 _0 ^0) Prove Hilbert's implies_2 axiom from the S1-0 system
LCL554 ( -0 +1 _0 ^0) Prove Hilbert's implies_3 axiom from the S1-0 system
LCL555 ( -0 +1 _0 ^0) Prove Hilbert's and_1 axiom from the S1-0 system
LCL556 ( -0 +1 _0 ^0) Prove Hilbert's and_2 axiom from the S1-0 system
LCL557 ( -0 +1 _0 ^0) Prove Hilbert's and_3 axiom from the S1-0 system
LCL558 ( -0 +1 _0 ^0) Prove Hilbert's or_1 axiom from the S1-0 system
LCL559 ( -0 +1 _0 ^0) Prove Hilbert's or_2 axiom from the S1-0 system
LCL560 ( -0 +1 _0 ^0) Prove Hilbert's or_3 axiom from the S1-0 system
LCL561 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_1 axiom from the S1-0 system
LCL562 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_2 axiom from the S1-0 system
LCL563 ( -0 +1 _0 ^0) Prove Hilbert's equivalence_3 axiom from the S1-0 system
LCL564 ( -0 +1 _0 ^0) Prove axiom K from the S1-0M6S3M9B axiomatization of S5
LCL565 ( -0 +1 _0 ^0) Prove necessitation from the S1-0M6S3M9B axiomatization of S5
LCL566 ( -0 +1 _0 ^0) Prove axiom M from the S1-0M6S3M9B axiomatization of S5
LCL567 ( -0 +1 _0 ^0) Prove axiom 5 from the S1-0M6S3M9B axiomatization of S5
LCL568 ( -0 +1 _0 ^0) Prove axiom 4 from the S1-0M6S3M9B axiomatization of S5
LCL569 ( -0 +1 _0 ^0) Prove axiom m10 from the S1-0M6S3M9B axiomatization of S5
LCL570 ( -0 +1 _0 ^0) Prove axiom K from the S1-0M10 axiomatization of S5
LCL571 ( -0 +1 _0 ^0) Prove necessitation from the S1-0M10 axiomatization of S5
LCL572 ( -0 +1 _0 ^0) Prove axiom M from the S1-0M10 axiomatization of S5
LCL573 ( -0 +1 _0 ^0) Prove axiom 5 from the S1-0M10 axiomatization of S5
LCL574 ( -0 +1 _0 ^0) Prove axiom 4 from the S1-0M10 axiomatization of S5
LCL575 ( -0 +1 _0 ^0) Prove axiom B from the S1-0M10 axiomatization of S5
LCL576 ( -0 +1 _0 ^0) Prove axiom m6 from the S1-0M10 axiomatization of S5
LCL577 ( -0 +1 _0 ^0) Prove axiom s3 from the S1-0M10 axiomatization of S5
LCL578 ( -0 +1 _0 ^0) Prove axiom m9 from the S1-0M10 axiomatization of S5
LCL579 ( -0 +0 _0 ^2) Leibniz-equality definition means it's an equivalence
LCL580 ( -0 +0 _0 ^1) Popkorn problem 1
LCL581 ( -0 +0 _0 ^1) Popkorn problem 2
LCL582 ( -0 +0 _0 ^1) Popkorn problem 3
LCL583 ( -0 +0 _0 ^1) Popkorn problem 4
LCL584 ( -0 +0 _0 ^1) Popkorn problem 5
LCL585 ( -0 +0 _0 ^1) Popkorn problem 6
LCL586 ( -0 +0 _0 ^1) Popkorn problem 7
LCL587 ( -0 +0 _0 ^1) Popkorn problem 8
LCL588 ( -0 +0 _0 ^1) Popkorn problem 9
LCL589 ( -0 +0 _0 ^1) Popkorn problem 10
LCL590 ( -0 +0 _0 ^1) Popkorn problem 11
LCL591 ( -0 +0 _0 ^1) Axiom N is valid
LCL592 ( -0 +0 _0 ^1) Axiom D is valid
LCL593 ( -0 +0 _0 ^1) Is axiom T valid in K?
LCL594 ( -0 +0 _0 ^1) Relation for all propositions making T valid in K
LCL595 ( -0 +0 _0 ^1) Is axiom T equivalent to reflexivity of R in K
LCL596 ( -0 +0 _0 ^1) Is axiom 4 valid in K?
LCL597 ( -0 +0 _0 ^1) Relation and proposition for 4 in K
LCL598 ( -0 +0 _0 ^1) Is axiom 4 equivalent to irreflexivity?
LCL599 ( -0 +0 _0 ^1) Is axiom 4 equivalent to symmetry?
LCL600 ( -0 +0 _0 ^1) Is axiom 4 equivalent to transitivity of R in K?
LCL601 ( -0 +0 _0 ^1) Axiom 4 for all R means all R are valid
LCL602 ( -0 +0 _0 ^1) T and 4 equivalent to reflexivity and transitivity of R in K
LCL603 ( -0 +0 _0 ^1) T and 4 imply reflexivity and transitivity of R in K
LCL604 ( -0 +0 _0 ^1) T and 4 implied by reflexivity and transitivity of R in K
LCL606 ( -0 +0 _0 ^1) LAMBDA^mm_1 validates the Barcan formula axioms
LCL607 ( -0 +0 _0 ^1) LAMBDA^mm_1 validates the axioms defining possibility
LCL608 ( -0 +0 _0 ^1) LAMBDA^mm_1 validates the modus ponens rule
LCL609 ( -0 +0 _0 ^1) LAMBDA^mm_1 validates the generalization rule
LCL611 ( -0 +0 _0 ^1) LAMBDA^mm_1 validates the converse Barcan formula
LCL612 ( -0 +0 _0 ^1) Modus Ponens holds in K
LCL613 ( -0 +0 _0 ^1) Simple theorem of K
LCL614 ( -0 +0 _0 ^1) Regularity is a derived rule in K
LCL615 ( -0 +0 _0 ^1) Axiom KB
LCL617 ( -0 +0 _0 ^1) Axiom GL - the Loeb formula
LCL618 ( -0 +0 _0 ^1) Axiom GL implies Axiom K4 in K
LCL619 ( -0 +0 _0 ^1) A simple theorem of K4
LCL620 ( -0 +0 _0 ^1) A simple theorem of propositional logic
LCL621 ( -0 +0 _0 ^1) A simple theorem of K4
LCL623 ( -0 +0 _0 ^1) The Loeb formula is a theorem in GL
LCL624 ( -0 +0 _0 ^1) A simple theorem of K
LCL625 ( -0 +0 _0 ^1) GL/K4 axiom is valid in this frame
LCL626 ( -0 +0 _0 ^1) Loeb axiom is valid in this frame
LCL629 ( -0 +0 _0 ^1) Simple theorem about knowledge
LCL630 ( -0 +0 _0 ^1) The muddy forehead puzzle
LCL631 ( -0 +0 _0 ^1) The muddy forehead puzzle
LCL632 ( -0 +0 _0 ^1) The muddy forehead puzzle
LCL633 ( -0 +0 _0 ^1) Goedel's ontological argument on the existence of God
LCL634 ( -0 +0 _0 ^1) Goedel's ontological argument on the existence of God
LCL636 ( -0 +5 _0 ^0) In K, the branching formula made provable, size 1
LCL637 ( -0 +5 _0 ^0) In K, the branching formula, size 1
LCL638 ( -0 +5 _0 ^0) In K, D & A4 & B{~p0/p0} -> T, size 1
LCL639 ( -0 +5 _0 ^0) In K, A5 not provable with instances of D, A4, and T, size 1
LCL640 ( -0 +5 _0 ^0) In K, formula with A4 and Dum leading to Dum, size 1
LCL641 ( -0 +5 _0 ^0) In K, Dum is not provable with instances of Dum4 and A4, size 1
LCL642 ( -0 +5 _0 ^0) In K, box Grz & Grz{C() & A4{C()/p0}/p0} -> Grz1, size 1
LCL643 ( -0 +5 _0 ^0) In K, Grz is not provable with instances of Grz1, size 1
LCL644 ( -0 +5 _0 ^0) In K, H2 -> L, size 1
LCL645 ( -0 +5 _0 ^0) In K, L+ is not provable with instances of L, size 1
LCL646 ( -0 +5 _0 ^0) In K, path through a labyrinth, size 1
LCL647 ( -0 +5 _0 ^0) In K, no path through an incomplete labyrinth, size 1
LCL648 ( -0 +5 _0 ^0) In K, pigeonhole formulae, size 1
LCL649 ( -0 +5 _0 ^0) In K, pigeonhole formulae missing a conjunct, size 1
LCL650 ( -0 +5 _0 ^0) In K, black and white polygon with odd number of vertices, size 1
LCL651 ( -0 +5 _0 ^0) In K, black and white polygon with even vertices, size 1
LCL652 ( -0 +5 _0 ^0) In K, formula with T and A4, size 1
LCL653 ( -0 +5 _0 ^0) In K, dia box p0 not provable, size 1
LCL654 ( -0 +5 _0 ^0) In KT, A5{box p0/p0} & box A5{~p0/p0} -> A4, size 1
LCL655 ( -0 +5 _0 ^0) In KT, A5 not provable with instances of A4, size 1
LCL656 ( -0 +5 _0 ^0) In KT, the branching formula made provable, size 1
LCL657 ( -0 +5 _0 ^0) In KT, the branching formula, size 1
LCL658 ( -0 +5 _0 ^0) In KT, formula with A4 and Dum leading to Dum, size 1
LCL659 ( -0 +5 _0 ^0) In KT, Dum is not provable with instances of Dum4 and A4, size 1
LCL660 ( -0 +5 _0 ^0) In KT, box Grz & Grz{C() & A4{C()/p0}/p0} -> Grz1, size 1
LCL661 ( -0 +5 _0 ^0) In KT, A5 is not provable with instances of Grz1, size 1
LCL662 ( -0 +5 _0 ^0) In KT, in backward search find a way through box and dia, size 1
LCL663 ( -0 +5 _0 ^0) In KT, in backwards search no way through box and dia, size 1
LCL664 ( -0 +5 _0 ^0) In KT, path through a labyrinth, size 1
LCL665 ( -0 +5 _0 ^0) In KT, no path through an incomplete labyrinth, size 1
LCL666 ( -0 +5 _0 ^0) In KT, pigeonhole formulae, size 1
LCL667 ( -0 +5 _0 ^0) In KT, pigeonhole formulae missing a conjunct, size 1
LCL668 ( -0 +5 _0 ^0) In KT, black and white polygon with odd number of vertices, size 1
LCL669 ( -0 +5 _0 ^0) In KT, black and white polygon with even vertices, size 1
LCL670 ( -0 +5 _0 ^0) In KT, formula with T and A4, size 1
LCL671 ( -0 +5 _0 ^0) In KT, dia box p0 not provable, size 1
LCL672 ( -0 +5 _0 ^0) In S4, A5{box p0/p0} & box A5{~p0/p0} -> A5, size 1
LCL673 ( -0 +5 _0 ^0) In S4, A5 not provable, size 1
LCL674 ( -0 +5 _0 ^0) In S4, the branching formula made provable, size 1
LCL675 ( -0 +5 _0 ^0) In S4, the branching formula, size 1
LCL676 ( -0 +5 _0 ^0) In S4, box Grz & Grz{C() & A4{C()/p0}/p0} -> Grz1, size 1
LCL677 ( -0 +5 _0 ^0) In S4, A5 is not provable with instances of Grz1, size 1
LCL678 ( -0 +5 _0 ^0) In S4, formula provable in intuitionistic logic, size 1
LCL679 ( -0 +5 _0 ^0) In S4, formula not provable in intuitionistic logic, size 1
LCL680 ( -0 +5 _0 ^0) In S4, in backward search find a way through box and dia, size 1
LCL681 ( -0 +5 _0 ^0) In S4, in backwards search no way through box and dia, size 1
LCL682 ( -0 +5 _0 ^0) In S4, path through a labyrinth, size 1
LCL683 ( -0 +5 _0 ^0) In S4, no path through an incomplete labyrinth, size 1
LCL684 ( -0 +5 _0 ^0) In S4, pigeonhole formulae, size 1
LCL685 ( -0 +5 _0 ^0) In S4, pigeonhole formulae missing a conjunct, size 1
LCL686 ( -0 +5 _0 ^0) In S4, formula provable in S5 embedding, size 1
LCL687 ( -0 +5 _0 ^0) In S4, formula not provable in S5 embedding, size 1
LCL688 ( -0 +5 _0 ^0) In S4, formula with T and A4, size 1
LCL689 ( -0 +5 _0 ^0) In S4, dia box p0 not provable, size 1
LCL690 ( -0 +0 _0 ^1) Prove K in the CS4 translation
LCL691 ( -0 +0 _0 ^1) Prove reflexivity in the CS4 translation
LCL692 ( -0 +0 _0 ^1) Prove transitivity in the CS4 translation
LCL693 ( -0 +0 _0 ^1) Prove the Barcan formula in the CS4 translation
LCL694 ( -0 +0 _0 ^1) Prove the converse Barcan formula in the CS4 translation
LCL695 ( -0 +0 _0 ^1) Propositional intuitionistic logic in HOL
LCL696 ( -0 +0 _0 ^1) Propositional intuitionistic logic in HOL
LCL697 ( -0 +0 _0 ^1) Propositional intuitionistic logic in HOL
LCL698 ( -0 +0 _0 ^1) Embedding of quantified multimodal logic in simple type theory
LCL699 ( -0 +0 _0 ^1) Accessibility relation implies axiom for reflexivity
LCL700 ( -0 +0 _0 ^1) Accessibility relation implies axiom for symmetry
LCL701 ( -0 +0 _0 ^1) Accessibility relation implies axiom for seriality
LCL702 ( -0 +0 _0 ^1) Accessibility relation implies axiom for transitivity
LCL703 ( -0 +0 _0 ^1) Accessibility relation implies axiom for Euclidianity
LCL704 ( -0 +0 _0 ^1) Accessibility relation implies axiom for partial functionality
LCL705 ( -0 +0 _0 ^1) Accessibility relation implies axiom for functionality
LCL706 ( -0 +0 _0 ^1) Accessibility relation implies axiom for weak density
LCL707 ( -0 +0 _0 ^1) Accessibility relation implies axiom for weak connectedness
LCL708 ( -0 +0 _0 ^1) Accessibility relation implies axiom for weak directedness
LCL709 ( -0 +0 _0 ^1) Axiom implies accessibility relation for reflexivity
LCL710 ( -0 +0 _0 ^1) Axiom implies accessibility relation for symmetry
LCL711 ( -0 +0 _0 ^1) Axiom implies accessibility relation for seriality
LCL712 ( -0 +0 _0 ^1) Axiom implies accessibility relation for transitivity
LCL713 ( -0 +0 _0 ^1) Axiom implies accessibility relation for Euclidianity
LCL714 ( -0 +0 _0 ^1) Axiom implies accessibility relation for partial functionality
LCL715 ( -0 +0 _0 ^1) Axiom implies accessibility relation for functionality
LCL716 ( -0 +0 _0 ^1) Axiom implies accessibility relation for weak density
LCL717 ( -0 +0 _0 ^1) Axiom implies accessibility relation for weak connectedness
LCL718 ( -0 +0 _0 ^1) Axiom implies accessibility relation for weak directedness
LCL719 ( -0 +0 _0 ^1) Necessitation rule holds in monomodal logic K
LCL720 ( -0 +0 _0 ^1) Distribution axiom holds in monomodal logic K
LCL721 ( -0 +0 _0 ^1) Axiom D holds in monomodal logic D
LCL722 ( -0 +0 _0 ^1) Axiom M holds in monomodal logic M
LCL723 ( -0 +0 _0 ^1) Axioms M and B hold in monomodal logic B
LCL724 ( -0 +0 _0 ^1) Axioms M and 4 hold in monomodal logic S4
LCL725 ( -0 +0 _0 ^1) Axioms M, 4, and B hold in monomodal logic S5
LCL726 ( -0 +0 _0 ^1) TPS problem THM534
LCL727 ( -0 +0 _0 ^1) TPS problem THM533
LCL728 ( -0 +0 _0 ^1) TPS problem THM532
LCL729 ( -0 +0 _0 ^1) TPS problem THM560
LCL730 ( -0 +0 _0 ^1) TPS problem X5310
LCL731 ( -0 +0 _0 ^1) TPS problem THM541
LCL732 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL733 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL734 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL735 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL736 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL738 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL739 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL740 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL741 ( -0 +0 _0 ^1) TPS problem from AC-THMS
LCL742 ( -0 +0 _0 ^1) TPS problem from AC-FUNS-THMS
LCL743 ( -0 +0 _0 ^1) TPS problem from AXIOMOFDESCR
LCL744 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 019_3
LCL745 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 020_5
LCL746 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 021_5
LCL747 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 022_6
LCL748 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 032_6
LCL749 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 036_3
LCL750 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 039_3
LCL751 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 041_5
LCL752 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 042_5
LCL753 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 053_4
LCL754 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 054_4
LCL755 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 055_4
LCL756 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 056_4
LCL757 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 058_3
LCL758 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 059_3
LCL759 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 060_3
LCL760 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 061_4
LCL761 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 065_3
LCL762 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 066_4
LCL763 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 067_3
LCL764 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 068_3
LCL765 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 072_3
LCL766 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 073_5
LCL767 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 074_5
LCL768 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 075_5
LCL769 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 076_5
LCL770 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 077_6
LCL771 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 078_5
LCL772 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 079_4
LCL773 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 080_5
LCL774 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 081_4
LCL775 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 082_3
LCL776 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 083_3
LCL777 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 084_4
LCL778 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 085_4
LCL779 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 086_3
LCL780 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 096_1
LCL781 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 102_3
LCL782 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 113_7
LCL783 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 116_9
LCL784 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 118_38
LCL785 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 121_56
LCL786 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 125_13
LCL787 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 129_13
LCL788 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 131_13
LCL789 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 132_53
LCL790 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 135_11
LCL791 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 137_13
LCL792 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 138_36
LCL793 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 139_44
LCL794 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 141_15
LCL795 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 143_19
LCL796 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 145_19
LCL797 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 147_36
LCL798 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 148_51
LCL799 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 150_17
LCL800 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 152_36
LCL801 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 154_15
LCL802 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 156_15
LCL803 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 158_15
LCL804 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 161_13
LCL805 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 163_26
LCL806 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 166_31
LCL807 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 167_57
LCL808 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 168_48
LCL809 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 169_44
LCL810 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 171_17
LCL811 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 172_26
LCL812 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 174_41
LCL813 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 176_15
LCL814 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 178_15
LCL815 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 180_15
LCL816 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 182_15
LCL817 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 184_15
LCL818 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 186_15
LCL819 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 189_13
LCL820 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 193_38
LCL821 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 195_11
LCL822 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 196_31
LCL823 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 198_11
LCL824 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 200_9
LCL825 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 202_22
LCL826 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 205_27
LCL827 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 206_53
LCL828 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 207_44
LCL829 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 209_13
LCL830 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 210_22
LCL831 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 212_33
LCL832 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 219_9
LCL833 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 226_7
LCL834 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 228_11
LCL835 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 230_11
LCL836 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 232_24
LCL837 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 234_11
LCL838 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 236_11
LCL839 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 237_50
LCL840 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 238_41
LCL841 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 240_42
LCL842 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 252_1
LCL843 ( -1 +0 _1 ^0) Strong normalization of typed lambda calculus 254_14
LCL844 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 257_14
LCL845 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 261_3
LCL846 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 262_39
LCL847 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 263_34
LCL848 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 264_38
LCL849 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 265_56
LCL850 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 268_7
LCL851 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 270_7
LCL852 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 272_7
LCL853 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 273_17
LCL854 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 274_26
LCL855 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 276_14
LCL856 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 280_1
LCL857 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 282_16
LCL858 ( -1 +0 _0 ^0) Strong normalization of typed lambda calculus 283_16
LCL859 ( -0 +0 _0 ^1) Modal logic S5(=M5) coincides with MB5 
LCL860 ( -0 +0 _0 ^1) Modal logic S5(=M5) coincides with M4B5
LCL861 ( -0 +0 _0 ^1) Modal logic S5(=M5) coincides with M45
LCL862 ( -0 +0 _0 ^1) Modal logic S5(=M5) coincides with M4B
LCL863 ( -0 +0 _0 ^1) Modal logic S5(=M5) coincides with D4B
LCL864 ( -0 +0 _0 ^1) Modal logic S5(=M5) coincides with D4B5
LCL865 ( -0 +0 _0 ^1) Modal logic S5(=M5) coincides with DB5
LCL866 ( -0 +0 _0 ^1) Modal logic KB5 coincides with K4B5
LCL867 ( -0 +0 _0 ^1) Modal logic KB5 coincides with K4B
LCL868 ( -0 +0 _0 ^1) Modal logic D45 'includes' modal logic M5
LCL869 ( -0 +0 _0 ^1) Modal logic M5 'includes' modal logic D45
LCL870 ( -0 +0 _0 ^1) The Barcan formula is valid in quantified modal logic K
LCL871 ( -0 +0 _0 ^1) The converse Barcan formula is valid in quantified modal logic K
LCL872 ( -0 +0 _0 ^1) Correspondence between box and diamond and a confluence property
LCL873 ( -0 +0 _0 ^1) Commutativity implies orthogonality in 2-D modal logic S5
LCL874 ( -0 +0 _0 ^1) Inclusion statement in a 2-D logic of knowledge and belief
LCL875 ( -1 +0 _0 ^0) The Rezus formula
LCL876 ( -0 +1 _0 ^0) Prove Mv5 from MV1--MV4
LCL877 ( -0 +0 _0 ^2) Variants of axiom 5
LCL878 ( -0 +0 _0 ^1) Correspondence for axiom I
LCL879 ( -0 +0 _0 ^1) Correspondence for axiom 4s
LCL880 ( -0 +0 _0 ^1) Correspondence for axiom 5s
LCL881 ( -0 +0 _0 ^1) Axiom 5s is dependent
LCL882 ( -0 +1 _0 ^0) An involutive pocrim that does not have unique halving
LCL883 ( -0 +1 _0 ^0) An involutive pocrim that is not a hoop
LCL884 ( -0 +1 _0 ^0) A bounded hoop that is not an involutive pocrim
LCL885 ( -0 +1 _0 ^0) An involutive pocrim that is not a coop
LCL886 ( -0 +1 _0 ^0) An involutive pocrim that is not idempotent
LCL887 ( -0 +1 _0 ^0) An idempotent hoop that is not an involutive pocrim
LCL888 ( -0 +1 _0 ^0) Halving is unique in a hoop
LCL889 ( -0 +1 _0 ^0) Halving is unique in a hoop, rule for x >= a/2
LCL890 ( -0 +1 _0 ^0) Halving is unique in a hoop, rule for a/2 >= x
LCL891 ( -0 +1 _0 ^0) Halving is unique in a hoop, rule for a/2 >= x
LCL892 ( -0 +1 _0 ^0) Halving is unique in a hoop, rule for a/2 >= x
LCL893 ( -0 +1 _0 ^0) In a coop, x/2 = x implies x = 0
LCL894 ( -0 +1 _0 ^0) Weak conjunction is lub in a hoop using horn axioms
LCL895 ( -0 +1 _0 ^0) Weak conjunction is lub in a hoop using equational axioms
LCL896 ( -0 +1 _0 ^0) Associativity of weak conjunction implies commutativity 
LCL897 ( -0 +1 _0 ^0) Weak conjunction is associative in a hoop
LCL898 ( -0 +1 _0 ^0) Strong disjunction is commutative in an involutive hoop
LCL899 ( -0 +1 _0 ^0) A bounded pocrim property
LCL900 ( -0 +1 _0 ^0) A bounded pocrim with commutative strong disjunction is a hoop
LCL901 ( -0 +1 _0 ^0) An idempotent pocrim property
LCL902 ( -0 +1 _0 ^0) A boolean pocrim is involutive
LCL903 ( -0 +1 _0 ^0) A boolean pocrim is idempotent
LCL904 ( -0 +0 _0 ^1) Axioms for Modal logic S4 under cumulative domains
LCL905 ( -1 +0 _0 ^0) Alternative Wajsberg algebra
LCL907 ( -0 +1 _0 ^0) Hilbert's axiomatization of propositional logic
LCL908 ( -0 +1 _0 ^0) Lukasiewicz's axiomatization of propositional logic
LCL909 ( -0 +1 _0 ^0) Principia's axiomatization of propositional logic
LCL910 ( -0 +1 _0 ^0) Rosser's axiomatization of propositional logic
LCL911 ( -0 +1 _0 ^0) KM5 axiomatization of S5 based on Hilbert's PC
LCL912 ( -0 +1 _0 ^0) KM4B axiomatization of S5 based on Hilbert's PC
LCL913 ( -0 +1 _0 ^0) Axiomatization of S1-0
LCL914 ( -0 +1 _0 ^0) M6S3M9B axiomatization of S5 based on S1-0
LCL915 ( -0 +1 _0 ^0) M10 axiomatization of S5 based on S1-0
LCL916 ( -0 +0 _0 ^1) Multi-Modal Logic
LCL917 ( -0 +0 _0 ^1) Translating constructive S4 (CS4) to bimodal classical S4 (BS4)
LCL918 ( -0 +0 _0 ^1) Modal logic K
LCL919 ( -0 +0 _0 ^1) Modal logic D
LCL920 ( -0 +0 _0 ^1) Modal logic M
LCL921 ( -0 +0 _0 ^1) Modal logic B
LCL922 ( -0 +0 _0 ^1) Modal logic S4
LCL923 ( -0 +0 _0 ^1) Modal logic S5
LCL924 ( -0 +0 _0 ^1) Region Connection Calculus
LCL925 ( -0 +0 _0 ^1) Embedding of quantified multimodal logic in simple type theory
LCL926 ( -1 +0 _0 ^0) IO in TW+ [AxL,AxTO]
LCL927 ( -1 +0 _0 ^0) AxK and AxC in TW+ [AxL,AxTO] + (Resid)
LCL928 ( -1 +0 _0 ^0) AxTO in BCK-> [AxL] + (Resid)
LCL929 ( -1 +0 _0 ^0) AxK in TW-> [AxL] + (Resid)
LCL930 ( -0 +0 _0 ^1) Embedding of second order modal logic S5 with universal access
-------------------------------------------------------------------------------
Domain LDA = Left Distributive
50 problems (41 abstract), 50 CNF, 0 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
LDA001 ( -1 +0 _0 ^0) Verify 3*2*U = UUU, where U = 2*2
LDA002 ( -1 +0 _0 ^0) Verify 3*2(U2)(UU(UU)) = U1(U3)(UU(UU))
LDA003 ( -1 +0 _0 ^0) Show that 3 is a left segment of U = 2*2
LDA004 ( -1 +0 _0 ^0) Show that 3*2(U2) is a left segment of U1(U3)
LDA005 ( -2 +0 _0 ^0) Let g=cr(t). Show that tt(tsg) < t(tsg) (for any s)
LDA006 ( -2 +0 _0 ^0) Let g = cr(t). Show that tsg is not in the range of t
LDA007 ( -3 +0 _0 ^0) Let g = cr(t). Show that t(tsg) = tt(ts)(tg)
LDA008 ( -2 +0 _0 ^0) Let g = cr(t) = cr(T). If Ta < Tsg, then ta < tsg
LDA009 ( -2 +0 _0 ^0) Let g = cr(t). If g < sg, then st(ts)g < stt(sg)
LDA010 ( -2 +0 _0 ^0) Let g = cr(t). Show that stts(sttt)(stts)g < stt(sg)
LDA011 ( -2 +0 _0 ^0) Let g = cr(t). Show that stts(sttt)(stts)stts(sttt)g < stt(sg)
LDA012 ( -2 +0 _0 ^0) Let g = cr(t). Show that stts(sttt)g = g
LDA013 ( -1 +0 _0 ^0) Let g = cr(t). Show that aag <= ag, t=a
LDA014 ( -1 +0 _0 ^0) Let g = cr(t). Show that aag <= ag, t=a
LDA015 ( -1 +0 _0 ^0) Identity 00 in the equational theory of group conjugation
LDA016 ( -1 +0 _0 ^0) Identity 01 in the equational theory of group conjugation
LDA017 ( -1 +0 _0 ^0) Identity 03 in the equational theory of group conjugation
LDA018 ( -1 +0 _0 ^0) Identity 04 in the equational theory of group conjugation
LDA019 ( -1 +0 _0 ^0) Identity 06 in the equational theory of group conjugation
LDA020 ( -1 +0 _0 ^0) Identity 07 in the equational theory of group conjugation
LDA021 ( -1 +0 _0 ^0) Identity 08 in the equational theory of group conjugation
LDA022 ( -1 +0 _0 ^0) Identity 10 in the equational theory of group conjugation
LDA023 ( -1 +0 _0 ^0) Identity 11 in the equational theory of group conjugation
LDA024 ( -1 +0 _0 ^0) Identity 12 in the equational theory of group conjugation
LDA025 ( -1 +0 _0 ^0) Identity 13 in the equational theory of group conjugation
LDA026 ( -1 +0 _0 ^0) Identity 14 in the equational theory of group conjugation
LDA027 ( -1 +0 _0 ^0) Identity 17 in the equational theory of group conjugation
LDA028 ( -1 +0 _0 ^0) Identity 19 in the equational theory of group conjugation
LDA029 ( -1 +0 _0 ^0) Identity 21 in the equational theory of group conjugation
LDA030 ( -1 +0 _0 ^0) Identity 24 in the equational theory of group conjugation
LDA031 ( -1 +0 _0 ^0) Identity 25 in the equational theory of group conjugation
LDA032 ( -1 +0 _0 ^0) Identity 26 in the equational theory of group conjugation
LDA033 ( -1 +0 _0 ^0) Identity 29 in the equational theory of group conjugation
LDA034 ( -1 +0 _0 ^0) Identity 30 in the equational theory of group conjugation
LDA035 ( -1 +0 _0 ^0) Identity 32 in the equational theory of group conjugation
LDA036 ( -1 +0 _0 ^0) Identity 33 in the equational theory of group conjugation
LDA037 ( -1 +0 _0 ^0) Identity 34 in the equational theory of group conjugation
LDA038 ( -1 +0 _0 ^0) Identity 35 in the equational theory of group conjugation
LDA039 ( -1 +0 _0 ^0) Identity xx in the equational theory of group conjugation
LDA040 ( -1 +0 _0 ^0) Identity yy in the equational theory of group conjugation
LDA041 ( -1 +0 _0 ^0) Embedding algebra
-------------------------------------------------------------------------------
Domain LIN = Linear Algebra
15 problems (15 abstract), 0 CNF, 0 FOF, 0 TFF, 15 THF
-------------------------------------------------------------------------------
LIN001 ( -0 +0 _0 ^1) Chart System Math II+B Blue Book, Problem 08CBBE002
LIN002 ( -0 +0 _0 ^1) Chart System Math II+B White Book, Problem 08CWBE071
LIN003 ( -0 +0 _0 ^1) Chart System Math II+B Yellow Book, Problem 08CYBE053
LIN004 ( -0 +0 _0 ^1) Chart System Math III+C White Book, Problem 09CWCE033
LIN005 ( -0 +0 _0 ^1) Hokkaido University, 2013, Humanities Course, Problem 3
LIN006 ( -0 +0 _0 ^1) Kyoto University, 2007, Humanities Course, Problem 1
LIN007 ( -0 +0 _0 ^1) Kyoto University, 2011, Science Course, Problem 5
LIN008 ( -0 +0 _0 ^1) Kyushu University, 2009, Science Course, Problem 1
LIN009 ( -0 +0 _0 ^1) Kyushu University, 2009, Science Course, Problem 4
LIN010 ( -0 +0 _0 ^1) Nagoya University, 2001, Science Course, Problem 3
LIN011 ( -0 +0 _0 ^1) Osaka University, 2003, Humanities Course, Problem 1
LIN012 ( -0 +0 _0 ^1) Tohoku University, 2001, Humanities Course, Problem 4
LIN013 ( -0 +0 _0 ^1) The University of Tokyo, 1985, Humanities Course, Problem 1
LIN014 ( -0 +0 _0 ^1) The University of Tokyo, 1985, Humanities Course, Problem 4
LIN015 ( -0 +0 _0 ^1) The University of Tokyo, 2013, Science Course, Problem 1
-------------------------------------------------------------------------------
Domain MED = Medicine
12 problems (12 abstract), 0 CNF, 12 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
MED001 ( -0 +1 _0 ^0) Sulfonylurea treatment
MED002 ( -0 +1 _0 ^0) Combined biguanide and sulfonylurea treatment
MED003 ( -0 +1 _0 ^0) Insulin treatment
MED004 ( -0 +1 _0 ^0) No suitable therapy for patients with exhausted B-cells
MED005 ( -0 +1 _0 ^0) Unsuccessful diet treatment
MED006 ( -0 +1 _0 ^0) Unsuccessful s1-qilt27 treatment - single oral anti-diabetic
MED007 ( -0 +1 _0 ^0) Unsuccessful s1-qilt27 treatment next step
MED008 ( -0 +1 _0 ^0) Unsuccessful s1-qige27 treatment
MED009 ( -0 +1 _0 ^0) Unsuccessful s1-qige27 treatment - next step
MED010 ( -0 +1 _0 ^0) Unsuccessful s1-qilt27 treatment - two oral anti-diabetic
MED011 ( -0 +1 _0 ^0) Satisfiability of medical subject headings axioms
MED012 ( -0 +1 _0 ^0) Physiology Diabetes Mellitus type 2
-------------------------------------------------------------------------------
Domain MGT = Management
157 problems (67 abstract), 78 CNF, 79 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
MGT001 ( -1 +1 _0 ^0) Selection favors organizations with high inertia
MGT002 ( -1 +1 _0 ^0) Structural inertia increases monotonically with age.
MGT003 ( -1 +1 _0 ^0) Organizational death rates decrease with age.
MGT004 ( -1 +1 _0 ^0) Attempts at reorganization increase death rates.
MGT005 ( -2 +2 _0 ^0) Complexity increases the risk of death due to reorganization.
MGT006 ( -1 +1 _0 ^0) Reliability and accountability increase with time.
MGT007 ( -1 +1 _0 ^0) Reproducibility decreases during reorganization.
MGT008 ( -1 +1 _0 ^0) Organizational death rates decrease with size.
MGT009 ( -1 +1 _0 ^0) Large organization have higher reproducibility
MGT010 ( -1 +1 _0 ^0) Large organization have higher reliability and accountability
MGT011 ( -1 +1 _0 ^0) Organizational size cannot decrease without reorganization
MGT012 ( -1 +1 _0 ^0) Complexity of an organization cannot get smaller by age
MGT013 ( -1 +1 _0 ^0) If organization complexity increases, its size cannot decrease
MGT014 ( -1 +1 _0 ^0) If orgainzation size increases, its complexity cannot decrease
MGT015 ( -1 +1 _0 ^0) Complexity increases the expected duration of reorganisation.
MGT016 ( -1 +1 _0 ^0) More complex organizations have shorter reorganization
MGT017 ( -1 +1 _0 ^0) Length of reoganisation proportional to organization size
MGT018 ( -1 +1 _0 ^0) Larger organizations have shorter reorganization
MGT019 ( -1 +1 _0 ^0) Growth rate of EPs exceeds that of FMs in stable environments
MGT020 ( -1 +1 _0 ^0) First movers exceeds efficient producers disbanding rate
MGT021 ( -1 +1 _0 ^0) Difference between disbanding rates does not decrease
MGT022 ( -2 +2 _0 ^0) Decreasing resource availability affects FMS more than EPs
MGT023 ( -2 +2 _0 ^0) Stable environments have a critical point.
MGT024 ( -1 +1 _0 ^0) Subpopulation growth rates are in equilibria
MGT025 ( -1 +1 _0 ^0) Constant population means opposite growth rates
MGT026 ( -1 +1 _0 ^0) Selection favors efficient producers past the critical point
MGT027 ( -1 +1 _0 ^0) The FM set contracts in stable environments
MGT028 ( -1 +1 _0 ^0) FMs have a negative growth rate in stable environments
MGT029 ( -1 +1 _0 ^0) EPs have positive and FMs have negative growth rates
MGT030 ( -1 +1 _0 ^0) Earliest time point when FM growth rate exceeds EP growth rate
MGT031 ( -1 +1 _0 ^0) First movers appear first in an environment
MGT032 ( -1 +1 _0 ^0) Selection favours EPs above FMs
MGT033 ( -2 +2 _0 ^0) Selection favors FMs above EPs until EPs appear
MGT034 ( -2 +2 _0 ^0) Selection favors FMs above EPs until critical point reached
MGT035 ( -2 +2 _0 ^0) EPs outcompete FMs in stable environments
MGT036 ( -3 +3 _0 ^0) First movers never outcompete efficient producers.
MGT037 ( -2 +2 _0 ^0) Once appeared, efficient producers do not disappear
MGT038 ( -2 +2 _0 ^0) FMs become extinct in stable environments
MGT039 ( -2 +2 _0 ^0) Selection favours EPs above Fms if change is slow
MGT040 ( -2 +2 _0 ^0) Selection favours FMs above EPs if change is not extreme
MGT041 ( -1 +1 _0 ^0) There are non-FM and non-EP organisations
MGT042 ( -1 +1 _0 ^0) Conditions for a lower hazard of mortality
MGT043 ( -1 +1 _0 ^0) Conditions for a higher hazard of mortality
MGT044 ( -1 +1 _0 ^0) Capability increases monotonically with age
MGT045 ( -1 +1 _0 ^0) Structural position increases monotonically with age
MGT046 ( -1 +1 _0 ^0) Unendowed organization's hazard of mortality declines with age
MGT047 ( -1 +1 _0 ^0) Conditions for changing hazard of mortality
MGT048 ( -1 +1 _0 ^0) Capability decreases monotonically with its age
MGT049 ( -1 +1 _0 ^0) Structural position does not vary with its age
MGT050 ( -1 +1 _0 ^0) Unendowed organization's hazard of mortality increases with age
MGT051 ( -1 +1 _0 ^0) Conditions for constant then increasing hazard of mortality
MGT052 ( -1 +1 _0 ^0) The environment at any time is similar with itself
MGT053 ( -1 +1 _0 ^0) The dissimilarity relation is symmetric
MGT054 ( -1 +1 _0 ^0) Hazard of mortality increases in a drifting environment
MGT055 ( -1 +1 _0 ^0) Conditions for a constant then jumping hazard of mortality 1
MGT056 ( -1 +1 _0 ^0) Conditions for a constant then jumping hazard of mortality 2
MGT057 ( -1 +1 _0 ^0) Conditions for a constant then increasing hazard of mortality
MGT058 ( -1 +1 _0 ^0) An organization's position cannot be both fragile and robust
MGT059 ( -1 +1 _0 ^0) Hazard of mortality is constant during periods of immunity
MGT060 ( -1 +1 _0 ^0) Hazard of mortality is lower during periods of immunity
MGT061 ( -1 +1 _0 ^0) Conditions for an in reasing hazard of mortality
MGT062 ( -1 +1 _0 ^0) Condictions for decreasing hazard of mortality
MGT063 ( -1 +1 _0 ^0) Conditions for increasing then decreasing hazard of mortality
MGT064 ( -1 +1 _0 ^0) Conditions for a decreasing then increasing hazard of mortality
MGT065 ( -1 +1 _0 ^0) Long-run hazard of mortality
MGT066 ( -1 +1 _0 ^0) Inequalities.
MGT067 ( -0 +1 _0 ^0) Authorization to create requisitions
-------------------------------------------------------------------------------
Domain MSC = Miscellaneous
48 problems (33 abstract), 24 CNF, 11 FOF, 3 TFF, 10 THF
-------------------------------------------------------------------------------
MSC001 ( -1 +0 _0 ^0) A Blind Hand Problem
MSC002 ( -2 +0 _0 ^0) A Blind Hand Problem
MSC003 ( -1 +0 _0 ^0) Show that the boy, John, has 2 hands
MSC004 ( -1 +0 _0 ^0) Show that the boy, John, has 10 fingers
MSC005 ( -1 +0 _0 ^0) The evaluation of XOR expressions
MSC006 ( -1 +0 _0 ^0) A "non-obvious" problem
MSC007 ( -2 +0 _0 ^1) Cook pigeon-hole problem
MSC008 ( -3 +0 _0 ^0) The (in)constructability of Graeco-Latin Squares
MSC009 ( -1 +1 _0 ^0) Definitions of a family structure
MSC010 ( -0 +1 _0 ^0) Simple, but hard, obligation from proof verification
MSC011 ( -0 +1 _0 ^0) Drinker paradox
MSC012 ( -0 +1 _0 ^0) A serial and transitive relation inconsistent for non-empty domain
MSC013 ( -0 +1 _0 ^0) Single-valued relation between 5-tuple and domain element
MSC014 ( -0 +1 _0 ^0) Find a model with a functional relation which is injective, n=4
MSC015 ( -8 +0 _0 ^0) Binary counter k=05
MSC016 ( -0 +1 _0 ^0) Problem from question answering system
MSC017 ( -0 +1 _0 ^0) Diving has no bad outcomes
MSC018 ( -0 +1 _0 ^0) Problem from an encoding of geography of the USA
MSC019 ( -0 +1 _0 ^0) Mexico is in America
MSC020 ( -0 +0 _0 ^1) TPS problem THM301
MSC021 ( -0 +0 _0 ^1) TPS problem THM300
MSC022 ( -0 +0 _1 ^0) Celcius 37 to Fahrenheit conversion
MSC023 ( -0 +0 _1 ^0) Fahrenheit 451 to Celcius conversion
MSC024 ( -1 +1 _0 ^0) QBFLib problem from the Sorting_networks family
MSC025 ( -0 +0 _0 ^2) Nik's Challenge
MSC026 ( -1 +0 _0 ^0) Sets, numbers, lists, etc, that make up the Isabelle/HOL library
MSC027 ( -1 +0 _0 ^0) Sets, numbers, lists, etc, that make up the Isabelle/HOL library
MSC028 ( -0 +0 _1 ^0) 2 and 3 cents stamps
MSC029 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1963, Problem 6
MSC030 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1964, Problem 4
MSC031 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1972, Problem 1
MSC032 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2003, Problem 1
MSC033 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2014, Problem 2
-------------------------------------------------------------------------------
Domain NLP = Natural Language Processing
531 problems (263 abstract), 258 CNF, 262 FOF, 0 TFF, 11 THF
-------------------------------------------------------------------------------
NLP001 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem
NLP002 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 2
NLP003 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 3
NLP004 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 4
NLP005 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 5
NLP006 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 6
NLP007 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 7
NLP008 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 8
NLP009 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 9
NLP011 ( -1 +1 _0 ^1) "The old dirty white Chevy" problem 11
NLP012 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 12
NLP013 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 13
NLP014 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 14
NLP015 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 15
NLP016 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 16
NLP017 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 17
NLP018 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 18
NLP019 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 19
NLP020 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 20
NLP021 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 21
NLP022 ( -1 +1 _0 ^0) "The old dirty white Chevy" problem 22
NLP023 ( -1 +1 _0 ^0) Mia wants to dance, problem 1
NLP024 ( -1 +1 _0 ^0) Mia wants to dance, problem 2
NLP025 ( -1 +1 _0 ^0) Mia wants to dance, problem 3
NLP026 ( -1 +1 _0 ^0) Three young guys, problem 1
NLP027 ( -1 +1 _0 ^0) Three young guys, problem 2
NLP028 ( -1 +1 _0 ^0) Three young guys, problem 3
NLP029 ( -1 +1 _0 ^0) Three young guys, problem 4
NLP030 ( -1 +1 _0 ^0) Three young guys, problem 5
NLP031 ( -1 +1 _0 ^0) Three young guys, problem 6
NLP032 ( -1 +1 _0 ^0) Three young guys, problem 7
NLP033 ( -1 +1 _0 ^0) Three young guys, problem 8
NLP034 ( -1 +1 _0 ^0) Three young guys, problem 9
NLP035 ( -1 +1 _0 ^0) Three young guys, problem 10
NLP036 ( -1 +1 _0 ^0) Three young guys, problem 11
NLP037 ( -1 +1 _0 ^0) Three young guys, problem 12
NLP038 ( -1 +1 _0 ^0) Three young guys, problem 13
NLP039 ( -1 +1 _0 ^0) Three young guys, problem 14
NLP040 ( -1 +1 _0 ^0) Three young guys, problem 15
NLP041 ( -1 +1 _0 ^0) Three young guys, problem 16
NLP042 ( -1 +1 _0 ^0) Mia ordered a shake, problem 1
NLP043 ( -1 +1 _0 ^0) Mia ordered a shake, problem 2
NLP044 ( -1 +1 _0 ^0) Mia ordered a shake, problem 3
NLP045 ( -1 +1 _0 ^0) Mia ordered a shake, problem 4
NLP046 ( -1 +1 _0 ^0) Mia ordered a shake, problem 5
NLP047 ( -1 +1 _0 ^0) Mia ordered a shake, problem 6
NLP048 ( -1 +1 _0 ^0) Mia ordered a shake, problem 7
NLP049 ( -1 +1 _0 ^0) Mia ordered a shake, problem 7
NLP050 ( -1 +1 _0 ^0) Mia ordered a shake, problem 8
NLP051 ( -1 +1 _0 ^0) Mia ordered a shake, problem 9
NLP052 ( -1 +1 _0 ^0) Mia ordered a shake, problem 10
NLP053 ( -1 +1 _0 ^0) Mia ordered a shake, problem 11
NLP054 ( -1 +1 _0 ^0) Mia ordered a shake, problem 12
NLP055 ( -1 +1 _0 ^0) Mia ordered a shake, problem 13
NLP056 ( -1 +1 _0 ^0) Mia ordered a shake, problem 14
NLP057 ( -1 +1 _0 ^0) Mia ordered a shake, problem 15
NLP058 ( -1 +1 _0 ^0) Mia ordered a shake, problem 16
NLP059 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 1
NLP060 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 2
NLP061 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 3
NLP062 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 4
NLP063 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 5
NLP064 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 6
NLP065 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 7
NLP066 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 8
NLP067 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 8
NLP068 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 9
NLP069 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 10
NLP070 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 11
NLP071 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 12
NLP072 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 13
NLP073 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 14
NLP074 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 15
NLP075 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 15
NLP076 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 16
NLP077 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 17
NLP078 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 18
NLP079 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 19
NLP080 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 20
NLP081 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 21
NLP082 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 22
NLP083 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 23
NLP084 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 24
NLP085 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 25
NLP086 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 26
NLP087 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 27
NLP088 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 28
NLP089 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 29
NLP090 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 30
NLP091 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 31
NLP092 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 32
NLP093 ( -1 +1 _0 ^0) A man comes out of the bathroom, problem 33
NLP094 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 1
NLP095 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 2
NLP096 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 3
NLP097 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 4
NLP098 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 4
NLP099 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 6
NLP100 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 7
NLP101 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 8
NLP102 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 9
NLP103 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 10
NLP104 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 11
NLP105 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 12
NLP106 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 13
NLP107 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 14
NLP108 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 15
NLP109 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 16
NLP110 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 17
NLP111 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 18
NLP112 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 19
NLP113 ( -1 +1 _0 ^0) Every customer in a restaurant, problem 20
NLP114 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 1
NLP115 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 2
NLP116 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 3
NLP117 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 4
NLP118 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 5
NLP119 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 6
NLP120 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 7
NLP121 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 8
NLP122 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 9
NLP123 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 10
NLP124 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 11
NLP125 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 12
NLP126 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 13
NLP127 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 14
NLP128 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 15
NLP129 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 16
NLP130 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 17
NLP131 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 18
NLP132 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 19
NLP133 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 20
NLP134 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 21
NLP135 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 22
NLP136 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 23
NLP137 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 24
NLP138 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 25
NLP139 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 26
NLP140 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 27
NLP141 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 28
NLP142 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 29
NLP143 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 30
NLP144 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 31
NLP145 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 32
NLP146 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 33
NLP147 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 34
NLP148 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 35
NLP149 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 36
NLP150 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 37
NLP151 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 38
NLP152 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 39
NLP153 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 40
NLP154 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 41
NLP155 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 42
NLP156 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 43
NLP157 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 44
NLP158 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 45
NLP159 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 46
NLP160 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 47
NLP161 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 48
NLP162 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 49
NLP163 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 50
NLP164 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 51
NLP165 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 52
NLP166 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 53
NLP167 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 54
NLP168 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 55
NLP169 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 56
NLP170 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 57
NLP171 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 58
NLP172 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 59
NLP173 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 60
NLP174 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 61
NLP175 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 62
NLP176 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 63
NLP177 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 64
NLP178 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 65
NLP179 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 66
NLP180 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 67
NLP181 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 68
NLP182 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 69
NLP183 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 70
NLP184 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 71
NLP185 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 72
NLP186 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 73
NLP187 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 74
NLP188 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 75
NLP189 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 76
NLP190 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 77
NLP191 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 78
NLP192 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 79
NLP193 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 80
NLP194 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 81
NLP195 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 82
NLP196 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 83
NLP197 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 84
NLP198 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 85
NLP199 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 86
NLP200 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 87
NLP201 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 88
NLP202 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 89
NLP203 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 90
NLP204 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 91
NLP205 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 92
NLP206 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 93
NLP207 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 94
NLP208 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 95
NLP209 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 96
NLP210 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 97
NLP211 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 98
NLP212 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 99
NLP213 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 100
NLP214 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 101
NLP215 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 102
NLP216 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 103
NLP217 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 104
NLP218 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 105
NLP219 ( -1 +1 _0 ^0) An old dirty white Chevy, problem 106
NLP220 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 1
NLP221 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 2
NLP222 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 3
NLP223 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 4
NLP224 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 5
NLP225 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 6
NLP226 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 7
NLP227 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 8
NLP228 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 9
NLP229 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 10
NLP230 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 11
NLP231 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 12
NLP232 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 13
NLP233 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 14
NLP234 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 15
NLP235 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 16
NLP236 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 17
NLP237 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 18
NLP238 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 19
NLP239 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 20
NLP240 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 21
NLP241 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 22
NLP242 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 23
NLP243 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 24
NLP244 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 25
NLP245 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 26
NLP246 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 27
NLP247 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 28
NLP248 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 29
NLP249 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 30
NLP250 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 31
NLP251 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 32
NLP252 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 33
NLP253 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 34
NLP254 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 35
NLP255 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 36
NLP256 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 37
NLP257 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 38
NLP258 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 39
NLP259 ( -1 +1 _0 ^0) Vincent believes that every man smokes, problem 40
NLP260 ( -0 +1 _0 ^0) Cytogeneticist is a hyponym of biologist
NLP261 ( -0 +1 _0 ^0) Cytogeneticist is a hyponym of scientist
NLP262 ( -0 +1 _0 ^0) Cytogeneticist is a hyponym of individual
NLP263 ( -0 +1 _0 ^0) Satisfiability of WordNet axioms
NLP264 ( -0 +0 _0 ^1) Belief Change in man-machine-dialogues
-------------------------------------------------------------------------------
Domain NUM = Number Theory
1442 problems (953 abstract), 321 CNF, 641 FOF, 157 TFF, 323 THF
-------------------------------------------------------------------------------
NUM001 ( -1 +0 _0 ^0) (A + B) + C = A + (B + C)
NUM002 ( -1 +0 _0 ^0) (X - Y) + Z = X + (Z - Y)
NUM003 ( -1 +0 _0 ^0) A + (B - C) = (A - C) + B
NUM004 ( -1 +0 _0 ^0) (A + B) - C = A + (B - C)
NUM005 ( -1 +0 _0 ^0) Greatest Common Divisor
NUM006 ( -1 +0 _0 ^0) Goldbach conjecture
NUM007 ( -1 +0 _0 ^0) Least Common Multiple
NUM008 ( -1 +0 _0 ^0) Peano axiom 0
NUM009 ( -1 +0 _0 ^0) Peano axiom 1
NUM010 ( -1 +0 _0 ^0) Peano axiom 2
NUM011 ( -1 +0 _0 ^0) Peano axiom 3
NUM012 ( -1 +0 _0 ^0) Peano axiom 4
NUM013 ( -1 +0 _0 ^0) Peano axiom 5
NUM014 ( -1 +0 _0 ^0) If a is a prime and a = b^2/c^2 then a divides b
NUM015 ( -1 +0 _0 ^0) Any number greater than 1 has a prime divisor
NUM016 ( -2 +0 _0 ^1) There exist infinitely many primes
NUM017 ( -2 +0 _0 ^0) Square root of this prime is irrational
NUM018 ( -1 +0 _0 ^0) There is an infinite number of twin prime numbers
NUM019 ( -1 +0 _0 ^0) Symmetry of equality can be derived
NUM020 ( -1 +0 _0 ^1) a + 1 = successor(a)
NUM021 ( -1 +0 _0 ^1) If a <= b < c, then c cannot divide a
NUM022 ( -1 +0 _0 ^0) Numerator divisble by smaller denominators
NUM023 ( -1 +0 _0 ^0) Zero is less than all successor numbers
NUM024 ( -1 +0 _0 ^0) No number is less than itself
NUM025 ( -2 +0 _0 ^0) If a<b then not b<a
NUM026 ( -1 +0 _0 ^0) Less preserved over multiplication by a number
NUM027 ( -1 +0 _0 ^0) If a >= b and b*c <= a*c, then c = 0
NUM028 ( -1 +0 _0 ^0) Symmetrization property 1
NUM029 ( -1 +0 _0 ^0) Symmetrization property 2
NUM030 ( -1 +0 _0 ^0) Symmetrization property 3
NUM031 ( -1 +0 _0 ^0) Symmetrization property 4
NUM032 ( -1 +0 _0 ^0) Symmetrization property 5
NUM033 ( -1 +0 _0 ^0) Symmetrization property 6
NUM034 ( -1 +0 _0 ^0) Symmetrization is idempotent
NUM035 ( -1 +0 _0 ^0) Domain equals range of symmetrization
NUM036 ( -1 +0 _0 ^0) Symmetrization property 7
NUM037 ( -1 +0 _0 ^0) Symmetrization property 8
NUM038 ( -1 +0 _0 ^0) Symmetrization property 9
NUM039 ( -1 +0 _0 ^0) Irreflexive class property 1
NUM040 ( -1 +0 _0 ^0) Irreflexive class property 2
NUM041 ( -1 +0 _0 ^0) Irreflexive class property 3
NUM042 ( -1 +0 _0 ^0) Irreflexive class property 4
NUM043 ( -1 +0 _0 ^0) Irreflexive class property 5
NUM044 ( -1 +0 _0 ^0) Irreflexive class property 6
NUM045 ( -1 +0 _0 ^0) Irreflexive class property 7
NUM046 ( -1 +0 _0 ^0) Connected class property 1
NUM047 ( -1 +0 _0 ^0) Connected class property 2
NUM048 ( -1 +0 _0 ^0) Connected class property 3
NUM049 ( -1 +0 _0 ^0) Connected class property 4
NUM050 ( -1 +0 _0 ^0) Connected class property 5
NUM051 ( -1 +0 _0 ^0) Everything is connected to the null class
NUM052 ( -1 +0 _0 ^0) Transitive ordering property 1
NUM053 ( -1 +0 _0 ^0) Transitive ordering property 2
NUM054 ( -1 +0 _0 ^0) Asymmetric class property 1
NUM055 ( -1 +0 _0 ^0) Asymmetric class property 2
NUM056 ( -1 +0 _0 ^0) Asymmetric class property 3
NUM057 ( -1 +0 _0 ^0) Segments property 1
NUM058 ( -1 +0 _0 ^0) Segments property 2
NUM059 ( -1 +0 _0 ^0) Segments property 3
NUM060 ( -1 +0 _0 ^0) Segments property 4
NUM061 ( -1 +0 _0 ^0) Segments property 5
NUM062 ( -1 +0 _0 ^0) Segments property 6
NUM063 ( -1 +0 _0 ^0) Segments property 7
NUM064 ( -1 +0 _0 ^0) Least(xr,u) is unique
NUM065 ( -1 +0 _0 ^0) Well ordering property 1
NUM066 ( -1 +0 _0 ^0) Corollary to well ordering property 1
NUM067 ( -1 +0 _0 ^0) Well ordering property 2
NUM068 ( -1 +0 _0 ^0) Well ordering property 3
NUM069 ( -1 +0 _0 ^0) Corollary to well ordering property 3
NUM070 ( -1 +0 _0 ^0) A well-order is asymmetric
NUM071 ( -1 +0 _0 ^0) Well ordering is irreflexive
NUM072 ( -1 +0 _0 ^0) Well ordering property 4
NUM073 ( -1 +0 _0 ^0) Corollary to well ordering property 4
NUM074 ( -1 +0 _0 ^0) Well ordering property 5
NUM075 ( -1 +0 _0 ^0) Well ordering property 6
NUM076 ( -1 +0 _0 ^0) Well ordering property 7
NUM077 ( -1 +0 _0 ^0) Corollary 1 to well ordering property 7
NUM078 ( -1 +0 _0 ^0) Corollary 2 to well ordering property 7
NUM079 ( -1 +0 _0 ^0) Well ordering property 8
NUM080 ( -1 +0 _0 ^0) Well ordering property 9
NUM081 ( -1 +0 _0 ^0) Corollary to well ordering property 9
NUM082 ( -1 +0 _0 ^0) Uniqueness of the least element of a non-empty subset
NUM083 ( -1 +0 _0 ^0) Transitive class property 1
NUM084 ( -1 +0 _0 ^0) Alternate transitive class definition, part 1
NUM085 ( -1 +0 _0 ^0) Alternate transitive class definition, part 2
NUM086 ( -1 +0 _0 ^0) Transitive class property 2
NUM087 ( -1 +0 _0 ^0) Transitive class property 3
NUM088 ( -1 +0 _0 ^0) Transitive class property 4
NUM089 ( -1 +0 _0 ^0) Sections property 1
NUM090 ( -1 +0 _0 ^0) Corollary to sections property 1
NUM091 ( -1 +0 _0 ^0) Sections property 2
NUM092 ( -1 +0 _0 ^0) Corollary 1 to sections property 2
NUM093 ( -1 +0 _0 ^0) Corollary 2 to sections property 2
NUM094 ( -1 +0 _0 ^0) Sections property 3
NUM095 ( -1 +0 _0 ^0) Sections property 4
NUM096 ( -1 +0 _0 ^0) Sections property 5
NUM097 ( -1 +0 _0 ^0) Corollary to sections property 5
NUM098 ( -1 +0 _0 ^0) Ordinal property 1
NUM099 ( -1 +0 _0 ^0) Corollary to ordinal property 1
NUM100 ( -1 +0 _0 ^0) Ordinal property 2
NUM101 ( -1 +0 _0 ^0) Ordinal property 3
NUM102 ( -1 +0 _0 ^0) Ordinal property 4
NUM103 ( -1 +0 _0 ^0) Corollary to ordinal property 4
NUM104 ( -1 +0 _0 ^0) Ordinal property 5
NUM105 ( -1 +0 _0 ^0) Ordinal property 6
NUM106 ( -1 +0 _0 ^0) Ordinal property 7
NUM107 ( -1 +0 _0 ^0) Ordinal property 8
NUM108 ( -1 +0 _0 ^0) Ordinal property 9
NUM109 ( -1 +0 _0 ^0) Ordinal property 10
NUM110 ( -1 +0 _0 ^0) Corollary to ordinal property 10
NUM111 ( -1 +0 _0 ^0) Ordinal property 11
NUM112 ( -1 +0 _0 ^0) Ordinal property 12
NUM113 ( -1 +0 _0 ^0) Ordinal property 13
NUM114 ( -1 +0 _0 ^0) Corollary to ordinal property 13
NUM115 ( -1 +0 _0 ^0) The class of ordinals is not a set.
NUM116 ( -1 +0 _0 ^0) Corollary to the class of ordinals is not set
NUM117 ( -1 +0 _0 ^0) Corollary to ordinal class and numbers
NUM118 ( -1 +0 _0 ^0) Ordinal property 14
NUM119 ( -1 +0 _0 ^0) Corollary to transitive class property 4
NUM120 ( -1 +0 _0 ^0) Transfinite induction, part 1
NUM121 ( -1 +0 _0 ^0) Transfinite induction, part 2
NUM122 ( -1 +0 _0 ^0) Transfinite induction, part 3
NUM123 ( -1 +0 _0 ^0) Alternate transfinite induction 3
NUM124 ( -1 +0 _0 ^0) Condensed statement of transfinite induction
NUM125 ( -1 +0 _0 ^0) Complete induction upto omega
NUM126 ( -1 +0 _0 ^0) Alternate 1 for transfinite induction, part 1
NUM127 ( -1 +0 _0 ^0) Alternate 1 for transfinite induction, part 2
NUM128 ( -1 +0 _0 ^0) Alternate 1 for transfinite induction, part 3
NUM129 ( -1 +0 _0 ^0) Alternate 2 for transfinite induction, part 1
NUM130 ( -1 +0 _0 ^0) Alternate 2 for transfinite induction, part 2
NUM131 ( -1 +0 _0 ^0) Alternate 2 for transfinite induction, part 3
NUM132 ( -1 +0 _0 ^0) Union of successor relation ordinal
NUM133 ( -1 +0 _0 ^0) Corollary to union of successor ordinal
NUM134 ( -1 +0 _0 ^0) Successor relation of an ordinal is an ordinal
NUM135 ( -1 +0 _0 ^0) The null class is the smallest ordinal
NUM136 ( -1 +0 _0 ^0) Transitivity of ordinals
NUM137 ( -1 +0 _0 ^0) Condition 1 for complete induction
NUM138 ( -1 +0 _0 ^0) Condition 2 for complete induction
NUM139 ( -1 +0 _0 ^0) Condition 3 for complete induction
NUM140 ( -1 +0 _0 ^0) The successor of a set is a set, part 1
NUM141 ( -1 +0 _0 ^0) The successor of a set is a set, part 2
NUM142 ( -1 +0 _0 ^0) The successor of a set is a set, part 3
NUM143 ( -1 +0 _0 ^0) Corollary to the successor of a set being a set
NUM144 ( -1 +0 _0 ^0) The successor of a proper class is a class
NUM145 ( -1 +0 _0 ^0) Corollary to the successor of a proper class being a class
NUM146 ( -1 +0 _0 ^0) The successor of a transitive set is transitive
NUM147 ( -1 +0 _0 ^0) The successor of an ordinal is an ordinal
NUM148 ( -1 +0 _0 ^0) The predecessor of an ordinal is an ordinal
NUM149 ( -1 +0 _0 ^0) Successor property 1
NUM150 ( -1 +0 _0 ^0) Corollary 1 to successor property 1
NUM151 ( -1 +0 _0 ^0) Corollary 2 to successor property 1
NUM152 ( -1 +0 _0 ^0) Corollary 3 to successor property 1
NUM153 ( -1 +0 _0 ^0) Corollary 4 to successor property 1
NUM154 ( -1 +0 _0 ^0) Corollary 5 to successor property 1
NUM155 ( -1 +0 _0 ^0) There is no ordinal between x and x + 1
NUM156 ( -1 +0 _0 ^0) Membership condition 1 for kind 1 ordinals
NUM157 ( -1 +0 _0 ^0) Membership condition 2 for kind 1 ordinals
NUM158 ( -1 +0 _0 ^0) Membership condition 3 for kind 1 ordinals
NUM159 ( -1 +0 _0 ^0) Membership condition 4 for kind 1 ordinals
NUM160 ( -1 +0 _0 ^0) Kind 1 ordinals is a class of ordinals
NUM161 ( -1 +0 _0 ^0) Corollary to kind 1 ordinals being a class of ordinals
NUM162 ( -1 +0 _0 ^0) Successor property 2
NUM163 ( -1 +0 _0 ^0) Inductive is closed under union
NUM164 ( -1 +0 _0 ^0) Inductive is closed under intersection
NUM165 ( -1 +0 _0 ^0) Corollary to omega definition, part 1
NUM166 ( -1 +0 _0 ^0) Corollary to omega definition, part 2
NUM167 ( -1 +0 _0 ^0) Successor property 3
NUM168 ( -1 +0 _0 ^0) Corollary to successor property 3
NUM169 ( -1 +0 _0 ^0) Successor property 4
NUM170 ( -1 +0 _0 ^0) Successor property 5
NUM171 ( -1 +0 _0 ^0) Successor property 6
NUM172 ( -1 +0 _0 ^0) The successor relation of a set is different from the set
NUM173 ( -1 +0 _0 ^0) Successor property 7
NUM174 ( -1 +0 _0 ^0) Successor property 8
NUM175 ( -1 +0 _0 ^0) Successor property 9
NUM176 ( -1 +0 _0 ^0) Successor property 10
NUM177 ( -1 +0 _0 ^0) Condition 1 for a class to be inductive
NUM178 ( -1 +0 _0 ^0) Condition 2 for a class to be inductive
NUM179 ( -1 +0 _0 ^0) Condition 3 for a class to be inductive
NUM180 ( -1 +0 _0 ^0) Limit ordinals are ordinals
NUM181 ( -1 +0 _0 ^0) The null class is not a limit ordinal
NUM182 ( -1 +0 _0 ^0) Only limit ordinals equal their successors
NUM183 ( -1 +0 _0 ^0) Ordinals are either kind 1 or limit
NUM184 ( -1 +0 _0 ^0) Corollary to ordinals are either kind 1 or limit
NUM185 ( -1 +0 _0 ^0) Limit ordinals are not members
NUM186 ( -1 +0 _0 ^0) Omega property 1
NUM187 ( -1 +0 _0 ^0) Lemma for successor property 8
NUM188 ( -1 +0 _0 ^0) Omega is transitive
NUM189 ( -1 +0 _0 ^0) Omega is an ordinal
NUM190 ( -1 +0 _0 ^0) Omega is not the null class
NUM191 ( -1 +0 _0 ^0) Omega is a limit ordinal
NUM192 ( -1 +0 _0 ^0) Omega is the smallest limit ordinal
NUM193 ( -1 +0 _0 ^0) The sum of ordinals is an ordinal
NUM194 ( -1 +0 _0 ^0) The union of a class of ordinals is a class of ordinals
NUM195 ( -1 +0 _0 ^0) The union of a class of ordinals is transitive
NUM196 ( -1 +0 _0 ^0) The union of a set of ordinals is an ordinal
NUM197 ( -1 +0 _0 ^0) The union of a proper class of ordinals is the class of ordinals
NUM198 ( -1 +0 _0 ^0) The union of a set of ordinals is >= each ordinal in the set
NUM199 ( -1 +0 _0 ^0) Least upper bound property 1
NUM200 ( -1 +0 _0 ^0) If every element of x is <= y, then sum class(x) <= y
NUM201 ( -1 +0 _0 ^0) Least upper bound property 3
NUM202 ( -1 +0 _0 ^0) If the lub of a set of ordinals is a successor, it's in the set
NUM203 ( -1 +0 _0 ^0) Corollary to least upper bound being a successor relation
NUM204 ( -1 +0 _0 ^0) Least upper bound property 5
NUM205 ( -1 +0 _0 ^0) Corollary 1 to least upper bound property 5
NUM206 ( -1 +0 _0 ^0) Corollary 2 to least upper bound property 5
NUM207 ( -1 +0 _0 ^0) Least upper bound property 6
NUM208 ( -1 +0 _0 ^0) Least upper bound property 7
NUM209 ( -1 +0 _0 ^0) Corollary to least upper bound property 7
NUM210 ( -1 +0 _0 ^0) Lemma 1 for least upper bound property 8
NUM211 ( -1 +0 _0 ^0) Lemma 2 for least upper bound property 8
NUM212 ( -1 +0 _0 ^0) Lemma 3 for least upper bound property 8
NUM213 ( -1 +0 _0 ^0) Alternate 3 for transfinite induction
NUM214 ( -1 +0 _0 ^0) Induction up to y
NUM215 ( -1 +0 _0 ^0) Corollary to induction upto y
NUM216 ( -1 +0 _0 ^0) Corollary 1 to rest definition
NUM217 ( -1 +0 _0 ^0) Corollary 2 to rest definition
NUM218 ( -1 +0 _0 ^0) Rest of is a function
NUM219 ( -1 +0 _0 ^0) The domain of rest_of(X) is the domain of X
NUM220 ( -1 +0 _0 ^0) Corollary to the domain of rest_of(X) being the domain of X
NUM221 ( -1 +0 _0 ^0) Rest_of property 1
NUM222 ( -1 +0 _0 ^0) Rest_of is monotonic.
NUM223 ( -1 +0 _0 ^0) Rest relation is a function
NUM224 ( -1 +0 _0 ^0) Rest relation property 1
NUM225 ( -1 +0 _0 ^0) Rest relation property 2
NUM226 ( -1 +0 _0 ^0) Rest relation property 3
NUM227 ( -1 +0 _0 ^0) Rest relation property 4
NUM228 ( -1 +0 _0 ^0) Corollary to recursion equation functions definition
NUM229 ( -1 +0 _0 ^0) Transfinite recursion lemma 0
NUM230 ( -1 +0 _0 ^0) Transfinite recursion lemma 1
NUM231 ( -1 +0 _0 ^0) Transfinite recursion lemma 2
NUM232 ( -1 +0 _0 ^0) Transfinite recursion lemma 3
NUM233 ( -1 +0 _0 ^0) Transfinite recursion lemma 4
NUM234 ( -1 +0 _0 ^0) Transfinite recursion lemma 5
NUM235 ( -1 +0 _0 ^0) Transfinite recursion lemma 6
NUM236 ( -1 +0 _0 ^0) Corollary 1 to transfinite recursion lemma 6
NUM237 ( -1 +0 _0 ^0) Corollary 2 to transfinite recursion lemma 6
NUM238 ( -1 +0 _0 ^0) Transfinite recursion lemma 7
NUM239 ( -1 +0 _0 ^0) Transfinite recursion lemma 8
NUM240 ( -1 +0 _0 ^0) Transfinite recursion lemma 9.1
NUM241 ( -1 +0 _0 ^0) Transfinite recursion lemma 9.2
NUM242 ( -1 +0 _0 ^0) Transfinite recursion lemma 9.3
NUM243 ( -1 +0 _0 ^0) Transfinite recursion lemma 10
NUM244 ( -1 +0 _0 ^0) Transfinite recursion lemma 11
NUM245 ( -2 +0 _0 ^0) Transfinite recursion property 1
NUM246 ( -2 +0 _0 ^0) Transfinite recursion property 2
NUM247 ( -2 +0 _0 ^0) Transfinite recursion property 3
NUM248 ( -2 +0 _0 ^0) Transfinite recursion property 4
NUM249 ( -2 +0 _0 ^0) Transfinite recursion property 5
NUM250 ( -2 +0 _0 ^0) Transfinite recursion property 6
NUM251 ( -2 +0 _0 ^0) Transfinite recursion property 7
NUM252 ( -2 +0 _0 ^0) Transfinite recursion property 8
NUM253 ( -2 +0 _0 ^0) Transfinite recursion property 9
NUM254 ( -2 +0 _0 ^0) Transfinite recursion property 10
NUM255 ( -2 +0 _0 ^0) Transfinite recursion property 11
NUM256 ( -2 +0 _0 ^0) Transfinite recursion property 12
NUM257 ( -2 +0 _0 ^0) Transfinite recursion property 13
NUM258 ( -2 +0 _0 ^0) Transfinite recursion property 14
NUM259 ( -2 +0 _0 ^0) The uniqueness of the function defined by transfinite recursion
NUM260 ( -2 +0 _0 ^0) Alternate 4 for transfinite induction, part 1
NUM261 ( -2 +0 _0 ^0) Alternate 4 for transfinite induction, part 2
NUM262 ( -2 +0 _0 ^0) Alternate 4 for transfinite induction, part 3
NUM263 ( -2 +0 _0 ^0) Alternate 4 for transfinite induction, part 4
NUM264 ( -2 +0 _0 ^0) Alternate 4 for transfinite induction, part 5
NUM265 ( -1 +0 _0 ^0) Ordinal addition property 1
NUM266 ( -1 +0 _0 ^0) Ordinal addition property 2
NUM267 ( -1 +0 _0 ^0) Ordinal addition property 3
NUM268 ( -1 +0 _0 ^0) Ordinal addition property 4
NUM269 ( -1 +0 _0 ^0) Ordinal addition property 5
NUM270 ( -1 +0 _0 ^0) Ordinal addition property 6
NUM271 ( -1 +0 _0 ^0) Lemma 1 for ordinal addition property 7
NUM272 ( -1 +0 _0 ^0) Lemma 2 for ordinal addition property 7
NUM273 ( -1 +0 _0 ^0) Lemma 3 for ordinal addition property 7
NUM274 ( -1 +0 _0 ^0) Lemma 4 for ordinal addition property 7
NUM275 ( -1 +0 _0 ^0) Lemma 5 for ordinal addition property 7
NUM276 ( -1 +0 _0 ^0) Lemma 6 for ordinal addition property 7
NUM277 ( -2 +0 _0 ^0) Ordinal addition property 7_1
NUM278 ( -1 +0 _0 ^0) Ordinal addition property 7_2
NUM279 ( -1 +0 _0 ^0) Ordinal addition property 8
NUM280 ( -1 +0 _0 ^0) Ordinal multiplication property 1
NUM281 ( -1 +0 _0 ^0) Ordinal multiplication property 2
NUM282 ( -1 +0 _0 ^0) Ordinal multiplication property 3
NUM283 ( -1 +0 _0 ^0) Calculation of factorial
NUM284 ( -1 +0 _0 ^0) Calculation of fibonacci numbers
NUM285 ( -1 +0 _0 ^0) a0 + ... + a5 = b1 + ... + b5, expression in logic
NUM286 ( -3 +0 _0 ^0) Number theory axioms
NUM287 ( -1 +0 _0 ^0) Number theory less axioms
NUM288 ( -1 +0 _0 ^0) Number theory div axioms
NUM289 ( -1 +0 _0 ^0) Number theory (ordinals) axioms, based on NBG set theory
NUM290 ( -0 +1 _0 ^0) 2 < 3
NUM291 ( -0 +1 _0 ^0) 3 !< 2
NUM292 ( -0 +1 _0 ^0) 2 < 13
NUM293 ( -0 +1 _0 ^0) ? < 13
NUM294 ( -0 +1 _0 ^0) 12 < ?
NUM295 ( -0 +1 _0 ^0) ? < ?
NUM296 ( -0 +1 _0 ^0) -2 < 2
NUM297 ( -0 +1 _0 ^0) -4 < -2
NUM298 ( -0 +1 _0 ^0) 2 !< -2
NUM299 ( -0 +1 _0 ^0) -2 !< -4
NUM300 ( -0 +1 _0 ^0) ? < 0
NUM301 ( -0 +1 _0 ^0) ? < -2
NUM302 ( -0 +1 _0 ^0) -2 < ?
NUM303 ( -0 +1 _0 ^0) 31 != 21
NUM304 ( -0 +1 _0 ^0) ? != 12
NUM305 ( -0 +1 _0 ^0) 2 + 3 = 5
NUM306 ( -0 +1 _0 ^0) 23 + 34 = 57
NUM307 ( -0 +1 _0 ^0) 23 + 34 = ?
NUM308 ( -0 +1 _0 ^0) ? + 23 = 34
NUM309 ( -0 +1 _0 ^0) 23 + ? = 34
NUM310 ( -0 +1 _0 ^0) 2 + 3 != 6
NUM311 ( -0 +1 _0 ^0) 2 + 3 = only 5
NUM312 ( -0 +1 _0 ^0) only 2 + 3 = 5
NUM313 ( -0 +1 _0 ^0) 2 + only 3 = 5
NUM314 ( -0 +1 _0 ^0) Show upper boundary
NUM315 ( -0 +1 _0 ^0) -2 + -5 = -7
NUM316 ( -0 +1 _0 ^0) 2 + -5 = -3
NUM317 ( -0 +1 _0 ^0) 5 + -2 = 3
NUM318 ( -0 +1 _0 ^0) 5 + -5 = 0
NUM319 ( -0 +1 _0 ^0) -2 + -5 = ?
NUM320 ( -0 +1 _0 ^0) 2 + -5 = ?
NUM321 ( -0 +1 _0 ^0) 5 + -2 = ?
NUM322 ( -0 +1 _0 ^0) 5 + -5 = ?
NUM323 ( -0 +1 _0 ^0) ? + -5 = -7
NUM324 ( -0 +1 _0 ^0) ? + -5 = -3
NUM325 ( -0 +1 _0 ^0) ? + -2 = 3
NUM326 ( -0 +1 _0 ^0) ? + -5 = 0
NUM327 ( -0 +1 _0 ^0) ? + 0 = ?
NUM328 ( -0 +1 _0 ^0) ?1 + ? = ?1
NUM329 ( -0 +1 _0 ^0) ? + ? = ?
NUM330 ( -0 +1 _0 ^0) XY (X+Y = 8) & X = 4 & Y = 4
NUM331 ( -0 +1 _0 ^0) 6 + 7 = 7 + 6
NUM332 ( -0 +1 _0 ^0) (2 + 3) + 6 = 2 + (3 + 6)
NUM333 ( -0 +1 _0 ^0) ! XYZ, ((X+Y)+Z) = (X+(Y+Z))
NUM334 ( -0 +1 _0 ^0) 7 - 5 = 2
NUM335 ( -0 +1 _0 ^0) 5 - 3 = only 2
NUM336 ( -0 +1 _0 ^0) only 5 - 2 = 3
NUM337 ( -0 +1 _0 ^0) 5 - only 3 = 2
NUM338 ( -0 +1 _0 ^0) 5 - 3 = only 2
NUM339 ( -0 +1 _0 ^0) Show lower boundary
NUM340 ( -0 +1 _0 ^0) ? - 0 = ?
NUM341 ( -0 +1 _0 ^0) x + y = z <=> z - y = x & z - x = y
NUM342 ( -0 +1 _0 ^0) XY (X + Y = 8) => X - Y = 0
NUM343 ( -0 +1 _0 ^0) -1 < ? & ? < 1 => 21 + ? = 21
NUM344 ( -0 +1 _0 ^0) x+1 = z => z > x
NUM345 ( -0 +1 _0 ^0) 2 + 3 < 6
NUM346 ( -0 +1 _0 ^0) 2 + 3 > 4
NUM347 ( -0 +1 _0 ^0) 2 + 2 = 5
NUM348 ( -0 +1 _0 ^0) X (127 + 1 = X)
NUM349 ( -0 +1 _0 ^0) X (-128 - 1 = X)
NUM350 ( -0 +1 _0 ^0) !XY, (X + X) = Y
NUM351 ( -0 +1 _0 ^0) XY (X + Y) = X
NUM352 ( -0 +1 _0 ^0) ?XY (X+Y) != (X+Y)
NUM353 ( -0 +1 _0 ^0) XYZ ((X+Y)+Z) != (Z+X)+Y)
NUM354 ( -0 +1 _0 ^0) ? != 0 such that ? + ? = 0
NUM355 ( -0 +1 _0 ^0) XY (X+Y = 8) => X = 4, Y = 4
NUM356 ( -0 +1 _0 ^0) ? + 0 != ?
NUM357 ( -0 +1 _0 ^0) ?X (X + 0 != X)
NUM358 ( -0 +1 _0 ^0) !X (X + X = X)
NUM359 ( -0 +1 _0 ^0) !X (X + X != X)
NUM360 ( -0 +1 _0 ^0) ?XY (X + Y = 8) => X - Y = 1
NUM361 ( -0 +1 _0 ^0) !XY (X+Y = 8) => X - Y = 1,
NUM362 ( -0 +1 _0 ^0) !XY (X+Y = 8) => X - Y = 0
NUM363 ( -0 +1 _0 ^0) if (X+Y) = Z then Z > X & Z > Y
NUM364 ( -0 +1 _0 ^0) !XY (X + Y > X - Y)
NUM365 ( -0 +1 _0 ^0) !XY (X - Y > X + Y)
NUM366 ( -0 +1 _0 ^0) 2 + 3 > 7
NUM367 ( -0 +1 _0 ^0) ?XY (X + Y != Y + X)
NUM368 ( -0 +1 _0 ^0) ! - ! = 0
NUM369 ( -0 +1 _0 ^0) ! + 0 = !
NUM370 ( -0 +1 _0 ^0) 0 + ! = !
NUM371 ( -0 +1 _0 ^0) if (X - Y) = Z and Z > 0, then X > Y
NUM372 ( -0 +1 _0 ^0) if (X - Y) = 0, then X = Y
NUM373 ( -0 +1 _0 ^0) ?XYZ, (X+Y) = (Y+X)
NUM374 ( -0 +4 _0 ^0) Disprove Wilkie identity from Tarski's identities
NUM375 ( -0 +5 _0 ^0) Find assignment that goes out of range 0-10, medium difficulty
NUM376 ( -0 +5 _0 ^0) Find assignment in 0-10 to satisfy inequality, hard
NUM377 ( -0 +5 _0 ^0) Find assignment in 0-10 to satisfy inequalities, very hard
NUM378 ( -0 +7 _0 ^0) Find assignment in 0-10 to satisfy 10 inequalities, very very hard
NUM380 ( -0 +1 _0 ^0) Ordinal numbers, theorem 4
NUM381 ( -0 +1 _0 ^0) Ordinal numbers, theorem 5
NUM382 ( -0 +1 _0 ^0) Ordinal numbers, theorem 6
NUM383 ( -0 +1 _0 ^0) Ordinal numbers, theorem 7
NUM385 ( -0 +1 _0 ^0) Ordinal numbers, theorem 12
NUM386 ( -0 +1 _0 ^0) Ordinal numbers, theorem 13
NUM387 ( -0 +1 _0 ^0) Ordinal numbers, theorem 14
NUM388 ( -0 +1 _0 ^0) Ordinal numbers, theorem 19
NUM390 ( -0 +1 _0 ^0) Ordinal numbers, theorem 22
NUM393 ( -0 +1 _0 ^0) Ordinal numbers, theorem 25
NUM394 ( -0 +1 _0 ^0) Ordinal numbers, theorem 26
NUM395 ( -0 +1 _0 ^0) Ordinal numbers, theorem 27
NUM396 ( -0 +1 _0 ^0) Ordinal numbers, theorem 29
NUM397 ( -0 +1 _0 ^0) Ordinal numbers, theorem 30
NUM401 ( -0 +1 _0 ^0) Ordinal numbers, theorem 34
NUM402 ( -0 +1 _0 ^0) Ordinal numbers, theorem 35
NUM403 ( -0 +1 _0 ^0) Ordinal numbers, theorem 36
NUM404 ( -0 +1 _0 ^0) Ordinal numbers, theorem 37
NUM405 ( -0 +1 _0 ^0) Ordinal numbers, theorem 38
NUM406 ( -0 +1 _0 ^0) Ordinal numbers, theorem 39
NUM409 ( -0 +1 _0 ^0) Ordinal numbers, theorem 45
NUM410 ( -0 +1 _0 ^0) Ordinal numbers, theorem 46
NUM411 ( -0 +1 _0 ^0) Ordinal numbers, theorem 47
NUM412 ( -0 +1 _0 ^0) Ordinal numbers, theorem 48
NUM413 ( -0 +1 _0 ^0) Ordinal numbers, theorem 49
NUM414 ( -0 +1 _0 ^0) Ordinal numbers, theorem 50
NUM415 ( -0 +0 _0 ^1) 2 * (3 + 7) = (2 * 5) * (1 + 1)
NUM416 ( -0 +0 _0 ^1) 10 * (10 * 10) = (10 + 10) * (5 * 10)
NUM417 ( -0 +0 _0 ^1) (10 * 10) * (10 * 10) = ((10 * 10) * 10) * 10
NUM418 ( -0 +0 _0 ^1) Find N such that N + 3 = 3
NUM419 ( -0 +0 _0 ^1) Find N such that N + 3 = 4
NUM420 ( -6 +0 _0 ^0) Prime 0
NUM421 ( -0 +1 _0 ^0) Fuerstenberg's infinitude of primes 01, 00 expansion
NUM422 ( -0 +1 _0 ^0) Fuerstenberg's infinitude of primes 02, 00 expansion
NUM423 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 03, 00 expansion
NUM424 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 04, 00 expansion
NUM425 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 04_01, 00 expansion
NUM426 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 04_02, 00 expansion
NUM427 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 04_03, 00 expansion
NUM428 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 05, 00 expansion
NUM429 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 05_01, 00 expansion
NUM430 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 05_02, 00 expansion
NUM431 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 05_03, 00 expansion
NUM432 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 05_04, 00 expansion
NUM433 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 06, 00 expansion
NUM434 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 06_01, 00 expansion
NUM435 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 06_02, 00 expansion
NUM436 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 06_03, 00 expansion
NUM437 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 07, 00 expansion
NUM438 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 08, 00 expansion
NUM439 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 09+, 00 expansion
NUM440 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 09_01, 00 expansion
NUM441 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 09_02, 00 expansion
NUM442 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 10, 00 expansion
NUM443 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 10_01, 00 expansion
NUM444 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 10_02, 00 expansion
NUM445 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11+, 00 expansion
NUM446 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_01, 00 expansion
NUM447 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_01_01, 00 expansion
NUM448 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_01_02, 00 expansion
NUM449 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_02, 00 expansion
NUM450 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_03, 00 expansion
NUM451 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_04, 00 expansion
NUM452 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_04_01, 00 expansion
NUM453 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_04_02, 00 expansion
NUM454 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_04_03, 00 expansion
NUM455 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_04_04, 00 expansion
NUM456 ( -0 +2 _0 ^0) Fuerstenberg's infinitude of primes 11_05, 00 expansion
NUM457 ( -0 +1 _0 ^0) Square root of a prime is irrational 01, 00 expansion
NUM458 ( -0 +2 _0 ^0) Square root of a prime is irrational 02, 00 expansion
NUM459 ( -0 +2 _0 ^0) Square root of a prime is irrational 03, 00 expansion
NUM460 ( -0 +2 _0 ^0) Square root of a prime is irrational 04, 00 expansion
NUM461 ( -0 +2 _0 ^0) Square root of a prime is irrational 05, 00 expansion
NUM462 ( -0 +2 _0 ^0) Square root of a prime is irrational 06, 00 expansion
NUM463 ( -0 +2 _0 ^0) Square root of a prime is irrational 07, 00 expansion
NUM464 ( -0 +2 _0 ^0) Square root of a prime is irrational 07_01, 00 expansion
NUM465 ( -0 +2 _0 ^0) Square root of a prime is irrational 07_02, 00 expansion
NUM466 ( -0 +2 _0 ^0) Square root of a prime is irrational 08, 00 expansion
NUM467 ( -0 +2 _0 ^0) Square root of a prime is irrational 09, 00 expansion
NUM468 ( -0 +2 _0 ^0) Square root of a prime is irrational 09_01, 00 expansion
NUM469 ( -0 +2 _0 ^0) Square root of a prime is irrational 09_02, 00 expansion
NUM470 ( -0 +2 _0 ^0) Square root of a prime is irrational 10, 00 expansion
NUM471 ( -0 +2 _0 ^0) Square root of a prime is irrational 10_03, 00 expansion
NUM472 ( -0 +2 _0 ^0) Square root of a prime is irrational 10_03_01, 00 expansion
NUM473 ( -0 +2 _0 ^0) Square root of a prime is irrational 10_03_02, 00 expansion
NUM474 ( -0 +2 _0 ^0) Square root of a prime is irrational 10_05, 00 expansion
NUM475 ( -0 +2 _0 ^0) Square root of a prime is irrational 10_06, 00 expansion
NUM476 ( -0 +2 _0 ^0) Square root of a prime is irrational 10_07, 00 expansion
NUM477 ( -0 +2 _0 ^0) Square root of a prime is irrational 11, 00 expansion
NUM478 ( -0 +2 _0 ^0) Square root of a prime is irrational 12, 00 expansion
NUM479 ( -0 +2 _0 ^0) Square root of a prime is irrational 12_01, 00 expansion
NUM480 ( -0 +2 _0 ^0) Square root of a prime is irrational 12_02, 00 expansion
NUM481 ( -0 +2 _0 ^0) Square root of a prime is irrational 13, 00 expansion
NUM482 ( -0 +2 _0 ^0) Square root of a prime is irrational 13_01, 00 expansion
NUM483 ( -0 +2 _0 ^0) Square root of a prime is irrational 13_02, 00 expansion
NUM484 ( -0 +2 _0 ^0) Square root of a prime is irrational 13_03, 00 expansion
NUM485 ( -0 +2 _0 ^0) Square root of a prime is irrational 14, 00 expansion
NUM486 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01, 00 expansion
NUM487 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_02, 00 expansion
NUM488 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_03, 00 expansion
NUM489 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_03_01, 00 expansion
NUM490 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_03_03, 00 expansion
NUM491 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_03_04, 00 expansion
NUM492 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_03_05, 00 expansion
NUM493 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_04, 00 expansion
NUM494 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_04_01, 00 expansion
NUM495 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_04_02, 00 expansion
NUM496 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_01_05, 00 expansion
NUM497 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03, 00 expansion
NUM498 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_02, 00 expansion
NUM499 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03, 00 expansion
NUM500 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_01, 00 expansion
NUM501 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_02, 00 expansion
NUM502 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_03, 00 expansion
NUM503 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_03_01, 00 expansion
NUM504 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_03_02, 00 expansion
NUM505 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_03_03, 00 expansion
NUM506 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_04, 00 expansion
NUM507 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_04_01, 00 expansion
NUM508 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_04_02, 00 expansion
NUM509 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05, 00 expansion
NUM510 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_01, 00 expansion
NUM511 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_02, 00 expansion
NUM512 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_02_01, 00 expansion
NUM513 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_02_02, 00 exp
NUM514 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_02_03, 00 exp
NUM515 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_03, 00 expansion
NUM516 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_03_01, 00 exp
NUM517 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_03_02, 00 exp
NUM518 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_05_04, 00 expansion
NUM519 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_03_07, 00 expansion
NUM520 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_03_04, 00 expansion
NUM521 ( -0 +2 _0 ^0) Square root of a prime is irrational 14_04, 00 expansion
NUM522 ( -0 +2 _0 ^0) Square root of a prime is irrational 15, 00 expansion
NUM523 ( -0 +2 _0 ^0) Square root of a prime is irrational 15_01, 00 expansion
NUM524 ( -0 +2 _0 ^0) Square root of a prime is irrational 15_03, 00 expansion
NUM525 ( -0 +2 _0 ^0) Square root of a prime is irrational 15_03_01, 00 expansion
NUM526 ( -0 +2 _0 ^0) Square root of a prime is irrational 15_04, 00 expansion
NUM527 ( -0 +2 _0 ^0) Square root of a prime is irrational 15_04_01, 00 expansion
NUM528 ( -0 +2 _0 ^0) Square root of a prime is irrational 15_04_02, 00 expansion
NUM529 ( -0 +2 _0 ^0) Square root of a prime is irrational 15_05, 00 expansion
NUM530 ( -0 +2 _0 ^0) Square root of a prime is irrational 15_06, 00 expansion
NUM531 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 01, 00 expansion
NUM532 ( -0 +1 _0 ^0) Ramsey's Infinite Theorem 02, 00 expansion
NUM533 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 03, 00 expansion
NUM534 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 04, 00 expansion
NUM535 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 04_01, 00 expansion
NUM536 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 05, 00 expansion
NUM537 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 05_01, 00 expansion
NUM538 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 06, 00 expansion
NUM539 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 07, 00 expansion
NUM540 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 08, 00 expansion
NUM541 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 09, 00 expansion
NUM542 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 10, 00 expansion
NUM543 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 11, 00 expansion
NUM544 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 11_01, 00 expansion
NUM545 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 11_02, 00 expansion
NUM546 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12, 00 expansion
NUM547 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_01, 00 expansion
NUM548 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_02, 00 expansion
NUM549 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_03, 00 expansion
NUM550 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_03_01, 00 expansion
NUM551 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_03_02, 00 expansion
NUM552 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_04, 00 expansion
NUM553 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_05, 00 expansion
NUM554 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_05_02, 00 expansion
NUM555 ( -0 +1 _0 ^0) Ramsey's Infinite Theorem 12_05_02_01, 00 expansion
NUM556 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_05_02_02, 00 expansion
NUM557 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_05_02_03, 00 expansion
NUM558 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_05_03, 00 expansion
NUM559 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 12_06, 00 expansion
NUM560 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 13, 00 expansion
NUM561 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 14, 00 expansion
NUM562 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15+, 00 expansion
NUM563 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_01, 00 expansion
NUM564 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_01_01, 00 expansion
NUM565 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_01_02, 00 expansion
NUM566 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_01_03, 00 expansion
NUM567 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02+, 00 expansion
NUM568 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_01, 00 expansion
NUM569 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_03, 00 expansion
NUM570 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_03_01, 00 expansion
NUM571 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_03_02, 00 expansion
NUM572 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_04, 00 expansion
NUM573 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_04_01, 00 expansion
NUM574 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_04_02, 00 expansion
NUM575 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_05, 00 expansion
NUM576 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_05_01, 00 expansion
NUM577 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_05_02, 00 expansion
NUM578 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_05_03, 00 expansion
NUM579 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_06, 00 expansion
NUM580 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_06_01, 00 expansion
NUM581 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_06_02, 00 expansion
NUM582 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_06_02_01, 00 expansion
NUM583 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_06_02_02, 00 expansion
NUM584 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_06_03, 00 expansion
NUM585 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_08, 00 expansion
NUM586 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_08_01, 00 expansion
NUM587 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_08_03, 00 expansion
NUM588 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_09, 00 expansion
NUM589 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_10, 00 expansion
NUM590 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_10_03, 00 expansion
NUM591 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_10_04, 00 expansion
NUM592 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_10_05, 00 expansion
NUM593 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_14, 00 expansion
NUM594 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_14_02, 00 expansion
NUM595 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_14_04, 00 expansion
NUM596 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_15, 00 expansion
NUM597 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_15_02, 00 expansion
NUM598 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_17, 00 expansion
NUM599 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_17_02, 00 expansion
NUM600 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_18, 00 expansion
NUM601 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_19, 00 expansion
NUM602 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_19_01, 00 expansion
NUM603 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_19_02, 00 expansion
NUM604 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_19_03, 00 expansion
NUM605 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_20, 00 expansion
NUM606 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_21, 00 expansion
NUM607 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_22, 00 expansion
NUM608 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23, 00 expansion
NUM609 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_05, 00 expansion
NUM610 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_06, 00 expansion
NUM611 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_07, 00 expansion
NUM612 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_07_01, 00 expansion
NUM613 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_07_02, 00 expansion
NUM614 ( -0 +1 _0 ^0) Ramsey's Infinite Theorem 15_02_23_08, 00 expansion
NUM615 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_09, 00 expansion
NUM616 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11, 00 expansion
NUM617 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_01, 00 expansion
NUM618 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_02, 00 expansion
NUM619 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04, 00 expansion
NUM620 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04_01, 00 expansion
NUM621 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04_02, 00 expansion
NUM622 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04_02_01, 00 expansion
NUM623 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04_02_02, 00 expansion
NUM624 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04_02_02_02, 00 expansion
NUM625 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04_02_03, 00 expansion
NUM626 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04_02_04, 00 expansion
NUM627 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_11_04_03, 00 expansion
NUM628 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_12, 00 expansion
NUM629 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_12_02, 00 expansion
NUM630 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_12_03, 00 expansion
NUM631 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_12_04, 00 expansion
NUM632 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_23_13, 00 expansion
NUM633 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_02_24, 00 expansion
NUM634 ( -0 +2 _0 ^0) Ramsey's Infinite Theorem 15_03, 00 expansion
NUM635 ( -0 +0 _0 ^3) Landau theorem 1
NUM636 ( -0 +0 _0 ^4) Landau theorem 2
NUM637 ( -0 +0 _0 ^3) Landau theorem 3
NUM638 ( -0 +0 _0 ^2) Landau theorem 3a
NUM639 ( -0 +0 _0 ^2) Landau theorem 4e
NUM640 ( -0 +0 _0 ^2) Landau theorem 4f
NUM641 ( -0 +0 _0 ^2) Landau theorem 4g
NUM642 ( -0 +0 _0 ^2) Landau theorem 4h
NUM643 ( -0 +0 _0 ^2) Landau theorem 5
NUM644 ( -0 +0 _0 ^2) Landau theorem 6
NUM645 ( -0 +0 _0 ^2) Landau theorem 7
NUM646 ( -0 +0 _0 ^2) Landau theorem 8
NUM647 ( -0 +0 _0 ^2) Landau theorem 8a
NUM648 ( -0 +0 _0 ^2) Landau theorem 8b
NUM649 ( -0 +0 _0 ^2) Landau theorem 9
NUM650 ( -0 +0 _0 ^2) Landau theorem 9a
NUM651 ( -0 +0 _0 ^2) Landau theorem 9b
NUM652 ( -0 +0 _0 ^2) Landau theorem 10c
NUM653 ( -0 +0 _0 ^2) Landau theorem 10d
NUM654 ( -0 +0 _0 ^2) Landau theorem 10e
NUM655 ( -0 +0 _0 ^2) Landau theorem 10f
NUM656 ( -0 +0 _0 ^2) Landau theorem 10g
NUM657 ( -0 +0 _0 ^2) Landau theorem 10h
NUM658 ( -0 +0 _0 ^2) Landau theorem 10j
NUM659 ( -0 +0 _0 ^2) Landau theorem 10k
NUM660 ( -0 +0 _0 ^2) Landau theorem 13
NUM662 ( -0 +0 _0 ^2) Landau theorem 15
NUM663 ( -0 +0 _0 ^2) Landau theorem 16a
NUM664 ( -0 +0 _0 ^2) Landau theorem 16b
NUM665 ( -0 +0 _0 ^2) Landau theorem 16c
NUM666 ( -0 +0 _0 ^2) Landau theorem 16d
NUM667 ( -0 +0 _0 ^2) Landau theorem 17
NUM668 ( -0 +0 _0 ^2) Landau theorem 18
NUM669 ( -0 +0 _0 ^2) Landau theorem 18b
NUM670 ( -0 +0 _0 ^2) Landau theorem 19a
NUM671 ( -0 +0 _0 ^2) Landau theorem 19b
NUM672 ( -0 +0 _0 ^2) Landau theorem 19c
NUM673 ( -0 +0 _0 ^2) Landau theorem 19d
NUM674 ( -0 +0 _0 ^2) Landau theorem 19e
NUM676 ( -0 +0 _0 ^2) Landau theorem 19g
NUM677 ( -0 +0 _0 ^2) Landau theorem 19h
NUM680 ( -0 +0 _0 ^2) Landau theorem 20a
NUM681 ( -0 +0 _0 ^2) Landau theorem 20b
NUM682 ( -0 +0 _0 ^2) Landau theorem 20c
NUM683 ( -0 +0 _0 ^2) Landau theorem 20d
NUM684 ( -0 +0 _0 ^2) Landau theorem 20e
NUM686 ( -0 +0 _0 ^2) Landau theorem 21
NUM687 ( -0 +0 _0 ^2) Landau theorem 22a
NUM688 ( -0 +0 _0 ^2) Landau theorem 22b
NUM689 ( -0 +0 _0 ^2) Landau theorem 22c
NUM690 ( -0 +0 _0 ^2) Landau theorem 22d
NUM691 ( -0 +0 _0 ^2) Landau theorem 23
NUM692 ( -0 +0 _0 ^2) Landau theorem 23a
NUM693 ( -0 +0 _0 ^2) Landau theorem 24
NUM694 ( -0 +0 _0 ^2) Landau theorem 24a
NUM695 ( -0 +0 _0 ^2) Landau theorem 24b
NUM696 ( -0 +0 _0 ^2) Landau theorem 25
NUM697 ( -0 +0 _0 ^2) Landau theorem 25a
NUM698 ( -0 +0 _0 ^2) Landau theorem 25b
NUM699 ( -0 +0 _0 ^2) Landau theorem 25c
NUM700 ( -0 +0 _0 ^2) Landau theorem 26
NUM701 ( -0 +0 _0 ^2) Landau theorem 26a
NUM702 ( -0 +0 _0 ^2) Landau theorem 26b
NUM703 ( -0 +0 _0 ^2) Landau theorem 26c
NUM704 ( -0 +0 _0 ^2) Landau theorem 27
NUM705 ( -0 +0 _0 ^2) Landau theorem 27a
NUM706 ( -0 +0 _0 ^2) Landau theorem 28e
NUM707 ( -0 +0 _0 ^2) Landau theorem 28f
NUM708 ( -0 +0 _0 ^2) Landau theorem 28g
NUM709 ( -0 +0 _0 ^2) Landau theorem 28h
NUM710 ( -0 +0 _0 ^2) Landau theorem 29
NUM711 ( -0 +0 _0 ^2) Landau theorem 30
NUM712 ( -0 +0 _0 ^2) Landau theorem 31
NUM713 ( -0 +0 _0 ^2) Landau theorem 32a
NUM721 ( -0 +0 _0 ^2) Landau theorem 34a
NUM726 ( -0 +0 _0 ^2) Landau theorem 38
NUM727 ( -0 +0 _0 ^2) Landau theorem 39
NUM728 ( -0 +0 _0 ^2) Landau theorem 40a
NUM729 ( -0 +0 _0 ^2) Landau theorem 40c
NUM730 ( -0 +0 _0 ^2) Landau theorem 41
NUM736 ( -0 +0 _0 ^2) Landau theorem 42
NUM737 ( -0 +0 _0 ^2) Landau theorem 44
NUM738 ( -0 +0 _0 ^2) Landau theorem 45
NUM739 ( -0 +0 _0 ^2) Landau theorem 46
NUM740 ( -0 +0 _0 ^2) Landau theorem 48
NUM741 ( -0 +0 _0 ^2) Landau theorem 50
NUM742 ( -0 +0 _0 ^2) Landau theorem 51a
NUM743 ( -0 +0 _0 ^2) Landau theorem 51b
NUM746 ( -0 +0 _0 ^2) Landau theorem 52
NUM747 ( -0 +0 _0 ^2) Landau theorem 57a
NUM748 ( -0 +0 _0 ^2) Landau theorem 58
NUM749 ( -0 +0 _0 ^2) Landau theorem 60a
NUM750 ( -0 +0 _0 ^2) Landau theorem 62b
NUM751 ( -0 +0 _0 ^2) Landau theorem 62d
NUM752 ( -0 +0 _0 ^2) Landau theorem 62e
NUM753 ( -0 +0 _0 ^2) Landau theorem 62g
NUM754 ( -0 +0 _0 ^2) Landau theorem 62h
NUM755 ( -0 +0 _0 ^2) Landau theorem 63a
NUM756 ( -0 +0 _0 ^2) Landau theorem 63b
NUM757 ( -0 +0 _0 ^2) Landau theorem 63c
NUM758 ( -0 +0 _0 ^2) Landau theorem 63d
NUM759 ( -0 +0 _0 ^2) Landau theorem 63e
NUM760 ( -0 +0 _0 ^2) Landau theorem 64
NUM761 ( -0 +0 _0 ^2) Landau theorem 65a
NUM762 ( -0 +0 _0 ^2) Landau theorem 65b
NUM765 ( -0 +0 _0 ^2) Landau theorem 66
NUM766 ( -0 +0 _0 ^2) Landau theorem 67a
NUM767 ( -0 +0 _0 ^2) Landau theorem 67b
NUM768 ( -0 +0 _0 ^2) Landau theorem 67c
NUM769 ( -0 +0 _0 ^2) Landau theorem 67d
NUM770 ( -0 +0 _0 ^2) Landau theorem 67e
NUM771 ( -0 +0 _0 ^2) Landau theorem 69
NUM781 ( -0 +0 _0 ^4) Landau theorem 79
NUM782 ( -0 +0 _0 ^2) Landau theorem 80
NUM783 ( -0 +0 _0 ^2) Landau theorem 81a
NUM784 ( -0 +0 _0 ^2) Landau theorem 81c
NUM785 ( -0 +0 _0 ^2) Landau theorem 81d
NUM786 ( -0 +0 _0 ^2) Landau theorem 81e
NUM787 ( -0 +0 _0 ^2) Landau theorem 81f
NUM788 ( -0 +0 _0 ^2) Landau theorem 81g
NUM789 ( -0 +0 _0 ^2) Landau theorem 81h
NUM790 ( -0 +0 _0 ^2) Landau theorem 81j
NUM791 ( -0 +0 _0 ^2) Landau theorem 81k
NUM792 ( -0 +0 _0 ^2) Landau theorem 87c 
NUM793 ( -0 +0 _0 ^2) Landau theorem 87d
NUM795 ( -0 +0 _0 ^2) Landau theorem 99c
NUM796 ( -0 +0 _0 ^2) Landau theorem 99d
NUM797 ( -0 +0 _0 ^2) Landau theorem 4
NUM798 ( -0 +0 _0 ^1) Something times one is one
NUM799 ( -0 +0 _0 ^1) Something times four equal five plus seven
NUM800 ( -0 +0 _0 ^1) Some function of two and three is six, and of one and two is two
NUM801 ( -0 +0 _0 ^1) Something times four equals five plus something
NUM802 ( -0 +0 _0 ^1) TPS problem BLEDSOE-FENG-8
NUM803 ( -0 +0 _0 ^1) TPS problem from NATS
NUM804 ( -0 +0 _0 ^1) TPS problem from NATS
NUM805 ( -0 +0 _0 ^1) TPS problem from NATS
NUM806 ( -0 +0 _0 ^1) TPS problem from NATS
NUM807 ( -0 +0 _0 ^1) TPS problem from NATS
NUM808 ( -0 +0 _0 ^1) TPS problem THM130A
NUM809 ( -0 +0 _0 ^1) TPS problem THM130
NUM810 ( -0 +0 _0 ^1) TPS problem THM140
NUM811 ( -0 +0 _0 ^1) TPS problem THM129
NUM812 ( -0 +0 _0 ^1) TPS problem THM578
NUM813 ( -0 +0 _0 ^1) TPS problem THM303
NUM814 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM815 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM816 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM817 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM818 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM819 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM821 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM822 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM823 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM824 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM825 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM826 ( -0 +0 _0 ^1) TPS problem from IND-THMS
NUM827 ( -0 +0 _0 ^1) TPS problem PA-THM2
NUM828 ( -0 +0 _0 ^1) TPS problem from PA-THMS
NUM829 ( -0 +0 _0 ^1) TPS problem from PA-THMS
NUM830 ( -0 +0 _0 ^1) TPS problem from PA-THMS
NUM831 ( -0 +0 _0 ^1) TPS problem from PETER-THMS
NUM832 ( -0 +0 _0 ^1) TPS problem from PETER-THMS
NUM833 ( -0 +0 _0 ^1) TPS problem from PETER-THMS
NUM834 ( -0 +0 _0 ^1) TPS problem from PETER-THMS
NUM835 ( -0 +2 _0 ^0) dis(case_distinction(conseq(110)))
NUM836 ( -0 +2 _0 ^0) dis(ex(cond(conseq(131),0),1))
NUM837 ( -0 +2 _0 ^0) qe(171)
NUM838 ( -0 +2 _0 ^0) holds(conseq(195),305,0)
NUM839 ( -0 +2 _0 ^0) holds(conseq(204),332,0)
NUM840 ( -0 +2 _0 ^0) holds(conseq(conjunct2(conjunct2(204))),336,0)
NUM841 ( -0 +2 _0 ^0) holds(214,352,0)
NUM842 ( -0 +2 _0 ^0) holds(conseq(218),361,0)
NUM843 ( -0 +2 _0 ^0) holds(244,394,0)
NUM844 ( -0 +2 _0 ^0) holds(266,415,3)
NUM845 ( -0 +2 _0 ^0) qu(ind(267),imp(267))
NUM846 ( -0 +2 _0 ^0) holds(286,441,2)
NUM847 ( -0 +2 _0 ^0) holds(286,441,3)
NUM848 ( -0 +2 _0 ^0) holds(286,441,4)
NUM849 ( -0 +2 _0 ^0) qu(ind(296),imp(296))
NUM850 ( -0 +2 _0 ^0) qe(conseq_conjunct1(conseq(302)))
NUM851 ( -0 +2 _0 ^0) holds(conseq_conjunct2(conseq(302)),475,1)
NUM852 ( -0 +2 _0 ^0) holds(conseq_conjunct1(conseq_conjunct2(conseq(304))),484,0)
NUM853 ( -0 +2 _0 ^0) holds(conseq(307),490,0)
NUM854 ( -0 +2 _0 ^0) holds(conjunct1(315),514,0)
NUM855 ( -0 +2 _0 ^0) holds(conseq_conjunct2(315),516,0)
NUM856 ( -0 +2 _0 ^0) holds(conseq(scope(318)),525,0)
NUM857 ( -0 +2 _0 ^0) holds(conseq(323),532,0)
NUM858 ( -0 +1 _1 ^0) Basic upper bound replace maximum
NUM859 ( -0 +1 _1 ^0) Basic upper bound replace maximum with less-or-equal
NUM860 ( -0 +1 _1 ^0) Upper bound replace maximum embedded in a context (1)
NUM861 ( -0 +1 _1 ^0) Upper bound replace maximum embedded in a context (2)
NUM862 ( -0 +1 _1 ^0) Upper bound replace maximum embedded in a context (1)+(2)
NUM863 ( -0 +0 _0 ^1) A property of cardinal numbers.
NUM864 ( -0 +0 _1 ^0) Sum idempotent element
NUM865 ( -0 +0 _1 ^0) Associativity of sum
NUM866 ( -0 +0 _1 ^0) Prove sum with 0 is the identity
NUM867 ( -0 +0 _1 ^0) Prove sum with 0 is the identity
NUM868 ( -0 +0 _1 ^0) Sum X and X is Y
NUM869 ( -0 +0 _1 ^0) Sum X and Y is X
NUM870 ( -0 +0 _1 ^0) Sum is not a function
NUM871 ( -0 +0 _1 ^0) Sum is not associativity
NUM872 ( -0 +0 _1 ^0) Sum something and 0 is not something
NUM873 ( -0 +0 _1 ^0) Sum something and 0 is another thing
NUM874 ( -0 +0 _1 ^0) Sum idempotence
NUM875 ( -0 +0 _1 ^0) Sum not idempotence
NUM876 ( -0 +0 _1 ^0) X minus X equals 0
NUM877 ( -0 +0 _1 ^0) Difference identity
NUM878 ( -0 +0 _1 ^0) Product idempotent element
NUM879 ( -0 +0 _1 ^0) Product X and X is not Y
NUM880 ( -0 +0 _1 ^0) Product of X and Y is not X
NUM881 ( -0 +0 _1 ^0) Product is not a function
NUM882 ( -0 +0 _1 ^0) Product is not associative
NUM883 ( -0 +0 _1 ^0) Product of something and 1 is not that something
NUM884 ( -0 +0 _1 ^0) Not product identity
NUM885 ( -0 +0 _1 ^0) Product idempotence
NUM886 ( -0 +0 _1 ^0) Product non-idempotence
NUM887 ( -0 +0 _1 ^0) Product with 0 is identity
NUM888 ( -0 +0 _1 ^0) Product with 0 is identity
NUM889 ( -0 +0 _1 ^0) - - X is X
NUM890 ( -0 +0 _1 ^0) Sum of X and - X is 0
NUM891 ( -0 +0 _1 ^0) X = - X means X is 0
NUM892 ( -0 +0 _1 ^0) Definition of lesseq in terms of less and equality
NUM893 ( -0 +0 _1 ^0) Sum and difference
NUM894 ( -0 +0 _1 ^0) If Z is less than X + 1 then Z is less than or equal to X
NUM895 ( -0 +0 _1 ^0) Sum and difference
NUM896 ( -0 +0 _1 ^0) Sum implies both less
NUM897 ( -0 +0 _1 ^0) Sum less than difference
NUM898 ( -0 +0 _1 ^0) Sum and difference and less
NUM899 ( -0 +0 _1 ^0) Difference less than sum
NUM900 ( -0 +0 _1 ^0) Difference greater 0 implies less
NUM901 ( -0 +0 _1 ^0) Difference something and itself is 0/1
NUM902 ( -0 +0 _1 ^0) Difference is 0/1 implies equal
NUM903 ( -0 +0 _1 ^0) - - something is something
NUM904 ( -0 +0 _1 ^0) Sum something and - something is 0/1
NUM905 ( -0 +0 _1 ^0) X is - X only for 0
NUM906 ( -0 +0 _1 ^0) Definition of lesseq in terms of less and equality
NUM907 ( -0 +0 _1 ^0) Sum and difference
NUM908 ( -0 +0 _1 ^0) Difference everything and iteself is 0.0
NUM909 ( -0 +0 _1 ^0) Difference is 0.0 implies equality
NUM910 ( -0 +0 _1 ^0) - - something is something
NUM911 ( -0 +0 _1 ^0) Sum something and - something is 0.0
NUM912 ( -0 +0 _1 ^0) X is - X only for 0.0
NUM913 ( -0 +0 _1 ^0) Definition of lesseq in terms of less and equality
NUM914 ( -0 +0 _1 ^0) Sum and difference
NUM915 ( -0 +0 _1 ^0) Every sum right exists
NUM916 ( -0 +0 _1 ^0) Every sum left exists
NUM917 ( -0 +0 _1 ^0) Every difference right exists
NUM918 ( -0 +0 _1 ^0) Every difference left exists
NUM919 ( -0 +0 _1 ^0) No number inbetween
NUM920 ( -0 +0 _1 ^0) No such positive number
NUM921 ( -0 +0 _1 ^0) Increasing function property
NUM922 ( -0 +0 _1 ^0) Universal predicate
NUM923 ( -0 +8 _5 ^4) Sum of two squares line 23, 100 axioms selected
NUM924 ( -0 +8 _5 ^4) Sum of two squares line 102, 100 axioms selected
NUM925 ( -0 +8 _5 ^4) Sum of two squares line 192, 100 axioms selected
NUM926 ( -0 +8 _4 ^4) Sum of two squares line 258, 100 axioms selected
NUM927 ( -0 +0 _2 ^0) The Collatz Conjecture
NUM928 ( -0 +0 _1 ^0) Sum of two squares line 26
NUM929 ( -0 +0 _1 ^0) Sum of two squares line 29
NUM930 ( -0 +0 _1 ^0) Sum of two squares line 34
NUM931 ( -0 +0 _1 ^0) Sum of two squares line 35
NUM932 ( -0 +0 _1 ^0) Sum of two squares line 36
NUM933 ( -0 +0 _1 ^0) Sum of two squares line 37
NUM934 ( -0 +0 _1 ^0) Sum of two squares line 39
NUM935 ( -0 +0 _1 ^0) Sum of two squares line 41
NUM936 ( -0 +0 _1 ^0) Sum of two squares line 42
NUM937 ( -0 +0 _1 ^0) Sum of two squares line 43
NUM938 ( -0 +0 _1 ^0) Sum of two squares line 45
NUM939 ( -0 +0 _1 ^0) Sum of two squares line 49
NUM940 ( -0 +0 _1 ^0) Sum of two squares line 50
NUM941 ( -0 +0 _1 ^0) Sum of two squares line 56
NUM942 ( -0 +0 _1 ^0) Sum of two squares line 59
NUM943 ( -0 +0 _1 ^0) Sum of two squares line 62
NUM944 ( -0 +0 _1 ^0) Sum of two squares line 63
NUM945 ( -0 +0 _1 ^0) Sum of two squares line 64
NUM946 ( -0 +0 _1 ^0) Sum of two squares line 65
NUM947 ( -0 +0 _1 ^0) Sum of two squares line 67
NUM948 ( -0 +0 _1 ^0) Sum of two squares line 69
NUM949 ( -0 +0 _1 ^0) Sum of two squares line 70
NUM950 ( -0 +0 _1 ^0) Sum of two squares line 71
NUM951 ( -0 +0 _1 ^0) Sum of two squares line 73
NUM952 ( -0 +0 _1 ^0) Sum of two squares line 74
NUM953 ( -0 +0 _1 ^0) Sum of two squares line 76
NUM954 ( -0 +0 _1 ^0) Sum of two squares line 77
NUM955 ( -0 +0 _1 ^0) Sum of two squares line 79
NUM956 ( -0 +0 _1 ^0) Sum of two squares line 80
NUM957 ( -0 +0 _1 ^0) Sum of two squares line 81
NUM958 ( -0 +0 _1 ^0) Sum of two squares line 82
NUM959 ( -0 +0 _1 ^0) Sum of two squares line 84
NUM960 ( -0 +0 _1 ^0) Sum of two squares line 85
NUM961 ( -0 +0 _1 ^0) Sum of two squares line 86
NUM962 ( -0 +0 _1 ^0) Sum of two squares line 88
NUM963 ( -0 +0 _1 ^0) Sum of two squares line 89
NUM964 ( -0 +0 _1 ^0) Sum of two squares line 91
NUM965 ( -0 +0 _1 ^0) Sum of two squares line 92
NUM966 ( -0 +0 _1 ^0) Sum of two squares line 95
NUM967 ( -0 +0 _1 ^0) Sum of two squares line 96
NUM968 ( -0 +0 _1 ^0) Sum of two squares line 98
NUM969 ( -0 +0 _1 ^0) Sum of two squares line 101
NUM970 ( -0 +0 _1 ^0) Sum of two squares line 103
NUM971 ( -0 +0 _1 ^0) Sum of two squares line 104
NUM972 ( -0 +0 _1 ^0) Sum of two squares line 108
NUM973 ( -0 +0 _1 ^0) Sum of two squares line 109
NUM974 ( -0 +0 _1 ^0) Sum of two squares line 112
NUM975 ( -0 +0 _1 ^0) Sum of two squares line 115
NUM976 ( -0 +0 _1 ^0) Sum of two squares line 118
NUM977 ( -0 +0 _1 ^0) Sum of two squares line 120
NUM978 ( -0 +0 _1 ^0) Sum of two squares line 123
NUM979 ( -0 +0 _1 ^0) Sum of two squares line 125
NUM980 ( -0 +0 _1 ^0) Sum of two squares line 127
NUM981 ( -0 +0 _1 ^0) Sum of two squares line 129
NUM982 ( -0 +0 _1 ^0) Sum of two squares line 131
NUM983 ( -0 +0 _1 ^0) Sum of two squares line 135
NUM984 ( -0 +0 _1 ^0) Sum of two squares line 138
NUM985 ( -0 +0 _1 ^0) Sum of two squares line 141
NUM986 ( -0 +0 _1 ^0) Sum of two squares line 143
NUM987 ( -0 +0 _1 ^0) Sum of two squares line 148
NUM988 ( -0 +0 _1 ^0) Sum of two squares line 149
NUM989 ( -0 +0 _1 ^0) Sum of two squares line 150
NUM990 ( -0 +0 _1 ^0) Sum of two squares line 151
NUM991 ( -0 +0 _1 ^0) Sum of two squares line 152
NUM992 ( -0 +0 _1 ^0) Sum of two squares line 153
NUM993 ( -0 +0 _1 ^0) Sum of two squares line 154
NUM994 ( -0 +0 _1 ^0) Sum of two squares line 155
NUM995 ( -0 +0 _1 ^0) Sum of two squares line 156
NUM996 ( -0 +0 _1 ^0) Sum of two squares line 158
NUM997 ( -0 +0 _1 ^0) Sum of two squares line 160
NUM998 ( -0 +0 _1 ^0) Sum of two squares line 162
NUM999 ( -0 +0 _1 ^0) Sum of two squares line 164
-------------------------------------------------------------------------------
Domain NUN = Number Theory Continued
62 problems (58 abstract), 0 CNF, 6 FOF, 19 TFF, 37 THF
-------------------------------------------------------------------------------
NUN000 ( -0 +0 _1 ^0) Sum of two squares line 166
NUN001 ( -0 +0 _1 ^0) Sum of two squares line 167
NUN002 ( -0 +0 _1 ^0) Sum of two squares line 168
NUN003 ( -0 +0 _1 ^0) Sum of two squares line 171
NUN004 ( -0 +0 _1 ^0) Sum of two squares line 172
NUN005 ( -0 +0 _1 ^0) Sum of two squares line 174
NUN006 ( -0 +0 _1 ^0) Sum of two squares line 177
NUN007 ( -0 +0 _1 ^0) Sum of two squares line 180
NUN008 ( -0 +0 _1 ^0) Sum of two squares line 183
NUN009 ( -0 +0 _1 ^0) Sum of two squares line 186
NUN010 ( -0 +0 _1 ^0) Sum of two squares line 189
NUN011 ( -0 +0 _1 ^0) Sum of two squares line 191
NUN012 ( -0 +0 _1 ^0) Sum of two squares line 193
NUN013 ( -0 +0 _1 ^0) Sum of two squares line 195
NUN014 ( -0 +0 _1 ^0) Sum of two squares line 197
NUN015 ( -0 +0 _1 ^0) Sum of two squares line 201
NUN016 ( -0 +0 _1 ^0) Sum of two squares line 202
NUN017 ( -0 +0 _1 ^0) Sum of two squares line 203
NUN018 ( -0 +0 _1 ^0) Sum of two squares line 206
NUN019 ( -0 +1 _0 ^0) Peano greater and unequal
NUN020 ( -0 +1 _0 ^0) Axioms for RDN arithmetic
NUN021 ( -0 +0 _0 ^1) Axioms for Church Numerals in Simple Type Theory
NUN022 ( -0 +0 _0 ^1) Find this function
NUN023 ( -0 +0 _0 ^2) Function h s.t. h(0) = 1, h(1) = 0, no witness
NUN024 ( -0 +0 _0 ^2) Function h s.t. h(0) = 1, h(1) = 0, h(2) = 0, no witness
NUN025 ( -0 +0 _0 ^3) Function h s.t. h(0) = 1, h(1) = 0, h(2) = 1, no witness
NUN026 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CBAP005
NUN027 ( -0 +0 _0 ^1) Chart System Math I+A Red Book, Problem 07CRAE011
NUN028 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CWAE014
NUN029 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CWAR017
NUN030 ( -0 +0 _0 ^1) Chart System Math I+A Yellow Book, Problem 07CYAR028
NUN031 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1959, Problem 1
NUN032 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1960, Problem 1
NUN033 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1964, Problem 1
NUN034 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1966, Problem 1
NUN035 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1977, Problem 5
NUN036 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1984, Problem 2
NUN037 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1986, Problem 1
NUN038 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1994, Problem 4
NUN039 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2001, Problem 6
NUN040 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2002, Problem 1
NUN041 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2003, Problem 6
NUN042 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2006, Problem 4
NUN043 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2007, Problem 5
NUN044 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2010, Problem 3
NUN045 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2012, Problem 6
NUN046 ( -0 +0 _0 ^1) MONOIDAL_AC
NUN047 ( -0 +0 _0 ^1) NEUTRAL_ADD
NUN048 ( -0 +0 _0 ^1) NSUM_TRIV_NUMSEG
NUN049 ( -0 +0 _0 ^1) NSUM_CLAUSES_NUMSEG_0
NUN050 ( -0 +0 _0 ^1) NSUM_CLAUSES_NUMSEG_1
NUN051 ( -0 +0 _0 ^1) NSUM_OFFSET_0
NUN052 ( -0 +0 _0 ^1) NSUM_CLAUSES_RIGHT
NUN053 ( -0 +0 _0 ^1) Number theory axioms from Grundlagen
NUN054 ( -0 +1 _0 ^0) Robinson arithmetic 0+1=1
NUN055 ( -0 +1 _0 ^0) Robinson arithmetic 0+2=2
NUN056 ( -0 +1 _0 ^0) Robinson arithmetic 1+2=3
NUN057 ( -0 +1 _0 ^0) Robinson arithmetic 2+2=4
-------------------------------------------------------------------------------
Domain PHI = Philosophy
24 problems (15 abstract), 0 CNF, 7 FOF, 0 TFF, 17 THF
-------------------------------------------------------------------------------
PHI001 ( -0 +0 _0 ^1) Axioms for Goedel's Ontological Proof of the Existence of God
PHI002 ( -0 +0 _0 ^2) Positive properties are possibly exemplified
PHI003 ( -0 +0 _0 ^2) Possibly, God exists
PHI004 ( -0 +0 _0 ^3) Being God-like is an essence of any God-like being
PHI005 ( -0 +0 _0 ^4) Necessarily, God exists
PHI006 ( -0 +0 _0 ^2) Inconsistency of the axioms in Goedel's original manuscript
PHI007 ( -0 +0 _0 ^2) Inconsistency of the axioms in Goedel's original manuscript
PHI008 ( -0 +0 _0 ^1) Modal Collapse of Goedel's ontological argument in Scott's variant
PHI009 ( -0 +1 _0 ^0) Lemma for Anselm's ontological argument
PHI010 ( -0 +1 _0 ^0) Lemma for Anselm's ontological argument
PHI011 ( -0 +1 _0 ^0) Lemma for Anselm's ontological argument
PHI012 ( -0 +1 _0 ^0) Lemma for Anselm's ontological argument
PHI013 ( -0 +1 _0 ^0) Anselm's ontological argument
PHI014 ( -0 +1 _0 ^0) Anselm's ontological argument, simplified
PHI015 ( -0 +1 _0 ^0) Anselm's ontological argument, from the axioms
-------------------------------------------------------------------------------
Domain PLA = Planning
76 problems (45 abstract), 57 CNF, 17 FOF, 0 TFF, 2 THF
-------------------------------------------------------------------------------
PLA001 ( -1 +0 _0 ^0) Cheyenne to DesMoines, buying a loaf of bread on the way
PLA002 ( -2 +0 _0 ^0) Getting from here to there, in all weather
PLA003 ( -1 +0 _0 ^0) Monkey and Bananas Problem
PLA004 ( -2 +0 _0 ^0) Block C on B on A
PLA005 ( -2 +0 _0 ^0) Block C on A and D on B
PLA006 ( -1 +0 _0 ^0) Block C on Table
PLA007 ( -1 +0 _0 ^0) Block A on D
PLA008 ( -1 +0 _0 ^0) Block B on D and A on C
PLA009 ( -2 +0 _0 ^0) Block A on B and D clear
PLA010 ( -1 +0 _0 ^0) Block A on D on B
PLA011 ( -2 +0 _0 ^0) Block D on C on B
PLA012 ( -1 +0 _0 ^0) Block D on B on C
PLA013 ( -1 +0 _0 ^0) Block A on C on B
PLA014 ( -2 +0 _0 ^0) Block A on B on C
PLA015 ( -1 +0 _0 ^0) Block A on B on D
PLA016 ( -1 +0 _0 ^0) Block D on A
PLA017 ( -1 +0 _0 ^0) Block A on C
PLA018 ( -1 +0 _0 ^0) Block A on B and D on C
PLA019 ( -1 +0 _0 ^0) Block D on C
PLA020 ( -1 +0 _0 ^0) Block D clear
PLA021 ( -1 +0 _0 ^0) Block B on D and C on A
PLA022 ( -2 +0 _0 ^0) Block A on C on D
PLA023 ( -1 +0 _0 ^0) Block D on A on C
PLA024 ( -0 +1 _0 ^0) Blocks A/B, C => B/C/A
PLA025 ( -0 +1 _0 ^0) Blocks 3/2/1, 5/4, 9/8/7/6 => 1/5, 8/9/4, 2/3/7/6
PLA026 ( -0 +1 _0 ^0) Blocks 3/2/1, 5/4 => 5/3, 1, 4/2
PLA027 ( -0 +1 _0 ^0) Blocks A/B/C/D => D/C/B/A
PLA028 ( -0 +1 _0 ^0) Blocks A, B => A/B
PLA029 ( -1 +1 _0 ^0) Blocks world axioms
PLA030 ( -1 +0 _0 ^0) Blocks world difference axioms for 4 blocks
PLA031 (-13 +0 _0 ^0) Driver's log k=01
PLA032 ( -0 +0 _0 ^1) Abductive planning: Bomb-in-the-toilet with detector
PLA033 ( -0 +0 _0 ^1) Abductive planning: Safe problem
PLA034 ( -1 +1 _0 ^0) QBFLib problem from the Blocks family
PLA035 ( -1 +1 _0 ^0) QBFLib problem from the ConnectN family
PLA036 ( -1 +0 _0 ^0) QBFLib problem from the ConnectN family
PLA037 ( -1 +1 _0 ^0) QBFLib problem from the conformant_planning family
PLA038 ( -1 +1 _0 ^0) QBFLib problem from the conformant_planning family
PLA039 ( -1 +1 _0 ^0) QBFLib problem from the conformant_planning family
PLA040 ( -1 +1 _0 ^0) QBFLib problem from the evader-pursuer-NxN-logarithmic family
PLA041 ( -1 +1 _0 ^0) QBFLib problem from the evader-pursuer-NxN-logarithmic family
PLA042 ( -1 +1 _0 ^0) QBFLib problem from the evader-pursuer-NxN-logarithmic family
PLA043 ( -1 +1 _0 ^0) QBFLib problem from the Toilet family
PLA044 ( -1 +1 _0 ^0) QBFLib problem from the ToiletA family
PLA045 ( -1 +1 _0 ^0) QBFLib problem from the Toileta family
-------------------------------------------------------------------------------
Domain PRD = Products
3 problems (3 abstract), 0 CNF, 3 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
PRD001 ( -0 +1 _0 ^0) All wine conjectures
PRD002 ( -0 +1 _0 ^0) No French wine
PRD003 ( -0 +1 _0 ^0) No wine tours
-------------------------------------------------------------------------------
Domain PRO = Processes
82 problems (28 abstract), 0 CNF, 72 FOF, 0 TFF, 10 THF
-------------------------------------------------------------------------------
PRO001 ( -0 +4 _0 ^0) PSL cliff problem coe-5.1
PRO002 ( -0 +4 _0 ^0) PSL cliff problem coe-5
PRO003 ( -0 +4 _0 ^0) PSL cliff problem coe-6.1-no-disjunct
PRO004 ( -0 +4 _0 ^0) PSL cliff problem coe-6-lemma-no-disjunct
PRO005 ( -0 +4 _0 ^0) PSL cliff problem coe-6-lemma
PRO006 ( -0 +4 _0 ^0) PSL cliff problem coe-6-no-disjunct
PRO007 ( -0 +4 _0 ^0) PSL cliff problem coe-7.1.1
PRO008 ( -0 +4 _0 ^0) PSL cliff problem coe-7.1.1-subocc
PRO009 ( -0 +4 _0 ^0) PSL cliff problem coe-7.1.2
PRO010 ( -0 +4 _0 ^0) PSL cliff problem coe-7.1.3
PRO011 ( -0 +4 _0 ^0) PSL cliff problem coe-7.1.3-subocc
PRO012 ( -0 +4 _0 ^0) PSL cliff problem coe-7.1.4-no-leaf
PRO013 ( -0 +4 _0 ^0) PSL cliff problem coe-7.1.4
PRO014 ( -0 +4 _0 ^0) PSL cliff problem coe-7.2.1
PRO015 ( -0 +4 _0 ^0) PSL cliff problem coe-7.2.2
PRO016 ( -0 +4 _0 ^0) PSL cliff problem coe-7.2
PRO017 ( -0 +4 _0 ^0) PSL cliff problem coe-7.3.1
PRO018 ( -0 +4 _0 ^0) PSL cliff problem coe-7.3
PRO019 ( -0 +0 _0 ^1) Process algebra 25
PRO020 ( -0 +0 _0 ^1) Process algebra 50
PRO021 ( -0 +0 _0 ^1) Process algebra 159
PRO022 ( -0 +0 _0 ^1) Process algebra 175
PRO023 ( -0 +0 _0 ^1) Process algebra 186
PRO024 ( -0 +0 _0 ^1) Process algebra 193
PRO025 ( -0 +0 _0 ^1) Process algebra 199
PRO026 ( -0 +0 _0 ^1) Process algebra 206
PRO027 ( -0 +0 _0 ^1) Process algebra 229
PRO028 ( -0 +0 _0 ^1) Process algebra 257
-------------------------------------------------------------------------------
Domain PUZ = Puzzles
213 problems (147 abstract), 102 CNF, 37 FOF, 11 TFF, 63 THF
-------------------------------------------------------------------------------
PUZ001 ( -3 +2 _0 ^0) Dreadbury Mansion
PUZ002 ( -1 +0 _0 ^0) The Animals Puzzle
PUZ003 ( -1 +0 _0 ^0) The Barber Puzzle
PUZ004 ( -1 +0 _0 ^0) The Letters Puzzle
PUZ005 ( -1 +1 _0 ^0) The Lion and the Unicorn
PUZ006 ( -1 +0 _0 ^0) Determine sex and race on Mars and Venus
PUZ007 ( -1 +0 _0 ^0) Mixed couples on Mars and Venus
PUZ008 ( -3 +0 _0 ^0) Missionaries and Cannibals
PUZ009 ( -1 +0 _0 ^0) Looking for Oona
PUZ010 ( -1 +0 _0 ^0) Who owns the zebra?
PUZ011 ( -1 +0 _0 ^0) An ocean that borders on an African and an Asian country
PUZ012 ( -1 +0 _1 ^0) The Mislabeled Boxes
PUZ013 ( -1 +0 _0 ^0) The School Boys : Prove some monitors are awake
PUZ014 ( -1 +0 _0 ^0) The School Boys : Prove that all monitors are awake
PUZ015 ( -3 +0 _0 ^0) Checkerboard and Dominoes : Opposing corners removed
PUZ016 ( -3 +0 _0 ^0) Checkerboard and Dominoes : Row 1, columns 2 and 3 removed
PUZ017 ( -1 +0 _0 ^0) The Houses
PUZ018 ( -2 +0 _1 ^0) The Interns
PUZ019 ( -1 +0 _0 ^0) The Jobs Puzzles
PUZ020 ( -1 +0 _0 ^0) A knights & knaves problem, if he's a knight, so is she
PUZ021 ( -1 +0 _0 ^0) How to Win a Bride
PUZ022 ( -1 +0 _0 ^0) An ocean that borders on two adjacent Australian states
PUZ023 ( -1 +0 _0 ^0) Knights and Knaves #27
PUZ024 ( -1 +0 _0 ^0) Knights and Knaves #31
PUZ025 ( -1 +0 _0 ^0) Knights and Knaves #35
PUZ026 ( -1 +0 _0 ^0) Knights and Knaves #39
PUZ027 ( -1 +0 _0 ^0) Knights and Knaves #42
PUZ028 ( -6 +0 _0 ^0) People at a party
PUZ029 ( -1 +0 _0 ^0) The pigs and balloons puzzle
PUZ030 ( -2 +0 _0 ^0) Salt and Mustard Problem
PUZ031 ( -1 +3 _1 ^1) Schubert's Steamroller
PUZ032 ( -1 +0 _0 ^0) Knights and Knaves #26
PUZ033 ( -1 +0 _0 ^0) The Winds and the Windows Puzzle
PUZ034 ( -2 +0 _0 ^0) N queens problem
PUZ035 ( -7 +0 _0 ^0) Knights and Knaves #36
PUZ036 ( -1 +0 _0 ^0) TopSpin
PUZ037 ( -3 +0 _0 ^0) Rubik's Cube
PUZ038 ( -1 +0 _0 ^0) Quo vadis 1
PUZ039 ( -1 +0 _0 ^0) Quo vadis 2
PUZ040 ( -1 +0 _0 ^0) Quo vadis 3
PUZ041 ( -1 +0 _0 ^0) Quo vadis 4
PUZ042 ( -1 +0 _0 ^0) Quo vadis 5
PUZ043 ( -1 +0 _0 ^0) Mars and Venus axioms
PUZ044 ( -1 +0 _0 ^0) Truthtellers and Liars axioms for two types of people
PUZ045 ( -1 +0 _0 ^0) Truthtellers and Liars axioms for three types of people
PUZ046 ( -1 +0 _0 ^0) Quo vadis axioms
PUZ047 ( -1 +1 _0 ^1) Taking the wolf, goat, and cabbage across river
PUZ048 ( -1 +0 _0 ^0) Quo vadis 6 - initial to intermediate
PUZ049 ( -1 +0 _0 ^0) Quo vadis 6 - intermediate to final
PUZ050 ( -1 +0 _0 ^0) Quo vadis 6 - initial to intermediate
PUZ051 ( -1 +0 _0 ^0) Quo vadis 6 - intermediate to final
PUZ052 ( -1 +0 _0 ^0) Rubik's Cube unreachability
PUZ053 ( -1 +0 _0 ^0) Rubik's Cube unreachability
PUZ054 ( -1 +0 _0 ^0) Take black and white balls from a bag
PUZ055 ( -1 +0 _0 ^0) Show that Sam Loyd's fifteen-puzzle is not solvable
PUZ056 ( -9 +0 _0 ^0) Tower of Hanoi
PUZ057 ( -1 +0 _0 ^0) Show the Hanoi problem is not solvable anymore
PUZ058 ( -1 +0 _0 ^0) Show the Hanoi problem is not solvable anymore
PUZ059 ( -1 +0 _0 ^0) Quo vadis 7 - an unreachable state
PUZ060 ( -0 +1 _0 ^0) Food problems
PUZ061 ( -0 +1 _0 ^0) Food problems
PUZ062 ( -2 +0 _0 ^0) Problem about mutilated chessboard problem
PUZ063 ( -2 +0 _0 ^0) Problem about mutilated chessboard problem
PUZ064 ( -2 +0 _0 ^0) Problem about mutilated chessboard problem
PUZ065 ( -0 +1 _0 ^0) Sudoku 13273
PUZ066 ( -0 +1 _0 ^0) Sudoku 19262
PUZ067 ( -0 +1 _0 ^0) Sudoku 8618
PUZ068 ( -1 +2 _0 ^0) Monday's Sudoku
PUZ069 ( -1 +2 _0 ^0) Tuesday's Sudoku
PUZ070 ( -1 +1 _0 ^0) Wednesday's Sudoku
PUZ071 ( -1 +1 _0 ^0) Thursday's Sudoku
PUZ072 ( -1 +1 _0 ^0) Friday's Sudoku
PUZ073 ( -0 +1 _0 ^0) The patient is not adjacent to the oxygen
PUZ074 ( -0 +1 _0 ^0) Are two cells not adjacent in the Wumpus world
PUZ075 ( -0 +1 _0 ^0) Are two cells adjacent in the Wumpus world
PUZ076 ( -0 +1 _0 ^0) Cell is not west of the other in the Wumpus world
PUZ077 ( -0 +1 _0 ^0) Cell is west of the other in the Wumpus world
PUZ078 ( -0 +1 _0 ^0) Leo the Liar
PUZ079 ( -0 +1 _0 ^0) Another Sudoku
PUZ080 ( -0 +1 _0 ^0) Another Sudoku
PUZ081 ( -0 +0 _0 ^3) 1 of http://philosophy.hku.hk/think/logic/knight.php
PUZ082 ( -0 +0 _0 ^1) Peter the liar
PUZ083 ( -0 +0 _0 ^1) Peter the untruthful
PUZ084 ( -0 +0 _0 ^1) The friends puzzle - reflexivity for Peter's wife
PUZ085 ( -0 +0 _0 ^1) The friends puzzle - transitivity for Peter's wife
PUZ086 ( -0 +0 _0 ^1) The friends puzzle - they both know
PUZ087 ( -0 +0 _0 ^2) Wise men puzzle
PUZ088 ( -0 +0 _0 ^1) TPS problem THM68
PUZ090 ( -0 +0 _0 ^1) TPS problem THM210
PUZ091 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
PUZ092 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
PUZ093 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
PUZ094 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
PUZ095 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ096 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ097 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ098 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ099 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ100 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ101 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ102 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ103 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ104 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ105 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ106 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ107 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ108 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ109 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ110 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ111 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ112 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ113 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ114 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ115 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ116 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ117 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ118 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ119 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ120 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ121 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ122 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ123 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ124 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ125 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ126 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ127 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-THMS
PUZ128 ( -0 +2 _0 ^0) Iokaste patricide triangle
PUZ129 ( -0 +1 _0 ^0) The grocer is not a cyclist
PUZ130 ( -0 +1 _1 ^0) Garfield and Odie
PUZ131 ( -0 +1 _1 ^0) Victor teaches Michael
PUZ132 ( -0 +1 _0 ^0) Crime in beautiful Washington
PUZ133 ( -0 +3 _1 ^0) N queens problem has the variable symmetry property
PUZ134 ( -0 +0 _2 ^0) The Knowheyan Job Puzzle - Jobs
PUZ135 ( -0 +0 _2 ^0) The Knowheyan Art Fair Puzzle - Entries
PUZ136 ( -0 +0 _0 ^1) Under two assumptions there are at least two individuals.
PUZ137 ( -0 +0 _0 ^1) Peter the liar says everything
PUZ138 ( -0 +1 _0 ^0) Platinum Blonde
PUZ139 ( -0 +0 _1 ^0) Caramel vanilla coffee helps people stay awake
PUZ140 ( -0 +0 _0 ^2) A mixture of coffee and syrup that is hot
PUZ141 ( -0 +0 _0 ^1) Labyrinth1
PUZ142 ( -0 +0 _0 ^1) Labyrinth2
PUZ143 ( -0 +0 _0 ^1) Labyrinth3
PUZ144 ( -0 +0 _0 ^1) Labyrinth4
PUZ145 ( -0 +0 _0 ^1) Labyrinth5
PUZ146 ( -0 +0 _0 ^1) Peter and Mary have different hobbies
PUZ147 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1972, Problem 3
PUZ148 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1974, Problem 3
-------------------------------------------------------------------------------
Domain QUA = Quantales
21 problems (21 abstract), 0 CNF, 0 FOF, 0 TFF, 21 THF
-------------------------------------------------------------------------------
QUA001 ( -0 +0 _0 ^1) Addition is associative
QUA002 ( -0 +0 _0 ^1) Addition (Sumpremum) is commutative
QUA003 ( -0 +0 _0 ^1) Zero is neutral with respect to addition
QUA004 ( -0 +0 _0 ^1) Addition is idempotent
QUA005 ( -0 +0 _0 ^1) Zero is right-annihilator
QUA006 ( -0 +0 _0 ^1) Zero is left-annihilator
QUA007 ( -0 +0 _0 ^1) Right-distributivity of multiplication over addition
QUA008 ( -0 +0 _0 ^1) Left-distributivity of multiplication over addition
QUA009 ( -0 +0 _0 ^1) leq is an order
QUA010 ( -0 +0 _0 ^1) 0 is least element w.r.t. leq
QUA011 ( -0 +0 _0 ^1) 0 annihilates arbitrary sums from the right
QUA012 ( -0 +0 _0 ^1) 0 annihilates arbitrary sums from the left
QUA013 ( -0 +0 _0 ^1) Isotony with respect to multiplication
QUA014 ( -0 +0 _0 ^1) Isotony with respect to multiplication
QUA015 ( -0 +0 _0 ^1) Isotony with respect to addition
QUA016 ( -0 +0 _0 ^1) Isotony with respect to addition
QUA017 ( -0 +0 _0 ^1) Tests are idempotent with respect to multiplication
QUA018 ( -0 +0 _0 ^1) Tests are commutative with respect to multiplication
QUA019 ( -0 +0 _0 ^1) Infimums-property on tests
QUA020 ( -0 +0 _0 ^1) Addition splitting
QUA021 ( -0 +0 _0 ^1) Quantales
-------------------------------------------------------------------------------
Domain RAL = Real Algebra
70 problems (70 abstract), 0 CNF, 0 FOF, 0 TFF, 70 THF
-------------------------------------------------------------------------------
RAL001 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CB1E014
RAL002 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CB1P070
RAL003 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CB1P100
RAL004 ( -0 +0 _0 ^1) Chart System Math I+A Blue Book, Problem 07CBAP118
RAL005 ( -0 +0 _0 ^1) Chart System Math I+A Red Book, Problem 07CR1E017
RAL006 ( -0 +0 _0 ^1) Chart System Math I+A Red Book, Problem 07CR1P081
RAL007 ( -0 +0 _0 ^1) Chart System Math I+A Red Book, Problem 07CRAE040
RAL008 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CW1E106
RAL009 ( -0 +0 _0 ^1) Chart System Math I+A White Book, Problem 07CW1E203
RAL010 ( -0 +0 _0 ^1) Chart System Math I+A Yellow Book, Problem 07CY1E060
RAL011 ( -0 +0 _0 ^1) Chart System Math I+A Yellow Book, Problem 07CY1R037
RAL012 ( -0 +0 _0 ^1) Chart System Math II+B Blue Book, Problem 08CBBP177
RAL013 ( -0 +0 _0 ^1) Chart System Math II+B Red Book, Problem 08CR2E030
RAL014 ( -0 +0 _0 ^1) Chart System Math II+B Red Book, Problem 08CRBP120
RAL015 ( -0 +0 _0 ^1) Chart System Math II+B Yellow Book, Problem 08CYBE146
RAL016 ( -0 +0 _0 ^1) Chart System Math III+C Blue Book, Problem 09CBCE009
RAL017 ( -0 +0 _0 ^1) Chart System Math III+C Blue Book, Problem 09CBCE013
RAL018 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1959, Problem 2
RAL019 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1960, Problem 2
RAL020 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1961, Problem 1
RAL021 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1962, Problem 2
RAL022 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1963, Problem 1
RAL023 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1963, Problem 4
RAL024 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1965, Problem 4
RAL025 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1966, Problem 5
RAL026 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1967, Problem 6
RAL027 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1968, Problem 5
RAL028 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1969, Problem 6
RAL029 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1972, Problem 4
RAL030 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1974, Problem 5
RAL031 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1978, Problem 3
RAL032 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1979, Problem 5
RAL033 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1984, Problem 1
RAL034 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1988, Problem 3
RAL035 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1991, Problem 6
RAL036 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1993, Problem 5
RAL037 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1998, Problem 6
RAL038 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2000, Problem 2
RAL039 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2003, Problem 2
RAL040 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2004, Problem 2
RAL041 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2004, Problem 4
RAL042 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2008, Problem 4
RAL043 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2009, Problem 5
RAL044 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2010, Problem 1
RAL045 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2011, Problem 3
RAL046 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2012, Problem 2
RAL047 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2012, Problem 4
RAL048 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2013, Problem 5
RAL049 ( -0 +0 _0 ^1) International Mathematical Olympiad, 2014, Problem 1
RAL050 ( -0 +0 _0 ^1) Hokkaido University, 1999, Humanities Course, Problem 2
RAL051 ( -0 +0 _0 ^1) Hokkaido University, 2005, Humanities Course, Problem 1
RAL052 ( -0 +0 _0 ^1) Hokkaido University, 2007, Science Course, Problem 5
RAL053 ( -0 +0 _0 ^1) Kyoto University, 1999, Humanities Course, Problem 2
RAL054 ( -0 +0 _0 ^1) Kyoto University, 2001, Humanities Course, Problem 1
RAL055 ( -0 +0 _0 ^1) Kyushu University, 2001, Science Course, Problem 4
RAL056 ( -0 +0 _0 ^1) Kyushu University, 2003, Humanities Course, Problem 3
RAL057 ( -0 +0 _0 ^1) Kyushu University, 2005, Humanities Course, Problem 1
RAL058 ( -0 +0 _0 ^1) Nagoya University, 2003, Humanities Course, Problem 2
RAL059 ( -0 +0 _0 ^1) Osaka University, 2001, Humanities Course, Problem 1
RAL060 ( -0 +0 _0 ^1) Osaka University, 2003, Science Course, Problem 5
RAL061 ( -0 +0 _0 ^1) Osaka University, 2005, Humanities Course, Problem 2
RAL062 ( -0 +0 _0 ^1) Tohoku University, 1999, Humanities Course, Problem 4
RAL063 ( -0 +0 _0 ^1) Tohoku University, 1999, Science Course, Problem 3
RAL064 ( -0 +0 _0 ^1) Tohoku University, 2005, Science Course, Problem 4
RAL065 ( -0 +0 _0 ^1) Tohoku University, 2013, Humanities Course, Problem 1
RAL066 ( -0 +0 _0 ^1) Tohoku University, 2013, Science Course, Problem 1
RAL067 ( -0 +0 _0 ^1) The University of Tokyo, 1989, Humanities Course, Problem 2
RAL068 ( -0 +0 _0 ^1) The University of Tokyo, 1991, Science Course, Problem 2
RAL069 ( -0 +0 _0 ^1) The University of Tokyo, 2011, Humanities Course, Problem 1
RAL070 ( -0 +0 _0 ^1) The University of Tokyo, 2013, Humanities Course, Problem 1
-------------------------------------------------------------------------------
Domain REL = Relation Algebra
220 problems (53 abstract), 109 CNF, 111 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
REL001 ( -1 +1 _0 ^0) There is a (unique) least element, namely 0
REL002 ( -1 +1 _0 ^0) There is a (unique) greatest element, namely x + x'
REL003 ( -1 +1 _0 ^0) Isotonicity of converse
REL004 ( -3 +3 _0 ^0) Converse negation are interconvertible
REL005 ( -4 +4 _0 ^0) Converse distributes over meet
REL006 ( -1 +1 _0 ^0) For empty meet the converse slides over meet
REL007 ( -1 +1 _0 ^0) For empty meet the converse slides over meet
REL008 ( -4 +4 _0 ^0) Sequential composition distributes over addition
REL009 ( -2 +2 _0 ^0) Sequential composition is isotone in both arguments
REL010 ( -2 +2 _0 ^0) Schroeder equivalence (first implication)
REL011 ( -2 +2 _0 ^0) Schroeder equivalence (second implication)
REL012 ( -2 +2 _0 ^0) Cancelativity of converse
REL013 ( -1 +1 _0 ^0) Zero is annihilator
REL014 ( -1 +1 _0 ^0) One is neutral element
REL015 ( -1 +1 _0 ^0) TOP is idempotent w.r.t. composition
REL016 ( -4 +4 _0 ^0) A modular law
REL017 ( -4 +4 _0 ^0) Another modular law
REL018 ( -1 +1 _0 ^0) Vectors are closed under complementation
REL019 ( -2 +2 _0 ^0) Vectors are closed under meet
REL020 ( -2 +2 _0 ^0) Restriction of subidentities
REL021 ( -2 +2 _0 ^0) Restriction of subidentities
REL022 ( -2 +2 _0 ^0) Restriction of subidentities
REL023 ( -2 +2 _0 ^0) A simple consequence of isotonicity
REL024 ( -2 +2 _0 ^0) A simple consequence of isotonicity
REL025 ( -2 +2 _0 ^0) For subidentities converse is redundant
REL026 ( -4 +4 _0 ^0) Splitting rule for x;y if x is a subidentity
REL027 ( -4 +4 _0 ^0) Complements of vectors and subidentities
REL028 ( -2 +2 _0 ^0) For subidentities meet and composition coincide
REL029 ( -4 +4 _0 ^0) Distributivity of subidentities
REL030 ( -4 +4 _0 ^0) Propagation of subidentities
REL031 ( -2 +2 _0 ^0) Partial functions are closed under composition
REL032 ( -2 +2 _0 ^0) Subdistributivity
REL033 ( -4 +4 _0 ^0) Sequential composition distributes in each argument of meet
REL034 ( -2 +2 _0 ^0) Propagation of vectors
REL035 ( -2 +2 _0 ^0) Propagation of vectors
REL036 ( -2 +2 _0 ^0) Propagation of vectors
REL037 ( -2 +2 _0 ^0) Propagation of vectors
REL038 ( -1 +1 _0 ^0) Modular law
REL039 ( -1 +1 _0 ^0) Dedekind law
REL040 ( -4 +4 _0 ^0) Partial functions distribute over meet under sequential comp'n
REL041 ( -2 +2 _0 ^0) Equivalence of different definitions of partial functions
REL042 ( -2 +2 _0 ^0) Equivalence of different definitions of partial functions
REL043 ( -2 +2 _0 ^0) Shunting rule
REL044 ( -2 +2 _0 ^0) Shunting rule
REL045 ( -2 +2 _0 ^0) An unfold law
REL046 ( -1 +1 _0 ^0) Meet splitting
REL047 ( -1 +1 _0 ^0) Meet splitting
REL048 ( -1 +1 _0 ^0) Join splitting
REL049 ( -1 +1 _0 ^0) Join splitting
REL050 ( -4 +4 _0 ^0) The complement of x;TOP is left ideal
REL051 ( -0 +1 _0 ^0) Dense linear ordering
REL052 ( -0 +1 _0 ^0) Non-discrete dense ordering
REL053 ( -1 +1 _0 ^0) Relation Algebra
-------------------------------------------------------------------------------
Domain RNG = Rings
263 problems (128 abstract), 106 CNF, 157 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
RNG001 ( -5 +0 _0 ^0) X.additive_identity = additive_identity for any X
RNG002 ( -1 +0 _0 ^0) Right cancellation for addition
RNG003 ( -1 +0 _0 ^0) Left cancellation for addition
RNG004 ( -3 +0 _0 ^0) X*Y = -X*-Y
RNG005 ( -2 +0 _0 ^0) (-X*Y) + (X*Y) = additive_identity
RNG006 ( -3 +0 _0 ^0) X*(Y+ -Z) = (X*Y) + -(X*Z)
RNG007 ( -3 +0 _0 ^0) In Boolean rings, X is its own inverse
RNG008 ( -7 +0 _0 ^0) Boolean rings are commutative
RNG009 ( -2 +0 _0 ^0) If X*X*X = X then the ring is commutative
RNG010 ( -5 +0 _0 ^0) Skew symmetry of the auxilliary function
RNG011 ( -1 +0 _0 ^0) In a right alternative ring (((X,X,Y)*X)*(X,X,Y)) = Add Id
RNG012 ( -1 +0 _0 ^0) Product of inverses equal product
RNG013 ( -1 +0 _0 ^0) -X*Y = -(X*Y)
RNG014 ( -1 +0 _0 ^0) -X*Y = -(X*Y)
RNG015 ( -1 +0 _0 ^0) X*(Y+ -Z) = (X*Y) + -(X*Z)
RNG016 ( -1 +0 _0 ^0) (X+ -Y)*Z = (X*Z) + -(Y*Z)
RNG017 ( -1 +0 _0 ^0) -X*(Y+Z) = -(X*Y) + -(X*Z)
RNG018 ( -1 +0 _0 ^0) (X+Y)* -Z = -(X*Z) + -(Y*Z)
RNG019 ( -2 +0 _0 ^0) First part of the linearised form of the associator
RNG020 ( -2 +0 _0 ^0) Second part of the linearised form of the associator
RNG021 ( -2 +0 _0 ^0) Third part of the linearised form of the associator
RNG023 ( -2 +0 _0 ^0) Left alternative
RNG024 ( -2 +0 _0 ^0) Right alternative
RNG025 ( -7 +0 _0 ^0) Middle or Flexible Law
RNG026 ( -2 +0 _0 ^0) Teichmuller Identity
RNG027 ( -6 +0 _0 ^0) Right Moufang identity
RNG028 ( -6 +0 _0 ^0) Left Moufang identity
RNG029 ( -6 +0 _0 ^0) Middle Moufang identity
RNG030 ( -2 +0 _0 ^0) 2*assr(X,X,Y)^3 = additive identity
RNG031 ( -2 +0 _0 ^0) (W*W)*X*(W*W) = additive identity
RNG032 ( -2 +0 _0 ^0) 6*assr(X,X,Y)^6 = additive identity
RNG033 ( -4 +0 _0 ^0) A fairly complex equation with associators
RNG034 ( -1 +0 _0 ^0) A skew symmetry relation of the associator
RNG035 ( -1 +0 _0 ^0) If X*X*X*X = X then the ring is commutative
RNG036 ( -1 +0 _0 ^0) If X*X*X*X*X = X then the ring is commutative
RNG037 ( -2 +0 _0 ^0) (X* -Y) + (X*Y) = additive_identity
RNG038 ( -2 +0 _0 ^0) Ring property 1
RNG039 ( -2 +0 _0 ^0) Ring property 2
RNG040 ( -2 +0 _0 ^0) Ring property 4
RNG041 ( -1 +0 _0 ^0) Unknown
RNG042 ( -3 +0 _0 ^0) Ring theory axioms
RNG043 ( -2 +0 _0 ^0) Alternative ring theory (equality) axioms
RNG044 ( -0 +1 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 01, 00 expansion
RNG045 ( -0 +1 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 01_02, 00 expansion
RNG046 ( -0 +1 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 02, 00 expansion
RNG047 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 03, 00 expansion
RNG048 ( -0 +1 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 04, 00 expansion
RNG049 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 04_03, 00 expansion
RNG050 ( -0 +1 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 04_04, 00 expansion
RNG051 ( -0 +1 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05, 00 expansion
RNG052 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_15, 00 expansion
RNG053 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16, 00 expansion
RNG054 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_01, 00 expansion
RNG055 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_01_01, 00 expansion
RNG056 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_01_02, 00 expansion
RNG057 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_01_03, 00 expansion
RNG058 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_02, 00 expansion
RNG059 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_02_01, 00 expansion
RNG060 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_02_02, 00 expansion
RNG061 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_02_03, 00 expansion
RNG062 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_02_04, 00 expansion
RNG063 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_02_05, 00 expansion
RNG064 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_02_07, 00 expansion
RNG065 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_02_08, 00 expansion
RNG066 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_03, 00 expansion
RNG067 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_03_01, 00 expansion
RNG068 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_03_03, 00 expansion
RNG069 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_03_04, 00 expansion
RNG070 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_04, 00 expansion
RNG071 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_05, 00 expansion
RNG072 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_06, 00 expansion
RNG073 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_07, 00 expansion
RNG074 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_16_08, 00 expansion
RNG075 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_17, 00 expansion
RNG076 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_17_01, 00 expansion
RNG077 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_17_02, 00 expansion
RNG078 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_17_03, 00 expansion
RNG079 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_17_04, 00 expansion
RNG080 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_18, 00 expansion
RNG081 ( -0 +2 _0 ^0) Cauchy-Bouniakowsky-Schwarz inequality 05_19, 00 expansion
RNG082 ( -0 +1 _0 ^0) Chinese remainder theorem in a ring 01, 00 expansion
RNG083 ( -0 +1 _0 ^0) Chinese remainder theorem in a ring 02, 00 expansion
RNG084 ( -0 +1 _0 ^0) Chinese remainder theorem in a ring 03, 00 expansion
RNG085 ( -0 +1 _0 ^0) Chinese remainder theorem in a ring 03, 01 expansion
RNG086 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 03_01, 00 expansion
RNG087 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 03_02, 00 expansion
RNG088 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 03_03, 00 expansion
RNG089 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 03_04, 00 expansion
RNG090 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 03_05, 00 expansion
RNG091 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 03_07, 00 expansion
RNG092 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 03_08, 00 expansion
RNG093 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 04, 00 expansion
RNG094 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 05, 00 expansion
RNG095 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 05_01, 00 expansion
RNG096 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 05_03, 00 expansion
RNG097 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 05_03_02, 00 expansion
RNG098 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 05_03_03, 00 expansion
RNG099 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 05_05, 00 expansion
RNG100 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 06, 00 expansion
RNG101 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 06_01, 00 expansion
RNG102 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 06_02, 00 expansion
RNG103 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 06_03, 00 expansion
RNG104 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 06_04, 00 expansion
RNG105 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 06_05, 00 expansion
RNG106 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 06_06, 00 expansion
RNG107 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07+, 00 expansion
RNG108 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_02, 00 expansion
RNG109 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_03, 00 expansion
RNG110 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_04+, 00 expansion
RNG111 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_04_01, 00 expansion
RNG112 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_04_02, 00 expansion
RNG113 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05, 00 expansion
RNG114 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_01, 00 expansion
RNG115 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_01_01, 00 expansion
RNG116 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_01_02, 00 expansion
RNG117 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_03, 00 expansion
RNG118 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_03_01, 00 expansion
RNG119 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_03_02, 00 expansion
RNG120 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_03_03, 00 expansion
RNG121 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_03_04, 00 expansion
RNG122 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_03_05, 00 expansion
RNG123 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_03_06, 00 expansion
RNG124 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_03_07, 00 expansion
RNG125 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_05_04, 00 expansion
RNG126 ( -0 +2 _0 ^0) Chinese remainder theorem in a ring 07_07, 00 expansion
RNG127 ( -0 +1 _0 ^0) Proper integral domains
RNG128 ( -1 +0 _0 ^0) In commutative semirings with 1+x+x^2=x, the operations coincide
RNG129 ( -1 +0 _0 ^0) Separativity in rings
-------------------------------------------------------------------------------
Domain ROB = Robbins Algebra
45 problems (34 abstract), 45 CNF, 0 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
ROB001 ( -1 +0 _0 ^0) Is every Robbins algebra Boolean?
ROB002 ( -1 +0 _0 ^0) --X = X => Boolean
ROB003 ( -1 +0 _0 ^0) X + c=c => Boolean
ROB004 ( -1 +0 _0 ^0) c = -d, c + d=d, and c + c=c => Boolean
ROB005 ( -1 +0 _0 ^0) Exists an idempotent element => Boolean
ROB006 ( -3 +0 _0 ^0) Exists absorbed element => Boolean
ROB007 ( -4 +0 _0 ^0) Absorbed within negation element => Boolean
ROB008 ( -1 +0 _0 ^0) If -(a + -(b + c)) = -(a + b + -c) then a+b=a
ROB009 ( -1 +0 _0 ^0) If -(a + -(b + c)) = -(b + -(a + c)) then a = b
ROB010 ( -1 +0 _0 ^0) If -(a + -b) = c then -(c + -(b + a)) = a
ROB011 ( -1 +0 _0 ^0) If -(a + -b) = c then -(a + -(b + k(a + c))) = c, k=1
ROB012 ( -2 +0 _0 ^0) If -(a + -b) = c then -(a + -(b + k(a + c))) = c, k=k + 1
ROB013 ( -1 +0 _0 ^0) If -(a + b) = c then -(c + -(-b + a)) = a
ROB014 ( -2 +0 _0 ^0) If -(-e + -(d + -e)) = d then -(e + k(d + -(d + -e))) = -e, k=1
ROB015 ( -2 +0 _0 ^0) If -(-e + -(d + -e)) = d then -(e + k(d + -(d + -e))) = -e
ROB016 ( -1 +0 _0 ^0) If -(d + e) = -e then -(e + k(d + -(d + -e))) = -e, for k>0
ROB017 ( -1 +0 _0 ^0) If -(2f + h) = -(3f + h) = -h then 2f + h = 3f + h
ROB018 ( -1 +0 _0 ^0) If -(d + e) = -e then e + 2(d + -(d + -e)) absorbs d + -(d + -e)
ROB020 ( -2 +0 _0 ^0) -(a + -b)=b => Boolean
ROB021 ( -1 +0 _0 ^0) (-X = -Y)=>(X = Y) => Boolean
ROB022 ( -1 +0 _0 ^0) c + -c=c => Boolean
ROB023 ( -1 +0 _0 ^0) X + X=X => Boolean
ROB024 ( -1 +0 _0 ^0) -(a + (a + b)) + -(a + -b) = a => Boolean
ROB025 ( -1 +0 _0 ^0) -(X + Y) = intersection(-X,-Y) => Boolean
ROB026 ( -1 +0 _0 ^0) c + d = c => Boolean
ROB027 ( -1 +0 _0 ^0) -(-c) = c => Boolean
ROB028 ( -1 +0 _0 ^0) Robbins algebra axioms
ROB029 ( -1 +0 _0 ^0) Robbins algebra numbers axioms
ROB030 ( -1 +0 _0 ^0) Exists absorbed element => Exists absorbed within negation element
ROB031 ( -2 +0 _0 ^0) Robbins => Exists absorbed within negation element
ROB032 ( -2 +0 _0 ^0) Robbins => Exists absorbed element
ROB033 ( -1 +0 _0 ^0) Robbins problem with auxilliary definitions
ROB034 ( -1 +0 _0 ^0) Robbins => Exists absorbed element, with auxilliary definitions
ROB035 ( -1 +0 _0 ^0) Robbins => Exists absorbed within negation element
-------------------------------------------------------------------------------
Domain SCT = Social Choice Theory
300 problems (265 abstract), 101 CNF, 85 FOF, 105 TFF, 9 THF
-------------------------------------------------------------------------------
SCT001 ( -1 +0 _0 ^0) Arrow Order 043_1
SCT002 ( -1 +0 _0 ^0) Arrow Order 044_1
SCT003 ( -1 +0 _0 ^0) Arrow Order 048_1
SCT004 ( -1 +0 _0 ^0) Arrow Order 049_1
SCT005 ( -1 +0 _0 ^0) Arrow Order 053_1
SCT006 ( -1 +0 _0 ^0) Arrow Order 057_1
SCT007 ( -1 +0 _0 ^0) Arrow Order 058_1
SCT008 ( -1 +0 _0 ^0) Arrow Order 080_1
SCT009 ( -1 +0 _0 ^0) Arrow Order 083_1
SCT010 ( -1 +0 _0 ^0) Arrow Order 089_1
SCT011 ( -1 +0 _0 ^0) Arrow Order 095_1
SCT012 ( -1 +0 _0 ^0) Arrow Order 100_1
SCT013 ( -1 +0 _0 ^0) Arrow Order 102_1
SCT014 ( -1 +0 _0 ^0) Arrow Order 106_1
SCT015 ( -1 +0 _0 ^0) Arrow Order 107_1
SCT016 ( -1 +0 _0 ^0) Arrow Order 112_1
SCT017 ( -1 +0 _0 ^0) Arrow Order 113_1
SCT018 ( -1 +0 _0 ^0) Arrow Order 134_1
SCT019 ( -1 +0 _0 ^0) Arrow Order 135_1
SCT020 ( -1 +0 _0 ^0) Arrow Order 136_2
SCT021 ( -1 +0 _0 ^0) Arrow Order 137_2
SCT022 ( -1 +0 _0 ^0) Arrow Order 138_2
SCT023 ( -1 +0 _0 ^0) Arrow Order 139_2
SCT024 ( -1 +0 _0 ^0) Arrow Order 140_1
SCT025 ( -1 +0 _0 ^0) Arrow Order 144_1
SCT026 ( -1 +0 _0 ^0) Arrow Order 147_1
SCT027 ( -1 +0 _0 ^0) Arrow Order 148_4
SCT028 ( -1 +0 _0 ^0) Arrow Order 149_1
SCT029 ( -1 +0 _0 ^0) Arrow Order 156_1
SCT030 ( -1 +0 _0 ^0) Arrow Order 164_7
SCT031 ( -1 +0 _0 ^0) Arrow Order 165_3
SCT032 ( -1 +0 _0 ^0) Arrow Order 167_7
SCT033 ( -1 +0 _0 ^0) Arrow Order 169_2
SCT034 ( -1 +0 _0 ^0) Arrow Order 173_2
SCT035 ( -1 +0 _0 ^0) Arrow Order 174_4
SCT036 ( -1 +0 _0 ^0) Arrow Order 178_2
SCT037 ( -1 +0 _0 ^0) Arrow Order 179_4
SCT038 ( -1 +0 _0 ^0) Arrow Order 182_3
SCT039 ( -1 +0 _0 ^0) Arrow Order 185_7
SCT040 ( -1 +0 _0 ^0) Arrow Order 187_6
SCT041 ( -1 +0 _0 ^0) Arrow Order 192_5
SCT042 ( -1 +0 _0 ^0) Arrow Order 197_7
SCT043 ( -1 +0 _0 ^0) Arrow Order 202_7
SCT044 ( -1 +0 _0 ^0) Arrow Order 203_3
SCT045 ( -1 +0 _0 ^0) Arrow Order 204_3
SCT046 ( -1 +0 _0 ^0) Arrow Order 206_7
SCT047 ( -1 +0 _0 ^0) Arrow Order 208_5
SCT048 ( -1 +0 _0 ^0) Arrow Order 210_7
SCT049 ( -1 +0 _0 ^0) Arrow Order 212_5
SCT050 ( -1 +0 _0 ^0) Arrow Order 214_7
SCT051 ( -1 +0 _0 ^0) Arrow Order 217_1
SCT052 ( -1 +0 _0 ^0) Arrow Order 217_2
SCT053 ( -1 +0 _0 ^0) Arrow Order 217_7
SCT054 ( -1 +0 _0 ^0) Arrow Order 219_7
SCT055 ( -1 +0 _0 ^0) Arrow Order 220_5
SCT056 ( -1 +0 _0 ^0) Arrow Order 222_6
SCT057 ( -1 +0 _0 ^0) Arrow Order 223_5
SCT058 ( -1 +0 _0 ^0) Arrow Order 228_5
SCT059 ( -1 +0 _0 ^0) Arrow Order 230_2
SCT060 ( -1 +0 _0 ^0) Arrow Order 232_1
SCT061 ( -1 +0 _0 ^0) Arrow Order 232_2
SCT062 ( -1 +0 _0 ^0) Arrow Order 232_7
SCT063 ( -1 +0 _0 ^0) Arrow Order 234_7
SCT064 ( -1 +0 _0 ^0) Arrow Order 235_5
SCT065 ( -1 +0 _0 ^0) Arrow Order 241_5
SCT066 ( -1 +0 _0 ^0) Arrow Order 242_5
SCT067 ( -1 +0 _0 ^0) Arrow Order 244_5
SCT068 ( -1 +0 _0 ^0) Arrow Order 246_5
SCT069 ( -1 +0 _0 ^0) Arrow Order 248_5
SCT070 ( -1 +0 _0 ^0) Arrow Order 249_3
SCT071 ( -1 +0 _0 ^0) Arrow Order 254_5
SCT072 ( -1 +0 _0 ^0) Arrow Order 255_4
SCT073 ( -1 +0 _0 ^0) Arrow Order 256_5
SCT074 ( -1 +0 _0 ^0) Arrow Order 257_2
SCT075 ( -1 +0 _0 ^0) Arrow Order 258_5
SCT076 ( -1 +0 _0 ^0) Arrow Order 259_2
SCT077 ( -1 +0 _0 ^0) Arrow Order 262_3
SCT078 ( -1 +0 _0 ^0) Arrow Order 264_3
SCT079 ( -1 +0 _0 ^0) Arrow Order 265_5
SCT080 ( -1 +0 _0 ^0) Arrow Order 266_5
SCT081 ( -1 +0 _0 ^0) Arrow Order 268_7
SCT082 ( -1 +0 _0 ^0) Arrow Order 270_7
SCT083 ( -1 +0 _0 ^0) Arrow Order 273_5
SCT084 ( -1 +0 _0 ^0) Arrow Order 275_7
SCT085 ( -1 +0 _0 ^0) Arrow Order 278_1
SCT086 ( -1 +0 _0 ^0) Arrow Order 281_5
SCT087 ( -1 +0 _0 ^0) Arrow Order 283_3
SCT088 ( -1 +0 _0 ^0) Arrow Order 285_6
SCT089 ( -1 +0 _0 ^0) Arrow Order 289_7
SCT090 ( -1 +0 _0 ^0) Arrow Order 291_7
SCT091 ( -1 +0 _0 ^0) Arrow Order 293_5
SCT092 ( -1 +0 _0 ^0) Arrow Order 295_7
SCT093 ( -1 +0 _0 ^0) Arrow Order 299_3
SCT094 ( -1 +0 _0 ^0) Arrow Order 300_3
SCT095 ( -1 +0 _0 ^0) Arrow Order 303_7
SCT096 ( -1 +0 _0 ^0) Arrow Order 307_3
SCT097 ( -1 +0 _0 ^0) Arrow Order 308_3
SCT098 ( -1 +0 _0 ^0) Arrow Order 310_6
SCT099 ( -1 +0 _0 ^0) Arrow Order 31_12
SCT100 ( -1 +0 _0 ^0) Arrow Order 311_3
SCT101 ( -1 +0 _0 ^0) Arrow Order 34_12
SCT102 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432241, 500 axioms selected
SCT103 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432336, 500 axioms selected
SCT104 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432372, 500 axioms selected
SCT105 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432375, 500 axioms selected
SCT106 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432405, 500 axioms selected
SCT107 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432412, 500 axioms selected
SCT108 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432613, 500 axioms selected
SCT109 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432629, 500 axioms selected
SCT110 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432645, 500 axioms selected
SCT111 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432661, 500 axioms selected
SCT112 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432686, 500 axioms selected
SCT113 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432702, 500 axioms selected
SCT114 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432709, 500 axioms selected
SCT115 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432712, 500 axioms selected
SCT116 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432728, 500 axioms selected
SCT117 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432731, 500 axioms selected
SCT118 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432937, 500 axioms selected
SCT119 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432940, 500 axioms selected
SCT120 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432943, 500 axioms selected
SCT121 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432946, 500 axioms selected
SCT122 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 432949, 500 axioms selected
SCT123 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433003, 500 axioms selected
SCT124 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433086, 500 axioms selected
SCT125 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433097, 500 axioms selected
SCT126 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433102, 500 axioms selected
SCT127 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433106, 500 axioms selected
SCT128 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433111, 500 axioms selected
SCT129 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433118, 500 axioms selected
SCT130 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433136, 500 axioms selected
SCT131 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433141, 500 axioms selected
SCT132 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433149, 500 axioms selected
SCT133 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433154, 500 axioms selected
SCT134 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433161, 500 axioms selected
SCT135 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433170, 500 axioms selected
SCT136 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433192, 500 axioms selected
SCT137 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433197, 500 axioms selected
SCT138 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433202, 500 axioms selected
SCT139 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433206, 500 axioms selected
SCT140 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433212, 500 axioms selected
SCT141 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433216, 500 axioms selected
SCT142 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433222, 500 axioms selected
SCT143 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433226, 500 axioms selected
SCT144 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433230, 500 axioms selected
SCT145 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433233, 500 axioms selected
SCT146 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433242, 500 axioms selected
SCT147 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433247, 500 axioms selected
SCT148 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433253, 500 axioms selected
SCT149 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433259, 500 axioms selected
SCT150 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433285, 500 axioms selected
SCT151 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433291, 500 axioms selected
SCT152 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433294, 500 axioms selected
SCT153 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433304, 500 axioms selected
SCT154 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433319, 500 axioms selected
SCT155 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433325, 500 axioms selected
SCT156 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433333, 500 axioms selected
SCT157 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433341, 500 axioms selected
SCT158 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433349, 500 axioms selected
SCT159 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433377, 500 axioms selected
SCT160 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433508, 500 axioms selected
SCT161 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433512, 500 axioms selected
SCT162 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433634, 500 axioms selected
SCT163 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433638, 500 axioms selected
SCT164 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433644, 500 axioms selected
SCT165 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433653, 500 axioms selected
SCT166 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433663, 500 axioms selected
SCT167 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433668, 500 axioms selected
SCT168 ( -0 +1 _0 ^0) Arrow's Impossibility Theorem 433680, 500 axioms selected
SCT169 ( -0 +6 _4 ^3) Arrow's Impossibility Theorem line 29, 100 axioms selected
SCT170 ( -0 +6 _4 ^3) Arrow's Impossibility Theorem line 204, 100 axioms selected
SCT171 ( -0 +6 _3 ^3) Arrow's Impossibility Theorem line 309, 100 axioms selected
SCT172 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 32
SCT173 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 41
SCT174 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 42
SCT175 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 46
SCT176 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 47
SCT177 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 51
SCT178 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 55
SCT179 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 56
SCT180 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 78
SCT181 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 81
SCT182 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 87
SCT183 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 93
SCT184 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 98
SCT185 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 100
SCT186 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 104
SCT187 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 105
SCT188 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 110
SCT189 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 111
SCT190 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 132
SCT191 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 133
SCT192 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 134
SCT193 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 135
SCT194 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 136
SCT195 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 137
SCT196 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 138
SCT197 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 142
SCT198 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 145
SCT199 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 146
SCT200 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 147
SCT201 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 154
SCT202 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 162
SCT203 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 163
SCT204 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 165
SCT205 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 167
SCT206 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 171
SCT207 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 172
SCT208 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 176
SCT209 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 177
SCT210 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 180
SCT211 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 183
SCT212 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 185
SCT213 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 190
SCT214 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 195
SCT215 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 200
SCT216 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 201
SCT217 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 202
SCT218 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 206
SCT219 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 208
SCT220 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 210
SCT221 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 212
SCT222 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 215
SCT223 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 217
SCT224 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 218
SCT225 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 220
SCT226 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 221
SCT227 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 226
SCT228 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 228
SCT229 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 230
SCT230 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 232
SCT231 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 233
SCT232 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 239
SCT233 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 240
SCT234 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 242
SCT235 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 244
SCT236 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 246
SCT237 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 247
SCT238 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 252
SCT239 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 253
SCT240 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 254
SCT241 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 255
SCT242 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 256
SCT243 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 257
SCT244 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 260
SCT245 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 262
SCT246 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 263
SCT247 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 264
SCT248 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 266
SCT249 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 268
SCT250 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 270
SCT251 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 272
SCT252 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 275
SCT253 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 278
SCT254 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 280
SCT255 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 282
SCT256 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 286
SCT257 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 288
SCT258 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 290
SCT259 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 292
SCT260 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 296
SCT261 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 297
SCT262 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 300
SCT263 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 304
SCT264 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 305
SCT265 ( -0 +0 _1 ^0) Arrow's Impossibility Theorem line 307
-------------------------------------------------------------------------------
Domain SET = Set Theory
1413 problems (967 abstract), 800 CNF, 468 FOF, 0 TFF, 145 THF
-------------------------------------------------------------------------------
SET001 ( -1 +0 _0 ^0) Set members are superset members
SET002 ( -2 +2 _0 ^1) Idempotency of union
SET003 ( -1 +0 _0 ^0) A set is a subset of the union of itself with itself
SET004 ( -1 +0 _0 ^0) A set is a subset of the union of itself and another set
SET005 ( -1 +0 _0 ^0) Associativity of set intersection
SET006 ( -1 +0 _0 ^0) A = A ^ B if A (= B
SET007 ( -1 +0 _0 ^0) Intersection distributes over union
SET008 ( -1 +1 _0 ^1) (X \ Y) ^ Y = the empty set
SET009 ( -1 +1 _0 ^1) If X is a subset of Y, then Z \ Y is a subset of Z \ X
SET010 ( -1 +1 _0 ^1) X \ Y ^ Z = (X \ Y) U (X \ Z)
SET011 ( -1 +1 _0 ^1) X \ (X \ Y) = X ^ Y
SET012 ( -4 +1 _0 ^0) Complement is an involution
SET013 ( -4 +1 _0 ^1) Commutativity of intersection
SET014 ( -4 +2 _0 ^3) If X (= Z and Y (= Z, then X U Y (= Z
SET015 ( -4 +1 _0 ^0) Commutativity of union
SET016 ( -4 +2 _0 ^0) First components of equal ordered pairs are equal
SET017 ( -4 +1 _0 ^1) Left cancellation for unordered pairs
SET018 ( -5 +2 _0 ^1) Second components of equal ordered pairs are equal
SET019 ( -2 +1 _0 ^0) Two sets that contain one another are equal
SET020 ( -4 +1 _0 ^1) Uniqueness of 1st and 2nd when X is an ordered pair of sets
SET021 ( -4 +0 _0 ^0) 2nd is unique when x is an ordered pair of sets
SET022 ( -2 +0 _0 ^0) The first component of an ordered pair is a little set
SET023 ( -2 +0 _0 ^0) The second component of an ordered pair is a little set
SET024 ( -4 +1 _0 ^0) A set belongs to its singleton
SET025 ( -6 +1 _0 ^0) An ordered pair is a set
SET027 ( -4 +3 _0 ^2) Transitivity of subset
SET028 ( -2 +0 _0 ^0) Relationship between apply and image, part 1 of 2
SET029 ( -2 +0 _0 ^0) Relationship between apply and image, part 2 of 2
SET030 ( -3 +0 _0 ^0) Function values are little sets
SET031 ( -2 +0 _0 ^0) The composition of two sets is a relation
SET032 ( -3 +0 _0 ^0) Range of composition
SET033 ( -3 +0 _0 ^0) Domain of composition
SET034 ( -3 +0 _0 ^0) The composition of functions is a function
SET035 ( -3 +0 _0 ^0) Maps for composition
SET036 ( -3 +0 _0 ^0) Properties of apply for functions, part 1 of 3
SET037 ( -3 +0 _0 ^0) Properties of apply for functions, part 2 of 3
SET038 ( -3 +0 _0 ^0) Properties of apply for functions, part 3 of 3
SET039 ( -2 +0 _0 ^0) Properties of apply for composition of functions, 1 of 3
SET040 ( -3 +0 _0 ^0) Properties of apply for composition of functions, 2 of 3
SET041 ( -3 +0 _0 ^0) Properties of apply for composition of functions, 3 of 3
SET042 ( -2 +0 _0 ^0) Ordered pairs are in cross products
SET043 ( -1 +1 _0 ^1) Russell's Paradox
SET044 ( -1 +1 _0 ^1) Anti-Russell Sets
SET045 ( -1 +1 _0 ^2) No Universal Set
SET046 ( -1 +1 _0 ^1) No set of non-circular sets
SET047 ( -1 +1 _0 ^0) Set equality is symmetric
SET050 ( -1 +0 _0 ^0) Corollary to Unordered pair axiom
SET051 ( -1 +0 _0 ^0) Corollary to Unordered pair axiom
SET052 ( -1 +0 _0 ^0) Corollary to Cartesian product axiom
SET053 ( -1 +0 _0 ^0) Corollary to Cartesian product axiom
SET054 ( -2 +1 _0 ^0) Reflexivity of subclass
SET055 ( -2 +1 _0 ^0) Reflexivity of equality
SET056 ( -2 +1 _0 ^0) Expanded equality definition
SET057 ( -2 +0 _0 ^0) Expanded equality definition
SET058 ( -2 +0 _0 ^0) Expanded equality definition
SET059 ( -2 +0 _0 ^0) Expanded equality definition
SET060 ( -2 +1 _0 ^0) Nothing in the intersection of a set and its complement
SET061 ( -2 +1 _0 ^0) Existence of a null class
SET062 ( -2 +3 _0 ^3) The empty set is a subset of X
SET063 ( -2 +3 _0 ^1) If X is a subset of the empty set, then X is the empty set
SET064 ( -2 +1 _0 ^0) Uniqueness of null class
SET065 ( -2 +1 _0 ^0) Null class is a set (follows from axiom of infinity)
SET066 ( -2 +1 _0 ^1) Unordered pair is commutative
SET067 ( -2 +1 _0 ^1) If one argument is a proper class, pair contains only the other
SET068 ( -2 +0 _0 ^0) Proper class in an unordered pair, part 2
SET069 ( -2 +1 _0 ^0) If one argument is a proper class, pair contains only the other
SET070 ( -2 +0 _0 ^0) Proper class in an unordered pair, part 4
SET071 ( -2 +1 _0 ^0) If both arguments are proper classes, pair is null
SET072 ( -2 +1 _0 ^0) Right cancellation for unordered pairs
SET073 ( -2 +1 _0 ^0) Corollary to unordered pair axiom
SET074 ( -2 +1 _0 ^0) Corollary to unordered pair axiom
SET075 ( -2 +0 _0 ^0) Corollary to unordered pair axiom
SET076 ( -2 +1 _0 ^1) If both members of a pair belong to a set, the pair is a subset
SET077 ( -2 +1 _0 ^0) Every singleton is a set
SET078 ( -2 +0 _0 ^0) Corollary to every singleton is a set
SET079 ( -2 +1 _0 ^0) A set belongs to its singleton
SET080 ( -2 +0 _0 ^0) Corollary to a set belongs to its singleton
SET081 ( -2 +1 _0 ^0) Only X can belong to {X}
SET082 ( -2 +1 _0 ^0) If X is not a set, {X} = null class
SET083 ( -2 +1 _0 ^0) A singleton set is determined by its element
SET084 ( -2 +1 _0 ^0) A singleton set is determined by its element
SET085 ( -2 +0 _0 ^0) Unordered pair that is a singleton
SET086 ( -2 +1 _0 ^1) A singleton set has a member
SET087 ( -2 +0 _0 ^0) A singleton set has a member, part 2
SET088 ( -2 +0 _0 ^0) A singleton set has a member, part 3
SET089 ( -2 +0 _0 ^0) A singleton set has a member, part 4
SET090 ( -2 +1 _0 ^0) Uniqueness of member_of of a singleton set
SET091 ( -2 +1 _0 ^0) Uniqueness of member_of when X is not a singleton of a set
SET092 ( -2 +0 _0 ^0) Member_of(X) is unique if X is not a singleton, part 2
SET093 ( -2 +1 _0 ^0) Corollary to every singleton is a set
SET094 ( -2 +1 _0 ^0) Property 1 of singletons
SET095 ( -2 +2 _0 ^0) Property 2 of singletons
SET096 ( -2 +1 _0 ^1) There are at most two subsets of a singleton set
SET097 ( -2 +1 _0 ^0) A class contains 0, 1 or at least 2 members.
SET098 ( -2 +1 _0 ^0) Corollary 1 to a class contains 0, 1, or at least 2 members
SET099 ( -2 +1 _0 ^0) Corollary 2 to a class contains 0, 1, or at least 2 members
SET100 ( -2 +0 _0 ^0) The relationship of singleton sets to ordered pairs
SET101 ( -2 +1 _0 ^0) Singleton of the first is a member of an ordered pair
SET102 ( -2 +1 _0 ^0) Ordered pair member of ordered pair
SET103 ( -2 +1 _0 ^0) Special member 1 of an ordered pair
SET104 ( -2 +1 _0 ^0) Special member 2 of an ordered pair
SET105 ( -2 +1 _0 ^0) Special member 3 of an ordered pair
SET108 ( -2 +1 _0 ^0) 1st and 2nd make the ordered pair
SET109 ( -2 +0 _0 ^0) 1st is the ordered pair, first condition
SET110 ( -2 +0 _0 ^0) 2nd is the ordered pair, first condition
SET111 ( -2 +0 _0 ^0) 1st is the ordered pair, second condition
SET112 ( -2 +0 _0 ^0) 2nd is the ordered pair, second condition
SET113 ( -2 +1 _0 ^0) Uniqueness of 1st and 2nd when X is not an ordered pair of sets
SET114 ( -2 +0 _0 ^0) 2nd is unique if x is not an ordered pair of sets, part 1
SET115 ( -2 +0 _0 ^0) 1st is unique if x is not an ordered pair of sets, part 2
SET116 ( -2 +0 _0 ^0) 2nd is unique if x is not an ordered pair of sets, part 2
SET117 ( -2 +1 _0 ^0) Corollary 1 to every ordered pair being a set
SET118 ( -2 +0 _0 ^0) Corollary 2 to every ordered pair being a set
SET119 ( -2 +1 _0 ^0) Corollary 1 to components of equal ordered pairs being equal
SET120 ( -2 +1 _0 ^0) Corollary 2 to components of equal ordered pairs being equal
SET121 ( -2 +1 _0 ^0) Corollary 3 to components of equal ordered pairs being equal
SET122 ( -2 +1 _0 ^0) Corollary 4 to components of equal ordered pairs being equal
SET123 ( -1 +0 _0 ^0) Alternative definition of set builder, part 1
SET124 ( -1 +0 _0 ^0) Alternative definition of set builder, part 2
SET125 ( -1 +0 _0 ^0) Alternative definition of set builder, part 3
SET126 ( -1 +0 _0 ^0) Relation to singleton
SET127 ( -1 +0 _0 ^0) Relation to unordered pair
SET128 ( -1 +0 _0 ^0) Building a triple
SET129 ( -1 +0 _0 ^0) Membership in a built unordered triple
SET130 ( -1 +0 _0 ^0) Membership in unordered triple, part 1
SET131 ( -1 +0 _0 ^0) Membership in unordered triple, part 2
SET132 ( -1 +0 _0 ^0) Membership in unordered triple, part 3
SET133 ( -1 +0 _0 ^0) Corollary 1 to membership in unordered triple
SET134 ( -1 +0 _0 ^0) Corollary 2 to membership in unordered triple
SET135 ( -1 +0 _0 ^0) Corollary 3 to membership in unordered triple
SET136 ( -1 +0 _0 ^0) Corollary 4 to membership in unordered triple
SET137 ( -1 +0 _0 ^0) Kludge 1 to instantiate variables in unordered triples
SET138 ( -1 +0 _0 ^0) Kludge 2 to instantiate variables in unordered triples
SET139 ( -1 +0 _0 ^0) Triple reduction 1
SET140 ( -1 +0 _0 ^0) Triple reduction 2
SET141 ( -1 +0 _0 ^0) Triple reduction 3
SET142 ( -1 +0 _0 ^0) Lexical ordering in unordered triples is irrelevant
SET143 ( -1 +2 _0 ^2) Associativity of intersection
SET144 ( -1 +1 _0 ^1) If X is a subset of Z, then X U Y ^ Z = (X U Y) ^ Z
SET145 ( -1 +0 _0 ^0) Commutativity outside intersection
SET146 ( -1 +1 _0 ^0) The intersection of X and the empty set is the empty set
SET147 ( -1 +0 _0 ^0) Universal class is identity for intersection
SET148 ( -1 +2 _0 ^0) Idempotency of intersection
SET149 ( -1 +0 _0 ^0) Corollary to idempotency of intersection
SET150 ( -1 +0 _0 ^0) Complement is an involution
SET151 ( -1 +0 _0 ^0) Complement of null class is universal class
SET152 ( -1 +0 _0 ^0) Complement of universal class is null class
SET153 ( -1 +0 _0 ^0) Intersection with complement is null class
SET154 ( -1 +0 _0 ^0) Union with complement is universal class
SET155 ( -1 +1 _0 ^0) De Morgans law 1
SET156 ( -1 +1 _0 ^0) De Morgans law 2
SET157 ( -1 +0 _0 ^0) Complement is unique
SET158 ( -1 +0 _0 ^0) Corollary to complement axiom
SET159 ( -1 +2 _0 ^1) Associativity of union
SET160 ( -1 +0 _0 ^0) Commutativity of union
SET161 ( -1 +0 _0 ^0) Commutativity outside union
SET162 ( -1 +2 _0 ^1) The union of X and the empty set is X
SET163 ( -1 +0 _0 ^0) Union with universal class
SET165 ( -1 +0 _0 ^0) Corollary to idempotency of union
SET166 ( -1 +0 _0 ^0) Members of union 1
SET167 ( -1 +0 _0 ^0) Members of union 2
SET168 ( -1 +0 _0 ^0) Members of union 3
SET169 ( -1 +2 _0 ^1) Intersection distributes over union
SET170 ( -1 +0 _0 ^0) Distribution of intersection over union 2
SET171 ( -1 +2 _0 ^2) Union distributes over intersection
SET172 ( -1 +0 _0 ^0) Distribution of union over intersection 2
SET173 ( -1 +1 _0 ^1) Absorbtion for intersection
SET174 ( -1 +0 _0 ^0) Corollary to absorbtion for intersection
SET175 ( -1 +1 _0 ^1) Absorbtion for union
SET176 ( -1 +0 _0 ^0) Corollary to absorbtion for union
SET177 ( -1 +0 _0 ^0) Distribution property 1
SET178 ( -1 +0 _0 ^0) Corollary 1 to distribution property 1
SET179 ( -1 +0 _0 ^0) Corollary 2 to distribution property 1
SET180 ( -1 +0 _0 ^0) Distribution property 2
SET181 ( -1 +0 _0 ^0) Corollary to distribution property 2
SET182 ( -1 +0 _0 ^0) Distribution property 3
SET183 ( -1 +1 _0 ^1) If X is a subset of  Y, then the intersection of X and Y is X
SET184 ( -1 +0 _0 ^0) Subclass property 2
SET185 ( -1 +1 _0 ^1) If X is a subset of  Y, then the union of X and Y is Y
SET186 ( -1 +0 _0 ^0) Subclass property 4
SET187 ( -1 +0 _0 ^0) Subclass property 5
SET188 ( -1 +0 _0 ^0) Subclass property 6
SET189 ( -1 +0 _0 ^0) Corollary to subclass property 6
SET190 ( -1 +0 _0 ^0) Subclass property 7
SET191 ( -1 +0 _0 ^0) Subclass property 8
SET192 ( -1 +0 _0 ^0) Subclass property 9
SET193 ( -1 +0 _0 ^0) Subclass property 10
SET194 ( -1 +1 _0 ^1) X is a subset of the union of X and Y
SET195 ( -1 +0 _0 ^0) Lattice upper bound 2
SET196 ( -1 +1 _0 ^1) The intersection of X and Y is a subset of X
SET197 ( -1 +0 _0 ^0) Lattice lower bound 2
SET199 ( -1 +2 _0 ^1) If Z (= X and Z (= Y, then Z (= X ^ Y
SET200 ( -1 +1 _0 ^1) Union is monotonic
SET201 ( -1 +1 _0 ^1) Intersection is monotonic
SET202 ( -1 +0 _0 ^0) Cross product property 1
SET203 ( -1 +0 _0 ^0) Corollary to cross product product property 1
SET204 ( -1 +0 _0 ^0) Cross product property 2
SET205 ( -1 +0 _0 ^0) Cross product with null class 1
SET206 ( -1 +0 _0 ^0) Cross product with null class 2
SET207 ( -1 +0 _0 ^0) Cross product property 3
SET208 ( -1 +0 _0 ^0) Cross product is monotonic 1
SET209 ( -1 +0 _0 ^0) Cross product is monotonic 2
SET210 ( -1 +0 _0 ^0) Corollary 1 to cross product product monotonicity
SET211 ( -1 +0 _0 ^0) Corollary 2 to cross product product monotonicity
SET212 ( -1 +0 _0 ^0) Corollary 3 to cross product product monotonicity
SET213 ( -1 +0 _0 ^0) Corollary 4 to cross product product monotonicity
SET214 ( -1 +0 _0 ^0) Corollary 5 to cross product product monotonicity
SET215 ( -1 +0 _0 ^0) Corollary 6 to cross product product monotonicity
SET216 ( -1 +0 _0 ^0) Corollary 7 to cross product product monotonicity
SET217 ( -1 +0 _0 ^0) Corollary 8 to cross product product monotonicity
SET218 ( -1 +0 _0 ^0) Cross product distributes over union 1
SET219 ( -1 +0 _0 ^0) Cross product distributes over union 2
SET220 ( -1 +0 _0 ^0) Cross product distributes over intersection 1
SET221 ( -1 +0 _0 ^0) Cross product distributes over intersection 2
SET222 ( -1 +0 _0 ^0) Cross product property 4
SET223 ( -1 +0 _0 ^0) Cross product property 5
SET224 ( -1 +0 _0 ^0) Cross product double distribution for intersection
SET225 ( -1 +0 _0 ^0) Inverse of cross product squared
SET226 ( -1 +0 _0 ^0) Cross product left cancellation 1
SET227 ( -1 +0 _0 ^0) Cross product left cancellation 2
SET228 ( -1 +0 _0 ^0) Cross product right cancellation 1
SET229 ( -1 +0 _0 ^0) Cross product right cancellation 2
SET230 ( -1 +0 _0 ^0) Corollary to cross product cancellation
SET231 ( -1 +0 _0 ^0) Cross product property 6
SET232 ( -1 +0 _0 ^0) Cross product property 7
SET233 ( -1 +0 _0 ^0) Cross product property 8
SET234 ( -1 +0 _0 ^0) Cross product property 9
SET235 ( -1 +0 _0 ^0) Cross product property 10
SET236 ( -1 +0 _0 ^0) Cross product property 11
SET237 ( -1 +0 _0 ^0) Restriction alternate definition 1
SET238 ( -1 +0 _0 ^0) Corollary to restriction alternate definition 1
SET239 ( -1 +0 _0 ^0) Restriction alternate definition 2
SET240 ( -1 +0 _0 ^0) Restriction alternate definition 3
SET241 ( -1 +0 _0 ^0) Restriction alternate definition 4
SET242 ( -1 +0 _0 ^0) Restriction alternate definition 5
SET243 ( -1 +0 _0 ^0) Restriction property 1
SET244 ( -1 +0 _0 ^0) Restriction with universal class
SET245 ( -1 +0 _0 ^0) Restriction with null class 1
SET246 ( -1 +0 _0 ^0) Restriction with null class 2
SET247 ( -1 +0 _0 ^0) Restriction with null class 3
SET248 ( -1 +0 _0 ^0) Restriction preserves intersections
SET249 ( -1 +0 _0 ^0) Restriction property 2
SET250 ( -1 +0 _0 ^0) Corollary to restriction property 2
SET251 ( -1 +0 _0 ^0) Restriction of element relation, part 1
SET252 ( -1 +0 _0 ^0) Restriction property 3
SET253 ( -1 +0 _0 ^0) Restriction property 4
SET254 ( -1 +0 _0 ^0) Monotonicity of restriction 1
SET255 ( -1 +0 _0 ^0) Monotonicity of restriction 2
SET256 ( -1 +0 _0 ^0) Monotonicity of restriction 3
SET257 ( -1 +0 _0 ^0) Restriction property 5
SET258 ( -1 +0 _0 ^0) Domain alternate definition 1
SET259 ( -1 +0 _0 ^0) Domain alternate definition 2
SET260 ( -1 +0 _0 ^0) Domain alternate definition 3
SET261 ( -1 +0 _0 ^0) Domain of null class is the null class
SET262 ( -1 +0 _0 ^0) Domain of universal class is the universal class
SET263 ( -1 +0 _0 ^0) Domain preserves union
SET264 ( -1 +0 _0 ^0) Domain is monotonic 1
SET265 ( -1 +0 _0 ^0) Domain is monotonic 2
SET266 ( -1 +0 _0 ^0) Domain is monotonic 3
SET267 ( -1 +0 _0 ^0) Domain is monotonic 4
SET268 ( -1 +0 _0 ^0) Domain property 1
SET269 ( -1 +0 _0 ^0) Domain only considers ordered pairs
SET270 ( -1 +0 _0 ^0) Domain property 2
SET271 ( -1 +0 _0 ^0) Corollary to domain property 2
SET272 ( -1 +0 _0 ^0) Domain property 3
SET273 ( -1 +0 _0 ^0) Corollary to domain property 3
SET274 ( -1 +0 _0 ^0) Domain property 4
SET275 ( -1 +0 _0 ^0) Corollary 1 to domain property 4
SET276 ( -1 +0 _0 ^0) Corollary 2 to domain property 4
SET277 ( -1 +0 _0 ^0) Corollary 3 to domain property 4
SET278 ( -1 +0 _0 ^0) Corollary 4 to domain property 4
SET279 ( -1 +0 _0 ^0) Domain property 5
SET280 ( -1 +0 _0 ^0) Domain property 6
SET281 ( -1 +0 _0 ^0) Domain relation is a function
SET282 ( -1 +0 _0 ^0) Domain of domain relation
SET283 ( -1 +0 _0 ^0) Apply domain relation
SET284 ( -1 +0 _0 ^0) Image of domain relation
SET285 ( -1 +0 _0 ^0) Domain property 7
SET286 ( -1 +0 _0 ^0) Corollary to domain property 7
SET287 ( -1 +0 _0 ^0) Domain property 8
SET288 ( -1 +0 _0 ^0) Domain property 9
SET289 ( -1 +0 _0 ^0) Proof of Goedel's axiom B6, part 1
SET290 ( -1 +0 _0 ^0) Proof of Goedel's axiom B6, part 2
SET291 ( -1 +0 _0 ^0) Proof of Goedel's axiom B6, part 3
SET292 ( -1 +0 _0 ^0) Inverse of null class is the null class
SET293 ( -1 +0 _0 ^0) Inverse of universal class is the universal class
SET294 ( -1 +0 _0 ^0) Inverse distributes over union
SET295 ( -1 +0 _0 ^0) Inverse distributes over intersection
SET296 ( -1 +0 _0 ^0) Domain of inverse
SET297 ( -1 +0 _0 ^0) Range of inverse
SET298 ( -1 +0 _0 ^0) Inverse of complement
SET299 ( -1 +0 _0 ^0) Inverse of product
SET300 ( -1 +0 _0 ^0) Inverse of inverse
SET301 ( -1 +0 _0 ^0) Inverse commutes with restriction
SET302 ( -1 +0 _0 ^0) Range alternate definition 1
SET303 ( -1 +0 _0 ^0) Range alternate definition 2
SET304 ( -1 +0 _0 ^0) Range alternate definition 3
SET305 ( -1 +0 _0 ^0) Range of null class is the null class
SET306 ( -1 +0 _0 ^0) Range of universal class is the universal class
SET307 ( -1 +0 _0 ^0) Range preserves union
SET308 ( -1 +0 _0 ^0) Monotonicity of range 1
SET309 ( -1 +0 _0 ^0) Monotonicity of range 2
SET310 ( -1 +0 _0 ^0) Monotonicity of range 3
SET311 ( -1 +0 _0 ^0) Range property 1
SET312 ( -1 +0 _0 ^0) Range only considers ordered pairs
SET313 ( -1 +0 _0 ^0) Range property 2
SET314 ( -1 +0 _0 ^0) Range property 3
SET315 ( -1 +0 _0 ^0) Corollary to range property 3
SET316 ( -1 +0 _0 ^0) Range property 4
SET317 ( -1 +0 _0 ^0) Corollary 1 to range property 4
SET318 ( -1 +0 _0 ^0) Corollary 2 to range property 4
SET319 ( -1 +0 _0 ^0) Corollary 3 to range property 4
SET320 ( -1 +0 _0 ^0) Corollary 4 to range property 4
SET321 ( -1 +0 _0 ^0) Range property 5
SET322 ( -1 +0 _0 ^0) Range property 6
SET323 ( -1 +0 _0 ^0) Range property 7
SET324 ( -1 +0 _0 ^0) Image alternate definition 1
SET325 ( -1 +0 _0 ^0) Image alternate definition 2
SET326 ( -1 +0 _0 ^0) Corollary to image alternate definition 2
SET327 ( -1 +0 _0 ^0) Image alternate definition 3
SET328 ( -1 +0 _0 ^0) Corollary to image alternate definition 3
SET329 ( -1 +0 _0 ^0) Image alternate definition 4
SET330 ( -1 +0 _0 ^0) Corollary to image alternate definition 4
SET331 ( -1 +0 _0 ^0) Range is image of the domain
SET332 ( -1 +0 _0 ^0) Corollary to range is image of domain
SET333 ( -1 +0 _0 ^0) Monotonicity of image 1
SET334 ( -1 +0 _0 ^0) Monotonicity of image 2
SET335 ( -1 +0 _0 ^0) Image property 1
SET336 ( -1 +0 _0 ^0) Corollary 1 image property 1
SET337 ( -1 +0 _0 ^0) Corollary 2 image property 1
SET338 ( -1 +0 _0 ^0) Corollary 3 image property 1
SET339 ( -1 +0 _0 ^0) Subclass alternate definition 1
SET340 ( -1 +0 _0 ^0) Subclass alternate definition 2
SET341 ( -1 +0 _0 ^0) Image under universal class
SET342 ( -1 +0 _0 ^0) Image of union
SET343 ( -1 +0 _0 ^0) Image of intersection
SET344 ( -1 +0 _0 ^0) Sum class alternate definition 1
SET345 ( -1 +0 _0 ^0) Sum class alternate definition 2
SET346 ( -1 +0 _0 ^0) Sum class alternate definition 3
SET347 ( -1 +1 _0 ^0) Sum of the empty set is the empty set
SET348 ( -1 +0 _0 ^0) Sum class of universal class is universal class
SET349 ( -1 +0 _0 ^0) Sum class of singleton null is null class 1
SET350 ( -1 +0 _0 ^0) Sum class of singleton null is null class 2
SET351 ( -1 +1 _0 ^0) Sum of a singleton is the singleton member
SET352 ( -1 +1 _0 ^0) The sum of an unordered pair is the union of the pair
SET353 ( -1 +0 _0 ^0) Corollary to sum of pair
SET354 ( -1 +0 _0 ^0) Sum of ordered pair
SET355 ( -1 +1 _0 ^0) If X is in Y, then X is a subset of the sum of Y
SET356 ( -1 +0 _0 ^0) Corollary to subclass of union
SET357 ( -1 +0 _0 ^0) Sum class alternate definition 4
SET358 ( -1 +1 _0 ^0) Sum distributes over union
SET359 ( -1 +0 _0 ^0) Sum class property 1
SET360 ( -1 +0 _0 ^0) Domain is sum squared
SET361 ( -1 +0 _0 ^0) Range is sum squared
SET362 ( -1 +0 _0 ^0) Monotonicity of sum
SET363 ( -1 +0 _0 ^0) Power class alternative definition 1
SET364 ( -1 +0 _0 ^0) Power class alternative definition 2
SET365 ( -1 +0 _0 ^0) Monotonicity of power
SET366 ( -1 +1 _0 ^0) The empty set is in every power set
SET367 ( -1 +0 _0 ^0) Power class not in null class
SET368 ( -1 +0 _0 ^0) Power class of universal class is universal class
SET369 ( -1 +0 _0 ^0) Power class of set
SET370 ( -1 +0 _0 ^0) Power class property 1
SET371 ( -1 +0 _0 ^0) Power class property 2
SET372 ( -1 +1 _0 ^0) Power set distributes over intersection
SET373 ( -1 +0 _0 ^0) Power class property 4
SET374 ( -1 +0 _0 ^0) Power class is closed under union
SET375 ( -1 +0 _0 ^0) Power class is closed under intersection
SET376 ( -1 +0 _0 ^0) Power class set builder
SET377 ( -1 +0 _0 ^0) Corollary 1 to power class set builder
SET378 ( -1 +0 _0 ^0) Corollary 2 to power class set builder
SET379 ( -1 +0 _0 ^0) Corollary 3 to power class set builder
SET380 ( -1 +0 _0 ^0) Relation property 1
SET381 ( -1 +0 _0 ^0) Relation property 2
SET382 ( -1 +0 _0 ^0) Corollary 1 to relation property 2
SET383 ( -1 +0 _0 ^0) Corollary 2 to relation property 2
SET384 ( -1 +0 _0 ^0) Corollary 1 to relation property 3
SET385 ( -1 +0 _0 ^0) Corollary 2 to relation property 3
SET386 ( -1 +0 _0 ^0) Relation property 4
SET387 ( -1 +0 _0 ^0) Composition alternate definition 1
SET388 ( -1 +0 _0 ^0) Composition alternate definition 2
SET389 ( -1 +0 _0 ^0) Composition alternate definition 3
SET390 ( -1 +0 _0 ^0) Composition alternate definition 4
SET391 ( -1 +0 _0 ^0) Composition property 1
SET392 ( -1 +0 _0 ^0) Right identity for composition
SET393 ( -1 +0 _0 ^0) Left identity for composition
SET394 ( -1 +0 _0 ^0) Composition property 2
SET395 ( -1 +0 _0 ^0) Composition relates to image
SET396 ( -1 +0 _0 ^0) Domain of composition 1
SET397 ( -1 +0 _0 ^0) Range of composition
SET398 ( -1 +0 _0 ^0) Associativity of composition
SET399 ( -1 +0 _0 ^0) Left compose with null class
SET400 ( -1 +0 _0 ^0) Right compose with null class
SET401 ( -1 +0 _0 ^0) Left compose with universal class
SET402 ( -1 +0 _0 ^0) Right compose with universal class
SET403 ( -1 +0 _0 ^0) Domain of composition 2
SET404 ( -1 +0 _0 ^0) Monotonicity of composition 1
SET405 ( -1 +0 _0 ^0) Monotonicity of composition 2
SET406 ( -1 +0 _0 ^0) Corollary 1 monotonicity of composition
SET407 ( -1 +0 _0 ^0) Corollary 2 monotonicity of composition
SET408 ( -1 +0 _0 ^0) Inverse of composition
SET409 ( -1 +0 _0 ^0) Composition of element relation 1
SET410 ( -1 +0 _0 ^0) Composition of element relation 2
SET411 ( -1 +0 _0 ^0) Compose condition for singleton membership 1
SET412 ( -1 +0 _0 ^0) Compose condition for singleton membership 2
SET413 ( -1 +0 _0 ^0) Compose condition for singleton membership 3
SET414 ( -1 +0 _0 ^0) Composition distributes over union
SET415 ( -1 +0 _0 ^0) Composition with singleton function 1
SET416 ( -1 +0 _0 ^0) Composition with singleton function 2
SET417 ( -1 +0 _0 ^0) Composition property 1
SET418 ( -1 +0 _0 ^0) Composition property 2
SET419 ( -1 +0 _0 ^0) Composition property 3
SET420 ( -1 +0 _0 ^0) Composition property 4
SET421 ( -1 +0 _0 ^0) Compose class is a function
SET422 ( -1 +0 _0 ^0) Compose class and apply
SET423 ( -1 +0 _0 ^0) Sum compose class
SET424 ( -1 +0 _0 ^0) Compose class and composition function are related
SET425 ( -1 +0 _0 ^0) Single valued class alternate definition 1
SET426 ( -1 +0 _0 ^0) Single valued class alternate definition 2
SET427 ( -1 +0 _0 ^0) Single valued class alternate definition 3
SET428 ( -1 +0 _0 ^0) Single valued class alternate definition 4
SET429 ( -1 +0 _0 ^0) A subclass of a single-valued class is single-valued
SET430 ( -1 +0 _0 ^0) In a single-valued class, each image is a singleton
SET431 ( -1 +0 _0 ^0) The composition of single-valued classes is single-valued
SET432 ( -1 +0 _0 ^0) Function alternate definition 1
SET433 ( -1 +0 _0 ^0) Function alternate definition 2
SET434 ( -1 +0 _0 ^0) Function alternate definition 3
SET435 ( -1 +0 _0 ^0) Function alternate definition 4
SET436 ( -1 +0 _0 ^0) Subclass of function is a function, part 1
SET437 ( -1 +0 _0 ^0) Subclass of function is a function, part 2
SET438 ( -1 +0 _0 ^0) In a function, the image of each domain element is a singleton
SET439 ( -1 +0 _0 ^0) Null class is a function
SET440 ( -1 +0 _0 ^0) The restriction of function is function
SET441 ( -1 +0 _0 ^0) The intersection of functions is a function
SET442 ( -1 +0 _0 ^0) Restriction of function
SET443 ( -1 +0 _0 ^0) Difference of functions is a function
SET444 ( -1 +0 _0 ^0) Function property 1
SET445 ( -1 +0 _0 ^0) Corollary to function property 1
SET446 ( -1 +0 _0 ^0) Function property 2
SET447 ( -1 +0 _0 ^0) Function property 3
SET448 ( -1 +0 _0 ^0) Function property 4
SET449 ( -1 +0 _0 ^0) Condition 1 for one function to be a subset of another
SET450 ( -1 +0 _0 ^0) Condition 2 for one function to be a subset of another
SET451 ( -1 +0 _0 ^0) Subset relation alternate definition 1
SET452 ( -1 +0 _0 ^0) Subset relation alternate definition 2
SET453 ( -1 +0 _0 ^0) Subset relation alternate definition 3
SET454 ( -1 +0 _0 ^0) Identity alternate definition 1
SET455 ( -1 +0 _0 ^0) Identity alternate definition 2
SET456 ( -1 +0 _0 ^0) Identity alternate definition 3
SET457 ( -1 +0 _0 ^0) Identity is a function
SET458 ( -1 +0 _0 ^0) Corollary to identity is a function
SET459 ( -1 +0 _0 ^0) Domain of identity is the universal class
SET460 ( -1 +0 _0 ^0) Range of identity
SET461 ( -1 +0 _0 ^0) Domain of restricted identity
SET462 ( -1 +0 _0 ^0) Range of restricted identity
SET463 ( -1 +0 _0 ^0) Corollary to domain and range of identity
SET464 ( -1 +0 _0 ^0) Class image under identity
SET465 ( -1 +0 _0 ^0) Identity is one-to-one
SET466 ( -1 +0 _0 ^0) Inverse of identity is identity
SET467 ( -1 +0 _0 ^0) Sets with at most one member 1
SET468 ( -1 +0 _0 ^0) Sets with at most one member 2
SET469 ( -1 +0 _0 ^0) Sets with at most one member 3
SET470 ( -1 +0 _0 ^0) Corollary to sets with one member
SET471 ( -1 +0 _0 ^0) Sets with more than one member 1
SET472 ( -1 +0 _0 ^0) Sets with more than one member 2
SET473 ( -1 +0 _0 ^0) Lemma 1 to restricted domain
SET474 ( -1 +0 _0 ^0) Lemma 2 to restricted domain
SET475 ( -1 +0 _0 ^0) Restricted domain
SET476 ( -1 +0 _0 ^0) Intersection subclass
SET477 ( -1 +0 _0 ^0) Axiom of subsets 1
SET478 ( -1 +0 _0 ^0) Axiom of subsets 2
SET479 ( -1 +0 _0 ^0) Replacement property 1
SET480 ( -1 +0 _0 ^0) Replacement property 2
SET481 ( -1 +0 _0 ^0) Replacement property 3
SET482 ( -1 +0 _0 ^0) Replacement property 4
SET483 ( -1 +0 _0 ^0) Replacement property 5
SET484 ( -1 +0 _0 ^0) Replacement property 6
SET485 ( -1 +0 _0 ^0) Replacement property 7
SET486 ( -1 +0 _0 ^0) Replacement property 8
SET487 ( -1 +0 _0 ^0) Replacement property 9
SET488 ( -1 +0 _0 ^0) Replacement property 10
SET489 ( -1 +0 _0 ^0) Replacement property 11
SET490 ( -1 +0 _0 ^0) Replacement property 12
SET491 ( -1 +0 _0 ^0) Diagonalization lemma 1
SET492 ( -1 +0 _0 ^0) Diagonalization lemma 2
SET493 ( -1 +0 _0 ^0) Diagonalization corollary
SET494 ( -1 +0 _0 ^0) Diagonalization alternate definition 1
SET495 ( -1 +0 _0 ^0) Diagonalization alternate definition 2
SET496 ( -1 +0 _0 ^0) Diagonalization alternate definition 3
SET497 ( -1 +0 _0 ^0) Special case of the Russell class, without the regularity axiom
SET498 ( -1 +0 _0 ^0) Special case of the Russell class, without the regularity axiom
SET499 ( -1 +0 _0 ^0) The Russell class not a set
SET500 ( -1 +0 _0 ^0) Diagonalization property 1
SET501 ( -1 +0 _0 ^0) Diagonalization property 2
SET502 ( -1 +0 _0 ^0) Diagonalization property 3
SET503 ( -1 +0 _0 ^0) The universal class not set
SET504 ( -1 +0 _0 ^0) Corollary 1 to universal class not set
SET505 ( -1 +0 _0 ^0) Corollary 2 to universal class not set
SET506 ( -1 +0 _0 ^0) Universal class not null class
SET507 ( -1 +0 _0 ^0) Universal class not subclass of null class
SET508 ( -1 +0 _0 ^0) Corollary 1 to singleton in unordered pair axiom
SET509 ( -1 +0 _0 ^0) Corollary 2 to singleton in unordered pair axiom
SET510 ( -1 +0 _0 ^0) Corollary to singleton is null class
SET511 ( -1 +0 _0 ^0) Corollary 1 to special members of ordered pairs
SET512 ( -1 +0 _0 ^0) Corollary 2 to special members of ordered pairs
SET513 ( -1 +0 _0 ^0) Corollary 3 to special members of ordered pairs
SET514 ( -1 +0 _0 ^0) Class of ordered pairs is not a set
SET515 ( -1 +0 _0 ^0) No class belongs to itself
SET516 ( -1 +0 _0 ^0) Corollary to no class belongs to itself
SET517 ( -1 +0 _0 ^0) If member of X is X then X is not a singleton of a set
SET518 ( -1 +0 _0 ^0) There are no cycles of length 2
SET519 ( -1 +0 _0 ^0) Corollary 1 to no cycles of length 2
SET520 ( -1 +0 _0 ^0) Corollary 2 to no cycles of length 2
SET521 ( -1 +0 _0 ^0) Ordered pair determines components 1
SET522 ( -1 +0 _0 ^0) Ordered pair determines components 2
SET523 ( -1 +0 _0 ^0) Element and complement can't both be sets
SET524 ( -1 +0 _0 ^0) Equivalent condition 1 for x not to be an ordered pair
SET525 ( -1 +0 _0 ^0) Equivalent condition 2 for x not to be an ordered pair
SET526 ( -1 +0 _0 ^0) Ordered pair components are sets 1
SET527 ( -1 +0 _0 ^0) Ordered pair components are sets 2
SET528 ( -1 +0 _0 ^0) Corollary 1 to ordered pair components are sets
SET529 ( -1 +0 _0 ^0) Corollary 2 to ordered pair components are sets
SET530 ( -1 +0 _0 ^0) Corollary 3 to ordered pair components are sets
SET531 ( -1 +0 _0 ^0) Application property 1
SET532 ( -1 +0 _0 ^0) Application property 2
SET533 ( -1 +0 _0 ^0) The range of Z is the class of applications of Z to Z's domain 1
SET534 ( -1 +0 _0 ^0) The range of Z is the class of applications of Z to Z's domain 2
SET535 ( -1 +0 _0 ^0) Application property 3
SET536 ( -1 +0 _0 ^0) Corollary 1 to application property 3
SET537 ( -1 +0 _0 ^0) Corollary 2 to application property 3
SET538 ( -1 +0 _0 ^0) Application property 4
SET539 ( -1 +0 _0 ^0) Application property 5
SET540 ( -1 +0 _0 ^0) Application property 6
SET541 ( -1 +0 _0 ^0) Application property 7
SET542 ( -1 +0 _0 ^0) Corollary to application property 9
SET543 ( -1 +0 _0 ^0) Corollary to application property 10
SET544 ( -1 +0 _0 ^0) Corollary to application property 11
SET545 ( -1 +0 _0 ^0) Application special case 1
SET546 ( -1 +0 _0 ^0) Application special case 2
SET547 ( -1 +0 _0 ^0) Application special case 3
SET548 ( -1 +0 _0 ^0) Application property 16
SET549 ( -1 +0 _0 ^0) Application property 17
SET550 ( -1 +0 _0 ^0) Application property 18
SET551 ( -1 +0 _0 ^0) Application property 19
SET552 ( -1 +0 _0 ^0) Application property 20
SET553 ( -1 +0 _0 ^0) Cantor class alternate definition 1
SET554 ( -1 +0 _0 ^0) Cantor class alternate definition 2
SET555 ( -1 +0 _0 ^0) Cantor class alternate definition 3
SET556 ( -1 +0 _0 ^0) Cantor class property 1
SET557 ( -1 +0 _0 ^2) Cantor's theorem
SET558 ( -1 +0 _0 ^0) Compatible functions alternate definition 1
SET559 ( -1 +0 _0 ^0) Compatible functions alternate definition 2
SET560 ( -1 +0 _0 ^0) Compatible functions alternate definition 3
SET561 ( -1 +0 _0 ^0) Compatible function property 1
SET562 ( -1 +0 _0 ^0) Compatible function property 2
SET563 ( -1 +0 _0 ^0) Compatible function property 3
SET564 ( -1 +0 _0 ^0) Corollary 1 to compatible function property 3
SET565 ( -1 +0 _0 ^0) Corollary 2 to compatible function property 3
SET566 ( -1 +0 _0 ^0) Compatible function property 4
SET567 ( -1 +0 _0 ^0) Compatible function special case
SET573 ( -0 +1 _0 ^0) Trybulec's 12th Boolean property of sets
SET574 ( -0 +1 _0 ^0) Trybulec's 13th Boolean property of sets
SET575 ( -0 +1 _0 ^1) Trybulec's 15th Boolean property of sets
SET576 ( -0 +1 _0 ^1) Trybulec's 17th Boolean property of sets
SET577 ( -0 +1 _0 ^0) Trybulec's 18th Boolean property of sets
SET578 ( -0 +1 _0 ^0) Trybulec's 19th Boolean property of sets
SET579 ( -0 +1 _0 ^0) Trybulec's 20th Boolean property of sets
SET580 ( -0 +1 _0 ^2) x is in X sym Y iff x is in X iff x is not in Y
SET581 ( -0 +1 _0 ^0) Trybulec's 24th Boolean property of sets
SET582 ( -0 +1 _0 ^1) If x not in X iff x in Y iff x in Z, then X = Y sym\ Z
SET583 ( -0 +1 _0 ^1) Extensionality
SET584 ( -0 +1 _0 ^1) If X (= Y, then X U Z (= Y U Z
SET585 ( -0 +1 _0 ^1) The intersection of X and Y is a subset of the union of X and Z
SET586 ( -0 +1 _0 ^1) If X (= Y, then X ^ Z (= Y ^ Z
SET587 ( -0 +1 _0 ^1) X \ Y = the empty set iff X (= Y
SET588 ( -0 +1 _0 ^1) If X (= Y, then X \ Z (= Y \ Z
SET589 ( -0 +1 _0 ^1) If X (= Y and Z (= V, then X \ V (= Y \ Z
SET590 ( -0 +1 _0 ^1) The difference of X and Y is a subset of X
SET591 ( -0 +1 _0 ^1) If X (= Y \ X, then X = the empty set
SET592 ( -0 +1 _0 ^1) If X (= Y and X (= Z and Y ^ Z = empty set, then X = empty set
SET593 ( -0 +1 _0 ^1) If X (= Y U Z, then X \ Y (= Z and X \ Z (= Y
SET594 ( -0 +1 _0 ^1) If X ^ Y U X ^ Z = X, then X (= Y U Z
SET595 ( -0 +2 _0 ^1) If X (= Y, then Y = X U (Y \ X)
SET596 ( -0 +1 _0 ^1) If X (= Y and Y ^ Z = the empty set, then X ^ Z = the empty set
SET597 ( -0 +1 _0 ^1) X = Y U Z iff Y (= X, Z (= X, !V: Y (= V & Z (= V, X (= V
SET598 ( -0 +1 _0 ^1) X = Y ^ Z iff X (= Y, X (= Z, !V: V (= Y & V (= Z, V (= X
SET599 ( -0 +1 _0 ^1) X \ Y (= X sym\ Y
SET600 ( -0 +1 _0 ^1) X U Y = empty set iff X = empty set & Y = empty set
SET601 ( -0 +1 _0 ^2) X ^ Y U Y ^ Z U Z ^ X = (X U Y) ^ (Y U Z) ^ (Z U X)
SET602 ( -0 +2 _0 ^0) The difference of X and X is the empty set
SET603 ( -0 +2 _0 ^1) The difference of X and the empty set is X
SET604 ( -0 +1 _0 ^1) The difference of the empty set and X is the empty set
SET605 ( -0 +1 _0 ^1) The difference of X and the union of X and Y is the empty set
SET606 ( -0 +1 _0 ^2) X \ X ^ Y = X \ Y
SET607 ( -0 +1 _0 ^2) X U (Y \ X) = X U Y
SET608 ( -0 +1 _0 ^1) X ^ Y U (X \ Y) = X
SET609 ( -0 +1 _0 ^2) X \ (Y \ Z) = (X \ Y) U X ^ Z
SET610 ( -0 +1 _0 ^1) (X U Y) \ Y = X \ Y
SET611 ( -0 +1 _0 ^2) X ^ Y = the empty set iff X \ Y = X
SET612 ( -0 +1 _0 ^2) X \ (Y U Z) = (X \ Y) ^ (X \ Z)
SET613 ( -0 +1 _0 ^1) (X U Y) \ X ^ Y = (X \ Y) U (Y \ X)
SET614 ( -0 +1 _0 ^2) X \ Y \ Z = X \ (Y U Z)
SET615 ( -0 +1 _0 ^2) (X U Y) \ Z = (X \ Z) U (Y \ Z)
SET616 ( -0 +1 _0 ^1) If X \ Y = Y \ X, then X = Y
SET617 ( -0 +1 _0 ^1) X sym\ the empty set = X and the empty set sym\ X = X
SET618 ( -0 +1 _0 ^1) The symmetric difference of X and X is the empty set
SET619 ( -0 +1 _0 ^1) X U Y = (X sym\ Y) U X ^ Y
SET620 ( -0 +1 _0 ^1) X sym\ Y = (X U Y) \ X ^ Y
SET621 ( -0 +1 _0 ^1) (X sym\ Y) \ Z = (X \ (Y U Z)) U (Y \ (X U Z))
SET622 ( -0 +1 _0 ^1) X \ (Y sym\ Z) = (X \ (Y U Z)) U X ^ Y ^ Z
SET623 ( -0 +1 _0 ^2) (X sym\ Y) sym\ Z = X sym\ (Y sym\ Z)
SET624 ( -0 +1 _0 ^2) X intersects Y U Z iff X intersects Y or X intersects Z
SET625 ( -0 +1 _0 ^1) If X intersects Y and Y is a subset of Z, then X intersects Z
SET626 ( -0 +1 _0 ^1) If X intersects the intersection of Y and Z, then X intersects Y
SET627 ( -0 +1 _0 ^1) X is disjoint from the empty set
SET628 ( -0 +1 _0 ^1) X intersects X iff X is not the empty set
SET629 ( -0 +1 _0 ^1) X ^ Y is disjoint from X \ Y
SET630 ( -0 +1 _0 ^2) X ^ Y is disjoint from X sym\ Y
SET631 ( -0 +1 _0 ^1) If X intersects the difference of Y and Z, then X intersects Y
SET632 ( -0 +1 _0 ^1) If X (= Y & X (= Z & Y disjoint from Z, then X = empty set
SET633 ( -0 +1 _0 ^1) If X \ Y (= Z and Y \ X (= Z, then X sym\ Y (= Z
SET634 ( -0 +1 _0 ^1) X ^ (Y \ Z) = X ^ Y \ Z
SET635 ( -0 +1 _0 ^1) X ^ (Y \ Z) = X ^ Y \ X ^ Z
SET636 ( -0 +1 _0 ^1) X is disjoint from Y iff X ^ Y = the empty set
SET637 ( -0 +1 _0 ^0) Trybulec's 119th Boolean property of sets
SET638 ( -0 +1 _0 ^1) If X (= Y U Z and X ^ Z = the empty set , then X (= Y
SET639 ( -0 +1 _0 ^0) Trybulec's 121th Boolean property of sets
SET640 ( -0 +1 _0 ^1) A a subset of R (X to Y) => A a subset of X x Y
SET641 ( -0 +1 _0 ^0) If A is a subset of X x Y then A is a relation from X to Y
SET642 ( -0 +1 _0 ^0) A a subset of R (X to Y) => A is (X to Y)
SET643 ( -0 +1 _0 ^0) X x Y is a relation from X to Y
SET644 ( -0 +1 _0 ^0) a in R (X to Y) => ? x, y : a is <x,y> & x in X & y in Y
SET645 ( -0 +1 _0 ^0) <x,y> in R (X to Y) => x in X & y in Y
SET646 ( -0 +1 _0 ^1) If x is in X and y is in Y then {<x,y>} is from X to Y.
SET647 ( -0 +1 _0 ^1) Domain of R (X to Y) a subset of X => R is (X to range of R)
SET648 ( -0 +1 _0 ^1) Range of R (X to Y) a subset of Y => R is (domain of R to Y)
SET649 ( -0 +1 _0 ^1) Domain R a subset of X & range R a subset of Y => R is (X to Y)
SET650 ( -0 +1 _0 ^0) Domain of R (X to Y) a subset of X & range of R a subset of Y
SET651 ( -0 +1 _0 ^1) Domain of R (X to Y) a subset of X1 => R is (X1 to Y)
SET652 ( -0 +1 _0 ^0) Range of R (X to Y) a subset of Y1 => R is (X to Y1)
SET653 ( -0 +1 _0 ^0) X a subset of X1 => R (X to Y) is (X1 to Y)
SET654 ( -0 +1 _0 ^0) Y a subset of Y1 => R (X to Y) is (X to Y1)
SET655 ( -0 +1 _0 ^0) X a subset of X1 & Y a subset of Y1 => R (X to Y) is (X1 to Y1)
SET656 ( -0 +1 _0 ^0) The intersection of a relation R from X to Y and X x Y is R
SET657 ( -0 +1 _0 ^1) The field of a relation R from X to Y is a subset of X union Y
SET658 ( -0 +1 _0 ^0) Every R (X to Y) is (domain of R to range of R)
SET659 ( -0 +1 _0 ^0) For every x in X ? y : <x,y> in R (X to Y) iff domain of R is X
SET660 ( -0 +1 _0 ^0) For every y in Y ? x : <x,y> in R (X to Y) iff range of R is Y
SET661 ( -0 +1 _0 ^0) Domain of R^-1 is range of R, & range of R^-1 is domain of R
SET662 ( -0 +1 _0 ^0) The empty set is a relation from X to Y
SET663 ( -0 +1 _0 ^0) R (X to Y) is (empty set to Y) => R is empty set
SET664 ( -0 +1 _0 ^0) R (X to Y) is (X to empty set) => R is empty set
SET665 ( -0 +1 _0 ^0) The identity relation on X is a subset of X x X
SET666 ( -0 +1 _0 ^0) The identity relation on X is a relation from X to X
SET667 ( -0 +1 _0 ^0) Id on A subset of R => A subset domain R & A subset range R
SET668 ( -0 +1 _0 ^0) Id on X subset of R  => X is domain R & X subset of range R
SET669 ( -0 +1 _0 ^1) Id on Y subset of R  => Y subset of domain R & Y is range R
SET670 ( -0 +1 _0 ^1) R (X to Y) restricted to X1 is (X1 to Y)
SET671 ( -0 +1 _0 ^1) X a subset of X1 => R (X to Y) restricted to X1 is R
SET672 ( -0 +1 _0 ^1) Y1 restricted to R (X to Y) is (X to Y1)
SET673 ( -0 +1 _0 ^1) Y a subset of Y1 => Y1 restricted to R (X to Y) is R
SET674 ( -0 +1 _0 ^0) R (X to Y) o X is the range R & R^-1(Y) is the domain of R
SET675 ( -0 +1 _0 ^0) R o R^-1(Y) is the range of R & R^-1(R o X) is the domain of R
SET676 ( -0 +1 _0 ^0) X x X is a binary relation on X
SET677 ( -0 +1 _0 ^0) Id on X a subset of R => X is domain of R & X is range of R
SET678 ( -0 +1 _0 ^0) R o Id on X is R & Id on X o R is R
SET679 ( -0 +1 _0 ^0) The identity relation on D is not the empty set
SET680 ( -0 +1 _0 ^1) !x in D, x the domain of R (X to Y) iff ?y in E : <x,y> in R
SET681 ( -0 +1 _0 ^0) !y in E, y in range of R (X to Y) iff ?x in D : <x,y> in R
SET682 ( -0 +1 _0 ^0) !x in D : x in domain of R (X to Y) ? y in E : y in range of R
SET683 ( -0 +1 _0 ^1) !y in E : y in range of R (X to Y) ?x in D : x in domain of R
SET684 ( -0 +1 _0 ^1) <x,z> in P(DtoE) o R(EtoF) iff ?y in E:<x,y> in P & <y,z> in R
SET685 ( -0 +1 _0 ^0) y in R (X to Y) o D1 iff ?x in D : <x,y> in R & x in D1
SET686 ( -0 +1 _0 ^0) x in R^-1(D2) iff ?y in E : <x,y> in R (X to Y) & y in D2
SET687 ( -0 +1 _0 ^0) A set is a subset of itself
SET688 ( -0 +1 _0 ^0) Property of proper subset
SET689 ( -0 +1 _0 ^0) Property of subset
SET690 ( -0 +1 _0 ^0) Property of union and intersection
SET691 ( -0 +1 _0 ^0) A set is a subset of empty set if and only if it is equal to it
SET692 ( -0 +1 _0 ^0) A = A ^ B iff A (= B
SET693 ( -0 +1 _0 ^0) Property of union
SET694 ( -0 +1 _0 ^0) Union of power sets is a subset of the power set of the union
SET695 ( -0 +1 _0 ^0) Difference of subsets
SET696 ( -0 +1 _0 ^0) If A (= E, then (E / A) ^ A = empty set
SET697 ( -0 +1 _0 ^0) Property of intersection and difference
SET698 ( -0 +1 _0 ^0) Property of union and difference
SET699 ( -0 +1 _0 ^0) Property of intersection and difference 1
SET700 ( -0 +1 _0 ^0) Property of intersection and difference 2
SET701 ( -0 +1 _0 ^0) Property of intersection and difference 3
SET702 ( -0 +1 _0 ^0) Property of product and intersection
SET703 ( -0 +1 _0 ^0) Union of singletons
SET704 ( -0 +1 _0 ^0) If X is a member of A, then product(A) is a subset of X
SET705 ( -0 +1 _0 ^0) A is a member of power_set(A)
SET706 ( -0 +1 _0 ^0) Property of difference
SET707 ( -0 +1 _0 ^0) Components of equal ordered pairs are equal
SET708 ( -0 +1 _0 ^0) The composition of mappings is unique
SET709 ( -0 +1 _0 ^0) The composition of mappings is a mapping
SET710 ( -0 +1 _0 ^0) Associativity of composition
SET711 ( -0 +1 _0 ^0) The inverse of a mapping is unique
SET712 ( -0 +1 _0 ^0) The inverse of a one-to-one mapping is a mapping
SET713 ( -0 +1 _0 ^0) The inverse of a one-to-one mapping is one-to-one
SET714 ( -0 +1 _0 ^0) The composition of inverse(F) and F is the identity
SET715 ( -0 +1 _0 ^0) The composition of F and its inverse is the identity
SET716 ( -0 +1 _0 ^1) The composition of injective mappings is injective
SET717 ( -0 +1 _0 ^0) The composition of surjective mappings is surjective
SET718 ( -0 +1 _0 ^0) The composition of one-to-one  mappings is one-to-one
SET719 ( -0 +1 _0 ^0) Inverse of composition
SET720 ( -0 +1 _0 ^0) The inverse of the inverse of a mapping is equal to the mapping
SET721 ( -0 +1 _0 ^0) If the composition of F and G is injective, then F is injective
SET722 ( -0 +1 _0 ^0) If the composition of F and G is surjective, then F is surjective
SET723 ( -0 +1 _0 ^0) If FoG = FoH and F is injective, then G = H
SET724 ( -0 +1 _0 ^1) If GoF = HoF and F is surjective, then G = H
SET725 ( -0 +1 _0 ^0) If GoF and FoH are identities, then F is one-to-one
SET726 ( -0 +1 _0 ^0) If GoF and FoH are identities, then inverse(F) = G
SET727 ( -0 +1 _0 ^0) If GoF and FoH are identities, then inverse(F) = H
SET728 ( -0 +1 _0 ^0) If GoF and FoH are identities, then G = H
SET729 ( -0 +1 _0 ^0) F is one-to-one and inverse(F)=F iff FoF is the identity
SET730 ( -0 +1 _0 ^0) Property of restriction 1
SET731 ( -0 +1 _0 ^0) Property of restriction 2
SET732 ( -0 +1 _0 ^0) Property of restriction 3
SET733 ( -0 +1 _0 ^0) If GoF is the identity, then F is injective
SET734 ( -0 +1 _0 ^0) If GoF is the identity, then G is surjective
SET735 ( -0 +1 _0 ^0) Property of mappings
SET736 ( -0 +1 _0 ^0) Problem on composition of mappings 1
SET737 ( -0 +1 _0 ^0) Problem on composition of mappings 2
SET738 ( -0 +1 _0 ^0) Problem on composition of mappings 3
SET739 ( -0 +1 _0 ^0) Problem on composition of mappings 4
SET740 ( -0 +1 _0 ^0) Problem on composition of mappings 5
SET741 ( -0 +1 _0 ^1) Problem on composition of mappings 6
SET742 ( -0 +1 _0 ^0) Problem on composition of mappings 7
SET743 ( -0 +1 _0 ^0) Problem on composition of mappings 8
SET744 ( -0 +1 _0 ^0) Problem on composition of mappings 9
SET745 ( -0 +1 _0 ^0) Problem on composition of mappings 10
SET746 ( -0 +1 _0 ^0) If F and G and increasing, then GoF is increasing
SET747 ( -0 +1 _0 ^1) If F is increasing and G decreasing, then GoF is decreasing
SET748 ( -0 +1 _0 ^0) If F is decreasing and G increasing, then GoF is decreasing
SET749 ( -0 +1 _0 ^0) If F and G and decreasing, then GoF is increasing
SET750 ( -0 +1 _0 ^0) Property of isomorphism
SET751 ( -0 +1 _0 ^0) If X is a subset of Y, then the image f(X) is a subset of f(Y)
SET752 ( -0 +1 _0 ^1) The image of union is equal to the union of images
SET753 ( -0 +1 _0 ^1) Image of intersection is a subset of intersection of images
SET754 ( -0 +1 _0 ^0) C is a subset of the inverse image of the image of C
SET755 ( -0 +1 _0 ^0) If X is a subset of Y, then f-1(X) is a subset of f-1(Y)
SET756 ( -0 +1 _0 ^0) Inverse image of union equals the union of inverse images
SET757 ( -0 +1 _0 ^0) Inverse image intersection equals intersection inverse images
SET758 ( -0 +1 _0 ^0) The image of the inverse image of Y is a subset of Y
SET759 ( -0 +1 _0 ^0) Composition of images 1
SET760 ( -0 +1 _0 ^0) Composition of images 2
SET761 ( -0 +1 _0 ^0) Intersection of images
SET762 ( -0 +1 _0 ^0) The image of empty set is empty
SET763 ( -0 +1 _0 ^0) If the image of X is empty then X is empty
SET764 ( -0 +1 _0 ^1) The inverse image of empty set is empty
SET765 ( -0 +1 _0 ^0) The restriction of an equivalence relation is an equivalence
SET766 ( -0 +1 _0 ^0) A member belongs to its equivalence class
SET767 ( -0 +1 _0 ^0) Equivalence classes on E are power_set E
SET768 ( -0 +1 _0 ^0) Equality of equivalence classes 1
SET769 ( -0 +1 _0 ^0) Equality of equivalence classes 2
SET770 ( -0 +1 _0 ^0) Two equivalence classes are equal or disjoint
SET771 ( -0 +1 _0 ^0) Equality of images defines a equivalence relation
SET772 ( -0 +1 _0 ^0) Belonging of the same member of a partition is an equivalence
SET773 ( -0 +1 _0 ^0) Intersection of equivalence relations is an equivalence relation
SET774 ( -0 +1 _0 ^0) The restriction of a pre-order relation is a pre-order relation
SET775 ( -0 +1 _0 ^0) Pre-order and equivalence
SET776 ( -0 +1 _0 ^0) Property of pre-order
SET777 ( -1 +0 _0 ^0) Set theory membership and subsets axioms
SET778 ( -1 +0 _0 ^0) Set theory membership and union axioms
SET779 ( -1 +0 _0 ^0) Set theory membership and intersection axioms
SET780 ( -1 +0 _0 ^0) Set theory membership and difference axioms
SET781 ( -3 +1 _0 ^0) Set theory axioms based on NBG set theory
SET782 ( -1 +0 _0 ^0) Set theory (Boolean algebra) axioms based on NBG set theory
SET783 ( -0 +1 _0 ^0) Naive set theory axioms based on Goedel's set theory
SET784 ( -0 +1 _0 ^0) Mapping axioms for the SET006+0 set theory axioms
SET785 ( -0 +1 _0 ^0) Equivalence relation axioms for the SET006+0 set theory axioms
SET786 ( -1 +1 _0 ^0) Peter Andrews Problem THM25
SET787 ( -2 +0 _0 ^0) un_eq_Union_2_c2
SET788 ( -0 +1 _0 ^0) Symmetry of equality from set membership
SET789 ( -0 +1 _0 ^0) The greatest element, if it existes, is unique
SET790 ( -0 +1 _0 ^0) The least element, if it existes, is unique
SET791 ( -0 +1 _0 ^0) The greatest element, if it exists, is maximal
SET792 ( -0 +1 _0 ^0) The least element, if it existes, is minimal
SET793 ( -0 +1 _0 ^0) If the order is total, a maximal element is the greatest element
SET794 ( -0 +1 _0 ^0) If the order is total, a minimal element is the least element
SET795 ( -0 +1 _0 ^0) If R(a,b) then b is the least upper bound of unordered_pair(a,b)
SET796 ( -0 +1 _0 ^0) If R(a,b) then a is the greatest lower bound of unordered_pair(a,b)
SET797 ( -0 +1 _0 ^0) If X subset Y, then an upper bound of Y is an upper bound of X
SET798 ( -0 +1 _0 ^0) If X subset Y, then a lower bound of Y is a lower bound of X
SET799 ( -0 +1 _0 ^0) Least upper bounds of set in total order
SET800 ( -0 +1 _0 ^0) Greatest lower bound of sets in total order
SET801 ( -0 +1 _0 ^0) M is the greatest element iff it is a member and a LUB
SET802 ( -0 +1 _0 ^0) M is the least of X iff it is a member and a GLB
SET803 ( -0 +1 _0 ^0) Two different maximal elements implies no greatest element
SET804 ( -0 +1 _0 ^0) Two different minimal elements implies no least element
SET805 ( -0 +1 _0 ^0) Order relation on E is an order relation on a subset of E
SET806 ( -0 +1 _0 ^0) Equality of sets defines a equivalence relation
SET807 ( -0 +1 _0 ^0) Inclusion of sets defines a pre-order relation
SET808 ( -0 +1 _0 ^0) The members of an ordinal number are ordinal numbers
SET809 ( -0 +1 _0 ^0) An ordinal number is not a member of itself
SET810 ( -0 +1 _0 ^0) Ordinal numbers do not contain each other
SET811 ( -0 +1 _0 ^0) A member of an ordinal number is an initial segment
SET812 ( -0 +1 _0 ^0) An ordinal A is equal to its intersection with its power-set
SET813 ( -0 +1 _0 ^0) An ordinal number is a member of its successor
SET814 ( -0 +1 _0 ^0) The sum of an ordinal number is a subset of itself
SET815 ( -0 +1 _0 ^0) An ordinal number is equal to the sum of its successor
SET816 ( -0 +1 _0 ^0) The sum of a collection of ordinal numbers is a collection
SET817 ( -0 +1 _0 ^0) The product of a nonempty set of ordinals is an ordinal
SET818 ( -2 +0 _0 ^0) Problem about set theory
SET819 ( -2 +0 _0 ^0) Problem about set theory
SET820 ( -2 +0 _0 ^0) Problem about set theory
SET821 ( -2 +0 _0 ^0) Problem about set theory
SET822 ( -2 +0 _0 ^0) Problem about set theory
SET824 ( -2 +0 _0 ^0) Problem about set theory
SET825 ( -2 +0 _0 ^0) Problem about set theory
SET826 ( -2 +0 _0 ^0) Problem about set theory
SET827 ( -2 +0 _0 ^0) Problem about set theory
SET828 ( -2 +0 _0 ^0) Problem about set theory
SET829 ( -2 +0 _0 ^0) Problem about set theory
SET830 ( -2 +0 _0 ^0) Problem about set theory
SET831 ( -2 +0 _0 ^0) Problem about set theory
SET832 ( -2 +0 _0 ^0) Problem about set theory
SET833 ( -2 +0 _0 ^0) Problem about set theory
SET834 ( -2 +0 _0 ^0) Problem about set theory
SET835 ( -2 +0 _0 ^0) Problem about set theory
SET836 ( -2 +0 _0 ^0) Problem about set theory
SET837 ( -2 +0 _0 ^0) Problem about set theory
SET838 ( -2 +0 _0 ^0) Problem about set theory
SET839 ( -2 +0 _0 ^0) Problem about set theory
SET840 ( -2 +0 _0 ^0) Problem about set theory
SET841 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET842 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET843 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET844 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET845 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET846 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET847 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET848 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET849 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET850 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET851 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET852 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET853 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET854 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET855 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET856 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET857 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET858 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET859 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET860 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET861 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET862 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET863 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET864 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET865 ( -2 +0 _0 ^0) Problem about Zorn's lemma
SET867 ( -0 +1 _0 ^0) union(empty_set) = empty_set
SET872 ( -0 +1 _0 ^0) subset(singleton(A),unordered_pair(A,B))
SET873 ( -0 +1 _0 ^0) union(singleton(A),singleton(B)) = singleton(A) => A = B
SET874 ( -0 +1 _0 ^0) union(singleton(A),unordered_pair(A,B)) = unordered_pair(A,B)
SET875 ( -0 +1 _0 ^0) ~ ( disjoint(singleton(A),singleton(B)) & A = B )
SET876 ( -0 +1 _0 ^0) A != B => disjoint(singleton(A),singleton(B))
SET877 ( -0 +1 _0 ^0) intersection(singleton(A),singleton(B)) = singleton(A) => A = B
SET878 ( -0 +1 _0 ^0) intersection(singleton(A),unordered_pair(A,B)) = singleton(A)
SET879 ( -0 +1 _0 ^0) difference(singleton(A),singleton(B)) = singleton(A) <=> A != B
SET880 ( -0 +1 _0 ^0) difference(singleton(A),singleton(B)) = empty_set => A = B
SET881 ( -0 +1 _0 ^0) difference(singleton(A),unordered_pair(A,B)) = empty_set
SET882 ( -0 +1 _0 ^0) A != B => diff(unordered_pair(A,B),singleton(B)) = singleton(A)
SET883 ( -0 +1 _0 ^0) subset(singleton(A),singleton(B)) => A = B
SET884 ( -0 +1 _0 ^0) ~ ( subset(singleton(A),unordered_pair(B,C)) & A != B & A != C )
SET885 ( -0 +1 _0 ^0) subset(unordered_pair(A,B),singleton(C)) => A = C
SET886 ( -0 +1 _0 ^0) subset(uno_pair(A,B),singleton(C)) => uno_pair(A,B) = singleton(C)
SET887 ( -0 +1 _0 ^0) ~ ( subset(uno_pair(A,B),uno_pair(C,D)) & A != C & A != D )
SET888 ( -0 +1 _0 ^0) Basic properties of sets, theorem 29
SET889 ( -0 +1 _0 ^0) powerset(singleton(A)) = unordered_pair(empty_set,singleton(A))
SET890 ( -0 +1 _0 ^0) union(singleton(A)) = A
SET891 ( -0 +1 _0 ^0) union(uno_pair(singleton(A),singleton(B))) = uno_pair(A,B)
SET893 ( -0 +1 _0 ^0) in(o_pair(A,B),cart_prod(sgtn(C),sgtn(D))) <=> ( A = C & B = D )
SET894 ( -0 +1 _0 ^0) cart_prod(singleton(A),singleton(B)) = singleton(o_pair(A,B))
SET895 ( -0 +1 _0 ^0) Basic properties of sets, theorem 36
SET899 ( -0 +1 _0 ^0) subset(A,B) => ( in(C,A) | subset(A,difference(B,singleton(C))) )
SET900 ( -0 +1 _0 ^0) ~ ( A != singleton(B) & A != empty_set & ~ ( in(C,A) & C != B ) )
SET901 ( -0 +1 _0 ^0) Basic properties of sets, theorem 42
SET902 ( -0 +1 _0 ^0) Basic properties of sets, theorem 43
SET903 ( -0 +1 _0 ^0) ~ ( sgtn(A) = union(B,C) & B != C & B != empty & C != empty )
SET904 ( -0 +1 _0 ^0) subset(set_union2(singleton(A),B),B) => in(A,B)
SET906 ( -0 +1 _0 ^0) subset(set_union2(unordered_pair(A,B),C),C) => in(A,C)
SET907 ( -0 +1 _0 ^1) ( in(A,B) & in(C,B) ) => set_union2(unordered_pair(A,C),B) = B
SET908 ( -0 +1 _0 ^1) union(singleton(A),B) != empty_set
SET909 ( -0 +1 _0 ^0) union(unordered_pair(A,B),C) != empty_set
SET910 ( -0 +1 _0 ^0) intersection(A,singleton(B)) = singleton(B) => in(B,A)
SET911 ( -0 +1 _0 ^0) in(A,B) => set_intersection2(B,singleton(A)) = singleton(A)
SET912 ( -0 +1 _0 ^0) ( in(A,B) & in(C,B) ) => intsctn(uno_pair(A,C),B) = uno_pair(A,C)
SET913 ( -0 +1 _0 ^0) ~ ( disjoint(singleton(A),B) & in(A,B) )
SET914 ( -0 +1 _0 ^1) ~ ( disjoint(unordered_pair(A,B),C) & in(A,C) )
SET915 ( -0 +1 _0 ^0) ~ in(A,B) => disjoint(singleton(A),B)
SET916 ( -0 +1 _0 ^1) ~ ( ~ in(A,B) & ~ in(C,B) & ~ disjoint(unordered_pair(A,C),B) )
SET917 ( -0 +1 _0 ^0) disjoint(sgtn(A),B) | intersection(sgtn(A),B) = sgtn(A)
SET918 ( -0 +1 _0 ^0) ~ ( intersection(uno_pair(A,B),C) = sgtn(A) & in(B,C) & A != B )
SET919 ( -0 +1 _0 ^0) in(A,B) => ((in(C,B) & A!=C) | intsctn(uno_pair(A,C),B) = sgtn(A))
SET920 ( -0 +1 _0 ^0) intersection(uno_pair(A,B),C) = uno_pair(A,B) => in(A,C)
SET921 ( -0 +1 _0 ^0) in(A,difference(B,singleton(C))) <=> ( in(A,B) & A != C )
SET923 ( -0 +1 _0 ^0) ~ ( difference(A,sgtn(B)) = empty & A != empty & A != sgtn(B) )
SET924 ( -0 +1 _0 ^0) difference(singleton(A),B) = singleton(A) <=> ~ in(A,B)
SET925 ( -0 +1 _0 ^1) difference(singleton(A),B) = empty_set <=> in(A,B)
SET926 ( -0 +1 _0 ^1) difference(sgtn(A),B) = empty | difference(sgtn(A),B) = sgtn(A)
SET927 ( -0 +1 _0 ^0) diff(uno_pair(A,B),C) = sgtn(A) <=> (~in(A,C) & (in(B,C) | A = B))
SET928 ( -0 +1 _0 ^0) diff(uno_pair(A,B),C) = uno_pair(A,B) <=> (~in(A,C) & ~in(B,C))
SET929 ( -0 +1 _0 ^0) diff(uno_pair(A,B),C) = empty <=> ( in(A,C) & in(B,C) )
SET930 ( -0 +1 _0 ^0) Basic properties of sets, theorem 74
SET931 ( -0 +1 _0 ^0) Basic properties of sets, theorem 75
SET932 ( -0 +1 _0 ^0) subset(A,B) => subset(powerset(A),powerset(B))
SET933 ( -0 +1 _0 ^0) subset(singleton(A),powerset(A))
SET934 ( -0 +1 _0 ^0) subset(union(powerset(A),powerset(B)),powerset(union(A,B)))
SET935 ( -0 +1 _0 ^0) union(powset(A),powset(B)) = powset(union(A,B)) => inc_comp(A,B)
SET936 ( -0 +1 _0 ^0) powset(intersection(A,B)) = intersection(powset(A),powset(B))
SET937 ( -0 +1 _0 ^0) subset(pset(diff(A,B)),union(sgtn(empty),diff(pset(A),pset(B))))
SET938 ( -0 +1 _0 ^0) subset(union(pset(diff(A,B)),pset(diff(B,A))),pset(symdiff(A,B)))
SET940 ( -0 +1 _0 ^0) union(unordered_pair(A,B)) = union(A,B)
SET941 ( -0 +1 _0 ^0) ( in(C,A) => subset(C,B) ) => subset(union(A),B)
SET942 ( -0 +1 _0 ^0) subset(A,B) => subset(union(A),union(B))
SET943 ( -0 +1 _0 ^0) union(union(A,B)) = union(union(A),union(B))
SET944 ( -0 +1 _0 ^0) subset(union(intersection(A,B)),intersection(union(A),union(B)))
SET945 ( -0 +1 _0 ^0) ( in(C,A) => disjoint(C,B) ) => disjoint(union(A),B)
SET947 ( -0 +1 _0 ^0) subset(A,powerset(union(A)))
SET948 ( -0 +1 _0 ^0) Basic properties of sets, theorem 101
SET949 ( -0 +1 _0 ^0) ~ ( in(A,cartesian_product(B,C)) & ordered_pair(D,E) != A )
SET950 ( -0 +1 _0 ^0) Basic properties of sets, theorem 103
SET951 ( -0 +1 _0 ^0) Basic properties of sets, theorem 104
SET952 ( -0 +1 _0 ^0) subset(cartesian_product(A,B),powerset(powerset(union(A,B))))
SET954 ( -0 +1 _0 ^0) in(o_pair(A,B),cart_prod(C,D)) => in(o_pair(B,A),cart_prod(D,C))
SET955 ( -0 +1 _0 ^0) Basic properties of sets, theorem 108
SET956 ( -0 +1 _0 ^0) Basic properties of sets, theorem 109
SET957 ( -0 +1 _0 ^0) Basic properties of sets, theorem 110
SET958 ( -0 +1 _0 ^0) Basic properties of sets, theorem 111
SET959 ( -0 +1 _0 ^0) Basic properties of sets, theorem 112
SET960 ( -0 +1 _0 ^0) cart_prod(A,B) = empty <=> ( A = empty | B = empty )
SET961 ( -0 +1 _0 ^0) cart_prod(A,B) = cart_prod(B,A) => ( A=empty | B=empty | A = B )
SET962 ( -0 +1 _0 ^0) cartesian_product(A,A) = cartesian_product(B,B) => A = B
SET963 ( -0 +1 _0 ^0) Basic properties of sets, theorem 116
SET964 ( -0 +1 _0 ^0) Basic properties of sets, theorem 117
SET967 ( -0 +1 _0 ^0) Basic properties of sets, theorem 120
SET968 ( -0 +1 _0 ^0) Basic properties of sets, theorem 121
SET969 ( -0 +1 _0 ^0) Basic properties of sets, theorem 122
SET970 ( -0 +1 _0 ^0) Basic properties of sets, theorem 123
SET971 ( -0 +1 _0 ^0) Basic properties of sets, theorem 124
SET972 ( -0 +1 _0 ^0) Basic properties of sets, theorem 125
SET973 ( -0 +1 _0 ^0) Basic properties of sets, theorem 126
SET974 ( -0 +1 _0 ^0) Basic properties of sets, theorem 127
SET975 ( -0 +1 _0 ^0) in(o_pair(A,B),cart_prod(sgtn(C),D)) <=> ( A = C & in(B,D) )
SET976 ( -0 +1 _0 ^0) in(o_pair(A,B),cart_prod(C,sgtn(D))) <=> ( in(A,C) & B = D )
SET977 ( -0 +1 _0 ^0) Basic properties of sets, theorem 130
SET978 ( -0 +1 _0 ^0) Basic properties of sets, theorem 131
SET979 ( -0 +1 _0 ^0) Basic properties of sets, theorem 132
SET980 ( -0 +1 _0 ^0) Basic properties of sets, theorem 134
SET981 ( -0 +1 _0 ^0) Basic properties of sets, theorem 135
SET983 ( -0 +1 _0 ^0) Basic properties of sets, theorem 137
SET984 ( -0 +1 _0 ^0) Basic properties of sets, theorem 138
SET985 ( -0 +1 _0 ^0) Basic properties of sets, theorem 139
SET986 ( -0 +1 _0 ^0) in(A,B) => union(difference(B,singleton(A)),singleton(A)) = B
SET987 ( -0 +1 _0 ^0) ~ in(A,B) => difference(union(B,singleton(A)),singleton(A)) = B
SET988 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 2
SET990 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 9
SET991 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 12
SET992 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 14
SET993 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 15
SET994 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 16
SET995 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 17
SET996 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 18
SET997 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 19
SET998 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 20
-------------------------------------------------------------------------------
Domain SEU = Set Theory Continued
1753 problems (970 abstract), 0 CNF, 906 FOF, 0 TFF, 847 THF
-------------------------------------------------------------------------------
SEU002 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 25
SEU003 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 27
SEU004 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 33
SEU007 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 37
SEU008 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 38
SEU009 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 40
SEU010 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 42
SEU011 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 43
SEU012 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 44
SEU013 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 46
SEU014 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 47
SEU015 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 48
SEU016 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 49
SEU017 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 50
SEU018 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 51
SEU019 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 52
SEU020 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 53
SEU023 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 56
SEU025 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 58
SEU026 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 59
SEU027 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 60
SEU028 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 61
SEU030 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 63
SEU031 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 64
SEU032 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 65
SEU033 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 66
SEU034 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 67
SEU037 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 71
SEU039 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 73
SEU040 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 76
SEU041 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 82
SEU042 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 84
SEU043 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 85
SEU044 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 86
SEU045 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 87
SEU046 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 89
SEU047 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 97
SEU048 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 99
SEU049 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 117
SEU050 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 118
SEU051 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 120
SEU052 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 121
SEU053 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 122
SEU054 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 123
SEU055 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 124
SEU056 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 125
SEU057 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 126
SEU058 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 137
SEU059 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 138
SEU060 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 139
SEU061 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 142
SEU062 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 143
SEU063 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 144
SEU067 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 148
SEU068 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 149
SEU069 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 150
SEU070 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 151
SEU071 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 152
SEU072 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 153
SEU073 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 154
SEU074 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 155
SEU075 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 156
SEU076 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 157
SEU077 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 158
SEU078 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 159
SEU079 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 160
SEU080 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 161
SEU081 ( -0 +1 _0 ^0) Functions and their basic properties, theorem 162
SEU083 ( -0 +1 _0 ^0) Finite sets, theorem 14
SEU085 ( -0 +1 _0 ^0) Finite sets, theorem 16
SEU088 ( -0 +1 _0 ^0) Finite sets, theorem 19
SEU089 ( -0 +1 _0 ^0) Finite sets, theorem 20
SEU090 ( -0 +1 _0 ^0) Finite sets, theorem 21
SEU091 ( -0 +1 _0 ^0) Finite sets, theorem 22
SEU092 ( -0 +1 _0 ^0) Finite sets, theorem 23
SEU093 ( -0 +1 _0 ^0) Finite sets, theorem 24
SEU094 ( -0 +1 _0 ^0) Finite sets, theorem 25
SEU096 ( -0 +1 _0 ^0) Finite sets, theorem 27
SEU097 ( -0 +1 _0 ^0) Finite sets, theorem 28
SEU098 ( -0 +1 _0 ^0) Finite sets, theorem 29
SEU099 ( -0 +1 _0 ^0) Finite sets, theorem 30
SEU100 ( -0 +1 _0 ^0) Finite sets, theorem 31
SEU101 ( -0 +1 _0 ^0) Boolean domains, theorem 10
SEU102 ( -0 +1 _0 ^0) Boolean domains, theorem 13
SEU103 ( -0 +1 _0 ^0) Boolean domains, theorem 14
SEU104 ( -0 +1 _0 ^0) Boolean domains, theorem 15
SEU105 ( -0 +1 _0 ^0) Boolean domains, theorem 16
SEU106 ( -0 +1 _0 ^0) Boolean domains, theorem 17
SEU107 ( -0 +1 _0 ^0) Boolean domains, theorem 18
SEU108 ( -0 +1 _0 ^0) Boolean domains, theorem 20
SEU109 ( -0 +1 _0 ^0) Boolean domains, theorem 21
SEU110 ( -0 +1 _0 ^0) Boolean domains, theorem 23
SEU111 ( -0 +1 _0 ^0) Boolean domains, theorem 24
SEU112 ( -0 +1 _0 ^0) Boolean domains, theorem 25
SEU113 ( -0 +1 _0 ^0) Boolean domains, theorem 26
SEU114 ( -0 +1 _0 ^0) Boolean domains, theorem 27
SEU115 ( -0 +1 _0 ^0) Boolean domains, theorem 28
SEU116 ( -0 +1 _0 ^0) Boolean domains, theorem 30
SEU117 ( -0 +1 _0 ^0) Boolean domains, theorem 32
SEU118 ( -0 +1 _0 ^0) Boolean domains, theorem 34
SEU119 ( -0 +2 _0 ^0) MPTP bushy problem t3_xboole_0
SEU120 ( -0 +2 _0 ^0) MPTP bushy problem t4_xboole_0
SEU121 ( -0 +2 _0 ^0) MPTP bushy problem t1_xboole_1
SEU122 ( -0 +2 _0 ^0) MPTP bushy problem t2_xboole_1
SEU123 ( -0 +2 _0 ^0) MPTP bushy problem t3_xboole_1
SEU124 ( -0 +2 _0 ^0) MPTP bushy problem t7_xboole_1
SEU125 ( -0 +2 _0 ^0) MPTP bushy problem t8_xboole_1
SEU126 ( -0 +2 _0 ^0) MPTP bushy problem t12_xboole_1
SEU127 ( -0 +2 _0 ^0) MPTP bushy problem t17_xboole_1
SEU128 ( -0 +2 _0 ^0) MPTP bushy problem t19_xboole_1
SEU129 ( -0 +2 _0 ^0) MPTP bushy problem t26_xboole_1
SEU130 ( -0 +2 _0 ^0) MPTP bushy problem t28_xboole_1
SEU131 ( -0 +2 _0 ^0) MPTP bushy problem l32_xboole_1
SEU132 ( -0 +2 _0 ^0) MPTP bushy problem t33_xboole_1
SEU133 ( -0 +2 _0 ^0) MPTP bushy problem t36_xboole_1
SEU134 ( -0 +2 _0 ^0) MPTP bushy problem t37_xboole_1
SEU135 ( -0 +2 _0 ^0) MPTP bushy problem t39_xboole_1
SEU136 ( -0 +2 _0 ^0) MPTP bushy problem t40_xboole_1
SEU137 ( -0 +2 _0 ^0) MPTP bushy problem t45_xboole_1
SEU138 ( -0 +2 _0 ^0) MPTP bushy problem t48_xboole_1
SEU139 ( -0 +2 _0 ^0) MPTP bushy problem t60_xboole_1
SEU140 ( -0 +2 _0 ^0) MPTP bushy problem t63_xboole_1
SEU141 ( -0 +2 _0 ^0) MPTP bushy problem t83_xboole_1
SEU142 ( -0 +2 _0 ^0) MPTP bushy problem t69_enumset1
SEU143 ( -0 +2 _0 ^0) MPTP bushy problem l1_zfmisc_1
SEU144 ( -0 +2 _0 ^0) MPTP bushy problem l2_zfmisc_1
SEU145 ( -0 +2 _0 ^0) MPTP bushy problem l3_zfmisc_1
SEU146 ( -0 +2 _0 ^0) MPTP bushy problem l4_zfmisc_1
SEU147 ( -0 +3 _0 ^0) MPTP bushy problem t1_zfmisc_1
SEU148 ( -0 +3 _0 ^0) MPTP bushy problem t6_zfmisc_1
SEU149 ( -0 +3 _0 ^0) MPTP bushy problem t8_zfmisc_1
SEU150 ( -0 +3 _0 ^0) MPTP bushy problem t9_zfmisc_1
SEU151 ( -0 +3 _0 ^0) MPTP bushy problem t10_zfmisc_1
SEU152 ( -0 +2 _0 ^0) MPTP bushy problem l23_zfmisc_1
SEU153 ( -0 +2 _0 ^0) MPTP bushy problem l25_zfmisc_1
SEU154 ( -0 +2 _0 ^0) MPTP bushy problem l28_zfmisc_1
SEU155 ( -0 +2 _0 ^0) MPTP bushy problem l50_zfmisc_1
SEU156 ( -0 +3 _0 ^0) MPTP bushy problem t33_zfmisc_1
SEU157 ( -0 +2 _0 ^0) MPTP bushy problem l55_zfmisc_1
SEU158 ( -0 +3 _0 ^0) MPTP bushy problem t37_zfmisc_1
SEU159 ( -0 +3 _0 ^0) MPTP bushy problem t38_zfmisc_1
SEU160 ( -0 +3 _0 ^0) MPTP bushy problem t39_zfmisc_1
SEU161 ( -0 +3 _0 ^0) MPTP bushy problem t46_zfmisc_1
SEU162 ( -0 +3 _0 ^0) MPTP bushy problem t65_zfmisc_1
SEU163 ( -0 +3 _0 ^0) MPTP bushy problem t92_zfmisc_1
SEU164 ( -0 +3 _0 ^0) MPTP bushy problem t99_zfmisc_1
SEU165 ( -0 +3 _0 ^0) MPTP bushy problem t106_zfmisc_1
SEU166 ( -0 +3 _0 ^0) MPTP bushy problem t118_zfmisc_1
SEU167 ( -0 +3 _0 ^0) MPTP bushy problem t119_zfmisc_1
SEU168 ( -0 +3 _0 ^0) MPTP bushy problem t136_zfmisc_1
SEU169 ( -0 +2 _0 ^0) MPTP bushy problem l3_subset_1
SEU170 ( -0 +2 _0 ^0) MPTP bushy problem t43_subset_1
SEU171 ( -0 +2 _0 ^0) MPTP bushy problem t50_subset_1
SEU172 ( -0 +2 _0 ^0) MPTP bushy problem t54_subset_1
SEU173 ( -0 +2 _0 ^0) MPTP bushy problem l71_subset_1
SEU174 ( -0 +2 _0 ^0) MPTP bushy problem t46_setfam_1
SEU175 ( -0 +2 _0 ^0) MPTP bushy problem t47_setfam_1
SEU176 ( -0 +2 _0 ^0) MPTP bushy problem t48_setfam_1
SEU177 ( -0 +2 _0 ^0) MPTP bushy problem t20_relat_1
SEU178 ( -0 +2 _0 ^0) MPTP bushy problem t21_relat_1
SEU179 ( -0 +2 _0 ^0) MPTP bushy problem t25_relat_1
SEU180 ( -0 +2 _0 ^0) MPTP bushy problem t30_relat_1
SEU181 ( -0 +2 _0 ^0) MPTP bushy problem t37_relat_1
SEU182 ( -0 +2 _0 ^0) MPTP bushy problem t44_relat_1
SEU183 ( -0 +2 _0 ^0) MPTP bushy problem t45_relat_1
SEU184 ( -0 +2 _0 ^0) MPTP bushy problem t46_relat_1
SEU185 ( -0 +2 _0 ^0) MPTP bushy problem t47_relat_1
SEU186 ( -0 +2 _0 ^0) MPTP bushy problem t56_relat_1
SEU187 ( -0 +2 _0 ^0) MPTP bushy problem t60_relat_1
SEU188 ( -0 +2 _0 ^0) MPTP bushy problem t64_relat_1
SEU189 ( -0 +2 _0 ^0) MPTP bushy problem t65_relat_1
SEU190 ( -0 +2 _0 ^0) MPTP bushy problem t71_relat_1
SEU191 ( -0 +2 _0 ^0) MPTP bushy problem t74_relat_1
SEU192 ( -0 +2 _0 ^0) MPTP bushy problem t86_relat_1
SEU193 ( -0 +2 _0 ^0) MPTP bushy problem t88_relat_1
SEU194 ( -0 +2 _0 ^0) MPTP bushy problem t90_relat_1
SEU195 ( -0 +2 _0 ^0) MPTP bushy problem t94_relat_1
SEU196 ( -0 +2 _0 ^0) MPTP bushy problem t99_relat_1
SEU197 ( -0 +2 _0 ^0) MPTP bushy problem t115_relat_1
SEU198 ( -0 +2 _0 ^0) MPTP bushy problem t116_relat_1
SEU199 ( -0 +2 _0 ^0) MPTP bushy problem t117_relat_1
SEU200 ( -0 +2 _0 ^0) MPTP bushy problem t118_relat_1
SEU201 ( -0 +2 _0 ^0) MPTP bushy problem t119_relat_1
SEU202 ( -0 +2 _0 ^0) MPTP bushy problem t140_relat_1
SEU203 ( -0 +2 _0 ^0) MPTP bushy problem t143_relat_1
SEU204 ( -0 +2 _0 ^0) MPTP bushy problem t144_relat_1
SEU205 ( -0 +2 _0 ^0) MPTP bushy problem t145_relat_1
SEU206 ( -0 +2 _0 ^0) MPTP bushy problem t146_relat_1
SEU207 ( -0 +2 _0 ^0) MPTP bushy problem t160_relat_1
SEU208 ( -0 +2 _0 ^0) MPTP bushy problem t166_relat_1
SEU209 ( -0 +2 _0 ^0) MPTP bushy problem t167_relat_1
SEU210 ( -0 +2 _0 ^0) MPTP bushy problem t174_relat_1
SEU211 ( -0 +2 _0 ^0) MPTP bushy problem t178_relat_1
SEU212 ( -0 +3 _0 ^0) MPTP bushy problem t8_funct_1
SEU213 ( -0 +3 _0 ^0) MPTP bushy problem t21_funct_1
SEU214 ( -0 +3 _0 ^0) MPTP bushy problem t22_funct_1
SEU215 ( -0 +3 _0 ^0) MPTP bushy problem t23_funct_1
SEU216 ( -0 +3 _0 ^0) MPTP bushy problem t34_funct_1
SEU217 ( -0 +3 _0 ^0) MPTP bushy problem t35_funct_1
SEU218 ( -0 +3 _0 ^0) MPTP bushy problem t54_funct_1
SEU219 ( -0 +3 _0 ^0) MPTP bushy problem t55_funct_1
SEU220 ( -0 +3 _0 ^0) MPTP bushy problem t57_funct_1
SEU221 ( -0 +3 _0 ^0) MPTP bushy problem t62_funct_1
SEU222 ( -0 +3 _0 ^0) MPTP bushy problem t68_funct_1
SEU223 ( -0 +3 _0 ^0) MPTP bushy problem t70_funct_1
SEU224 ( -0 +2 _0 ^0) MPTP bushy problem l82_funct_1
SEU225 ( -0 +3 _0 ^0) MPTP bushy problem t72_funct_1
SEU226 ( -0 +3 _0 ^0) MPTP bushy problem t145_funct_1
SEU227 ( -0 +3 _0 ^0) MPTP bushy problem t146_funct_1
SEU228 ( -0 +3 _0 ^0) MPTP bushy problem t147_funct_1
SEU229 ( -0 +3 _0 ^0) MPTP bushy problem t3_ordinal1
SEU230 ( -0 +3 _0 ^0) MPTP bushy problem t10_ordinal1
SEU231 ( -0 +3 _0 ^0) MPTP bushy problem t21_ordinal1
SEU232 ( -0 +3 _0 ^0) MPTP bushy problem t23_ordinal1
SEU233 ( -0 +3 _0 ^0) MPTP bushy problem t24_ordinal1
SEU234 ( -0 +3 _0 ^0) MPTP bushy problem t31_ordinal1
SEU235 ( -0 +3 _0 ^0) MPTP bushy problem t32_ordinal1
SEU236 ( -0 +3 _0 ^0) MPTP bushy problem t33_ordinal1
SEU237 ( -0 +3 _0 ^0) MPTP bushy problem t41_ordinal1
SEU238 ( -0 +3 _0 ^0) MPTP bushy problem t42_ordinal1
SEU239 ( -0 +2 _0 ^0) MPTP bushy problem l1_wellord1
SEU240 ( -0 +2 _0 ^0) MPTP bushy problem l2_wellord1
SEU241 ( -0 +2 _0 ^0) MPTP bushy problem l3_wellord1
SEU242 ( -0 +2 _0 ^0) MPTP bushy problem l4_wellord1
SEU243 ( -0 +2 _0 ^0) MPTP bushy problem t5_wellord1
SEU244 ( -0 +2 _0 ^0) MPTP bushy problem t8_wellord1
SEU245 ( -0 +2 _0 ^0) MPTP bushy problem t16_wellord1
SEU246 ( -0 +2 _0 ^0) MPTP bushy problem t17_wellord1
SEU247 ( -0 +2 _0 ^0) MPTP bushy problem t18_wellord1
SEU248 ( -0 +2 _0 ^0) MPTP bushy problem l29_wellord1
SEU249 ( -0 +2 _0 ^0) MPTP bushy problem t19_wellord1
SEU250 ( -0 +2 _0 ^0) MPTP bushy problem t20_wellord1
SEU251 ( -0 +2 _0 ^0) MPTP bushy problem t21_wellord1
SEU252 ( -0 +2 _0 ^0) MPTP bushy problem t22_wellord1
SEU253 ( -0 +2 _0 ^0) MPTP bushy problem t23_wellord1
SEU254 ( -0 +2 _0 ^0) MPTP bushy problem t24_wellord1
SEU255 ( -0 +2 _0 ^0) MPTP bushy problem t25_wellord1
SEU256 ( -0 +2 _0 ^0) MPTP bushy problem t31_wellord1
SEU257 ( -0 +2 _0 ^0) MPTP bushy problem t32_wellord1
SEU258 ( -0 +2 _0 ^0) MPTP bushy problem t39_wellord1
SEU259 ( -0 +2 _0 ^0) MPTP bushy problem t49_wellord1
SEU260 ( -0 +2 _0 ^0) MPTP bushy problem t53_wellord1
SEU261 ( -0 +2 _0 ^0) MPTP bushy problem t54_wellord1
SEU262 ( -0 +2 _0 ^0) MPTP bushy problem t12_relset_1
SEU263 ( -0 +2 _0 ^0) MPTP bushy problem t14_relset_1
SEU264 ( -0 +2 _0 ^0) MPTP bushy problem t16_relset_1
SEU265 ( -0 +2 _0 ^0) MPTP bushy problem t22_relset_1
SEU266 ( -0 +2 _0 ^0) MPTP bushy problem t23_relset_1
SEU267 ( -0 +2 _0 ^0) MPTP bushy problem t7_mcart_1
SEU268 ( -0 +2 _0 ^0) MPTP bushy problem t2_wellord2
SEU269 ( -0 +2 _0 ^0) MPTP bushy problem t3_wellord2
SEU270 ( -0 +2 _0 ^0) MPTP bushy problem t4_wellord2
SEU271 ( -0 +2 _0 ^0) MPTP bushy problem t5_wellord2
SEU272 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e3_38_1__ordinal1
SEU273 ( -0 +2 _0 ^0) MPTP bushy problem s1_ordinal1__e8_6__wellord2
SEU274 ( -0 +2 _0 ^0) MPTP bushy problem t6_wellord2
SEU275 ( -0 +2 _0 ^0) MPTP bushy problem t7_wellord2
SEU276 ( -0 +2 _0 ^0) MPTP bushy problem t25_wellord2
SEU277 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e1_8_1_1__relat_1
SEU278 ( -0 +2 _0 ^0) MPTP bushy problem s1_relat_1__e6_21__wellord2
SEU279 ( -0 +2 _0 ^0) MPTP bushy problem l30_wellord2
SEU280 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e6_22__wellord2
SEU281 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e4_5_1__funct_1
SEU282 ( -0 +2 _0 ^0) MPTP bushy problem s1_funct_1__e2_11_1__funct_1
SEU283 ( -0 +2 _0 ^0) MPTP bushy problem s2_funct_1__e3_12_1__funct_1
SEU284 ( -0 +2 _0 ^0) MPTP bushy problem s3_funct_1__e16_22__wellord2
SEU285 ( -0 +2 _0 ^0) MPTP bushy problem t26_wellord2
SEU286 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e4_5_1__funct_1
SEU287 ( -0 +2 _0 ^0) MPTP bushy problem s1_funct_1__e2_11_1__funct_1
SEU288 ( -0 +2 _0 ^0) MPTP bushy problem s2_funct_1__e10_24__wellord2
SEU289 ( -0 +2 _0 ^0) MPTP bushy problem t28_wellord2
SEU290 ( -0 +2 _0 ^0) MPTP bushy problem t6_funct_2
SEU291 ( -0 +2 _0 ^0) MPTP bushy problem t9_funct_2
SEU292 ( -0 +2 _0 ^0) MPTP bushy problem t21_funct_2
SEU293 ( -0 +2 _0 ^0) MPTP bushy problem t46_funct_2
SEU294 ( -0 +3 _0 ^0) MPTP bushy problem t13_finset_1
SEU295 ( -0 +3 _0 ^0) MPTP bushy problem t15_finset_1
SEU296 ( -0 +3 _0 ^0) MPTP bushy problem t17_finset_1
SEU297 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e6_27__finset_1
SEU298 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e4_27_3_1__finset_1
SEU299 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e1_39_1__ordinal1
SEU300 ( -0 +2 _0 ^0) MPTP bushy problem s2_ordinal1__e2_1_1__ordinal2
SEU301 ( -0 +2 _0 ^0) MPTP bushy problem s1_ordinal2__e18_27__finset_1
SEU302 ( -0 +3 _0 ^0) MPTP bushy problem t18_finset_1
SEU303 ( -0 +3 _0 ^0) MPTP bushy problem t26_finset_1
SEU304 ( -0 +2 _0 ^0) MPTP bushy problem t23_lattices
SEU305 ( -0 +2 _0 ^0) MPTP bushy problem t26_lattices
SEU306 ( -0 +2 _0 ^0) MPTP bushy problem t12_pre_topc
SEU307 ( -0 +2 _0 ^0) MPTP bushy problem t15_pre_topc
SEU308 ( -0 +2 _0 ^0) MPTP bushy problem t17_pre_topc
SEU309 ( -0 +2 _0 ^0) MPTP bushy problem t22_pre_topc
SEU310 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e1_61_1__subset_1
SEU311 ( -0 +2 _0 ^0) MPTP bushy problem s3_subset_1__e2_37_1_1__pre_topc
SEU312 ( -0 +2 _0 ^0) MPTP bushy problem t44_pre_topc
SEU313 ( -0 +2 _0 ^0) MPTP bushy problem t45_pre_topc
SEU314 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e1_61_1__subset_1
SEU315 ( -0 +2 _0 ^0) MPTP bushy problem s3_subset_1__e1_40__pre_topc
SEU316 ( -0 +2 _0 ^0) MPTP bushy problem t46_pre_topc
SEU317 ( -0 +2 _0 ^0) MPTP bushy problem t48_pre_topc
SEU318 ( -0 +2 _0 ^0) MPTP bushy problem t52_pre_topc
SEU319 ( -0 +2 _0 ^0) MPTP bushy problem t29_tops_1
SEU320 ( -0 +2 _0 ^0) MPTP bushy problem t30_tops_1
SEU321 ( -0 +2 _0 ^0) MPTP bushy problem l40_tops_1
SEU322 ( -0 +2 _0 ^0) MPTP bushy problem t44_tops_1
SEU323 ( -0 +2 _0 ^0) MPTP bushy problem t51_tops_1
SEU324 ( -0 +2 _0 ^0) MPTP bushy problem t55_tops_1
SEU325 ( -0 +2 _0 ^0) MPTP bushy problem t5_tops_2
SEU326 ( -0 +2 _0 ^0) MPTP bushy problem t10_tops_2
SEU327 ( -0 +2 _0 ^0) MPTP bushy problem t11_tops_2
SEU328 ( -0 +2 _0 ^0) MPTP bushy problem t12_tops_2
SEU329 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e4_5_1__funct_1
SEU330 ( -0 +2 _0 ^0) MPTP bushy problem s1_funct_1__e2_11_1__funct_1
SEU331 ( -0 +2 _0 ^0) MPTP bushy problem s2_funct_1__e4_7_1__tops_2
SEU332 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e4_5_1__funct_1
SEU333 ( -0 +2 _0 ^0) MPTP bushy problem s1_funct_1__e2_11_1__funct_1
SEU334 ( -0 +2 _0 ^0) MPTP bushy problem s2_funct_1__e4_7_2__tops_2
SEU335 ( -0 +2 _0 ^0) MPTP bushy problem t13_tops_2
SEU336 ( -0 +2 _0 ^0) MPTP bushy problem t16_tops_2
SEU337 ( -0 +2 _0 ^0) MPTP bushy problem t17_tops_2
SEU338 ( -0 +2 _0 ^0) MPTP bushy problem t13_compts_1
SEU339 ( -0 +2 _0 ^0) MPTP bushy problem t25_orders_2
SEU340 ( -0 +2 _0 ^0) MPTP bushy problem t26_orders_2
SEU341 ( -0 +2 _0 ^0) MPTP bushy problem t5_connsp_2
SEU342 ( -0 +2 _0 ^0) MPTP bushy problem t32_filter_1
SEU343 ( -0 +2 _0 ^0) MPTP bushy problem t1_lattice3
SEU344 ( -0 +2 _0 ^0) MPTP bushy problem t2_lattice3
SEU345 ( -0 +2 _0 ^0) MPTP bushy problem t3_lattice3
SEU346 ( -0 +2 _0 ^0) MPTP bushy problem t7_lattice3
SEU347 ( -0 +2 _0 ^0) MPTP bushy problem t28_lattice3
SEU348 ( -0 +2 _0 ^0) MPTP bushy problem t29_lattice3
SEU349 ( -0 +2 _0 ^0) MPTP bushy problem t30_lattice3
SEU350 ( -0 +2 _0 ^0) MPTP bushy problem t31_lattice3
SEU351 ( -0 +2 _0 ^0) MPTP bushy problem t34_lattice3
SEU352 ( -0 +2 _0 ^0) MPTP bushy problem t50_lattice3
SEU353 ( -0 +2 _0 ^0) MPTP bushy problem t91_tmap_1
SEU354 ( -0 +2 _0 ^0) MPTP bushy problem t5_tex_2
SEU355 ( -0 +2 _0 ^0) MPTP bushy problem t6_yellow_0
SEU356 ( -0 +2 _0 ^0) MPTP bushy problem t15_yellow_0
SEU357 ( -0 +2 _0 ^0) MPTP bushy problem t16_yellow_0
SEU358 ( -0 +2 _0 ^0) MPTP bushy problem t29_yellow_0
SEU359 ( -0 +2 _0 ^0) MPTP bushy problem t30_yellow_0
SEU360 ( -0 +2 _0 ^0) MPTP bushy problem t42_yellow_0
SEU361 ( -0 +2 _0 ^0) MPTP bushy problem t44_yellow_0
SEU362 ( -0 +2 _0 ^0) MPTP bushy problem t60_yellow_0
SEU363 ( -0 +2 _0 ^0) MPTP bushy problem t61_yellow_0
SEU364 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e2_28_1_1__finset_1
SEU365 ( -0 +2 _0 ^0) MPTP bushy problem s2_finset_1__e11_2_1__waybel_0
SEU366 ( -0 +2 _0 ^0) MPTP bushy problem t1_waybel_0
SEU367 ( -0 +2 _0 ^0) MPTP bushy problem t8_waybel_0
SEU368 ( -0 +2 _0 ^0) MPTP bushy problem t1_yellow_1
SEU369 ( -0 +2 _0 ^0) MPTP bushy problem t2_yellow_1
SEU370 ( -0 +2 _0 ^0) MPTP bushy problem t4_yellow_1
SEU371 ( -0 +2 _0 ^0) MPTP bushy problem t18_yellow_1
SEU372 ( -0 +2 _0 ^0) MPTP bushy problem t6_yellow_6
SEU373 ( -0 +2 _0 ^0) MPTP bushy problem t19_yellow_6
SEU374 ( -0 +2 _0 ^0) MPTP bushy problem t20_yellow_6
SEU375 ( -0 +2 _0 ^0) MPTP bushy problem t21_yellow_6
SEU376 ( -0 +2 _0 ^0) MPTP bushy problem t28_yellow_6
SEU377 ( -0 +2 _0 ^0) MPTP bushy problem t30_yellow_6
SEU378 ( -0 +2 _0 ^0) MPTP bushy problem t31_yellow_6
SEU379 ( -0 +2 _0 ^0) MPTP bushy problem t32_yellow_6
SEU380 ( -0 +2 _0 ^0) MPTP bushy problem t41_yellow_6
SEU381 ( -0 +2 _0 ^0) MPTP bushy problem t11_waybel_7
SEU382 ( -0 +2 _0 ^0) MPTP bushy problem t4_waybel_7
SEU383 ( -0 +2 _0 ^0) MPTP bushy problem t8_waybel_7
SEU384 ( -0 +2 _0 ^0) MPTP bushy problem t12_waybel_9
SEU385 ( -0 +2 _0 ^0) MPTP bushy problem t16_waybel_9
SEU386 ( -0 +2 _0 ^0) MPTP bushy problem t29_waybel_9
SEU387 ( -0 +2 _0 ^0) MPTP bushy problem t2_yellow19
SEU388 ( -0 +2 _0 ^0) MPTP bushy problem t3_yellow19
SEU389 ( -0 +2 _0 ^0) MPTP bushy problem t4_yellow19
SEU390 ( -0 +2 _0 ^0) MPTP bushy problem t9_yellow19
SEU391 ( -0 +2 _0 ^0) MPTP bushy problem t11_yellow19
SEU392 ( -0 +2 _0 ^0) MPTP bushy problem t13_yellow19
SEU393 ( -0 +2 _0 ^0) MPTP bushy problem t14_yellow19
SEU394 ( -0 +2 _0 ^0) MPTP bushy problem t15_yellow19
SEU395 ( -0 +2 _0 ^0) MPTP bushy problem t18_yellow19
SEU396 ( -0 +2 _0 ^0) MPTP bushy problem t20_yellow19
SEU397 ( -0 +2 _0 ^0) MPTP bushy problem t23_yellow19
SEU398 ( -0 +2 _0 ^0) MPTP bushy problem t31_yellow19
SEU399 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e2_25_1_2__wellord2
SEU400 ( -0 +2 _0 ^0) MPTP bushy problem s1_xboole_0__e4_5_1__funct_1
SEU401 ( -0 +2 _0 ^0) MPTP bushy problem s2_xboole_0__e10_25_1_1__wellord2
SEU402 ( -0 +2 _0 ^0) MPTP bushy problem s1_funct_1__e2_11_1__funct_1
SEU403 ( -0 +2 _0 ^0) MPTP bushy problem s2_funct_1__e3_25_1__wellord2
SEU404 ( -0 +2 _0 ^0) MPTP bushy problem s1_wellord2__e6_39_3__yellow19
SEU405 ( -0 +2 _0 ^0) MPTP bushy problem l37_yellow19
SEU406 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T01
SEU407 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T07
SEU408 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T11
SEU409 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T14
SEU410 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T19
SEU411 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T20
SEU412 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T22
SEU413 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T23
SEU414 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T24
SEU415 ( -0 +4 _0 ^0) The Operation of Addition of Relational Structures T25
SEU416 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T05
SEU417 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T07
SEU418 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T08
SEU419 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T12
SEU420 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T13
SEU421 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T14
SEU422 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T16
SEU423 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T17
SEU424 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T18
SEU425 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T21
SEU426 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T22
SEU427 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T26
SEU428 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T27
SEU429 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T28
SEU430 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T30
SEU431 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T31
SEU432 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T33
SEU433 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T34
SEU434 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T35
SEU435 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T36
SEU436 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T39
SEU437 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T40
SEU438 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T41
SEU439 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T43
SEU440 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T52
SEU441 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T53
SEU442 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T54
SEU443 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T55
SEU444 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T56
SEU445 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T57
SEU446 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T58
SEU447 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T59
SEU448 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T62
SEU449 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T63
SEU450 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T64
SEU451 ( -0 +4 _0 ^0) First and Second Order Cutting of Binary Relations T65
SEU452 ( -0 +0 _0 ^1) Hofman's Marktoberdorf exercise
SEU453 ( -0 +0 _0 ^1) The reflexive closure of a binary relation is reflexive
SEU454 ( -0 +0 _0 ^1) The reflexive closure operator is idempotent
SEU455 ( -0 +0 _0 ^1) The reflexive closure operator is inflationary
SEU456 ( -0 +0 _0 ^1) The reflexive closure operator is monotonic
SEU457 ( -0 +0 _0 ^1) The symmetric closure of a binary relation is symmetric
SEU458 ( -0 +0 _0 ^1) The symmetric closure operator is idempotent
SEU459 ( -0 +0 _0 ^1) The symmetric closure operator is inflationary
SEU460 ( -0 +0 _0 ^1) The symmetric closure operator is monotonic
SEU461 ( -0 +0 _0 ^1) The transitive closure of a binary relation is transitive, part 1
SEU462 ( -0 +0 _0 ^1) The transitive closure of a binary relation is transitive, part 2
SEU463 ( -0 +0 _0 ^1) The transitive closure of a binary relation is transitive, part 3
SEU464 ( -0 +0 _0 ^1) The transitive closure of a binary relation is transitive, part 4
SEU465 ( -0 +0 _0 ^1) The transitive closure of a binary relation is transitive, part 5
SEU466 ( -0 +0 _0 ^1) The transitive closure operator is idempotent
SEU467 ( -0 +0 _0 ^1) The transitive closure operator is inflationary
SEU468 ( -0 +0 _0 ^1) The transitive closure operator is monotonic
SEU469 ( -0 +0 _0 ^1) Transitive reflexive closure is transitive and reflexive
SEU470 ( -0 +0 _0 ^1) Transitive reflexive symmetric closure properties
SEU471 ( -0 +0 _0 ^1) The transitive reflexive symmetric closure operator is idempotent
SEU472 ( -0 +0 _0 ^1) The transitive reflexive symmetric closure operator is inflationary
SEU473 ( -0 +0 _0 ^1) The transitive reflexive symmetric closure operator is monotonic
SEU474 ( -0 +0 _0 ^1) Swapping symmetric closure and reflexive closure
SEU475 ( -0 +0 _0 ^1) Not swapping symmetric closure and transitive closure
SEU476 ( -0 +0 _0 ^1) Swaping transitive closure and reflexive closure
SEU477 ( -0 +0 _0 ^1) Another definition of terminating
SEU478 ( -0 +0 _0 ^1) A terminating relation is normalizing
SEU479 ( -0 +0 _0 ^1) If a relation is terminating, then so is its transitive closure
SEU480 ( -0 +0 _0 ^1) Termination implies the induction principle
SEU481 ( -0 +0 _0 ^1) Satisfying the induction principle implies termination
SEU482 ( -0 +0 _0 ^1) A normalizing relation is not necessarily terminating
SEU483 ( -0 +0 _0 ^1) A symmetric relation is non-terminating
SEU484 ( -0 +0 _0 ^1) A reflexive relation is non-terminating
SEU485 ( -0 +0 _0 ^1) In a confluent relation every element has at most one normal form
SEU486 ( -0 +0 _0 ^1) Confluence implies local confluence
SEU487 ( -0 +0 _0 ^1) Local confluence does NOT imply confluence
SEU488 ( -0 +0 _0 ^1) Confluence implies semi confluence
SEU489 ( -0 +0 _0 ^1) Church-Rosser property implies confluence
SEU490 ( -0 +0 _0 ^1) Semi confluence implies Church-Rosser property
SEU491 ( -0 +0 _0 ^1) Terminating relations and confluence and local confluence
SEU492 ( -0 +0 _0 ^1) Alternative definition of a strict (partial) order: requiring
SEU493 ( -0 +0 _0 ^1) The inverse of a partial order is again a partial order
SEU494 ( -0 +0 _0 ^1) Inverse of a strict (partial) order is a strict (partial) order
SEU495 ( -0 +0 _0 ^1) The inverse of a total relation is again a total relation
SEU496 ( -0 +0 _0 ^1) Transitive closure and strict (partial) orders
SEU497 ( -0 +0 _0 ^1) Every strict (partial) order induces a partial order
SEU498 ( -0 +0 _0 ^1) Every partial order induces a strict (partial) order
SEU499 ( -0 +0 _0 ^2) Foundation - Axioms - Logical Axioms
SEU500 ( -0 +0 _0 ^2) Preliminary Notions - Propositions as Sets
SEU501 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU502 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU503 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU504 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU505 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU506 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU507 ( -0 +0 _0 ^1) Preliminary Notions - Basic Laws of Logic
SEU508 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU509 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU510 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU511 ( -0 +0 _0 ^2) Preliminary Notions - Basic Laws of Logic
SEU512 ( -0 +0 _0 ^2) Preliminary Notions - Adjoining Elements to Sets
SEU513 ( -0 +0 _0 ^2) Preliminary Notions - Adjoining Elements to Sets
SEU514 ( -0 +0 _0 ^2) Preliminary Notions - Adjoining Elements to Sets
SEU515 ( -0 +0 _0 ^2) Preliminary Notions - Adjoining Elements to Sets
SEU516 ( -0 +0 _0 ^2) Preliminary Notions - Adjoining Elements to Sets
SEU517 ( -0 +0 _0 ^2) Preliminary Notions - Power Sets and Unions
SEU518 ( -0 +0 _0 ^2) Preliminary Notions - Power Sets and Unions
SEU519 ( -0 +0 _0 ^2) Preliminary Notions - Power Sets and Unions
SEU520 ( -0 +0 _0 ^1) Preliminary Notions - Power Sets and Unions
SEU521 ( -0 +0 _0 ^2) Preliminary Notions - Power Sets and Unions
SEU522 ( -0 +0 _0 ^2) Preliminary Notions - Power Sets and Unions
SEU523 ( -0 +0 _0 ^2) Preliminary Notions - Power Sets and Unions
SEU524 ( -0 +0 _0 ^2) Preliminary Notions - Power Sets and Unions
SEU525 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU526 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU527 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU528 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU529 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU530 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU531 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU532 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU533 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU534 ( -0 +0 _0 ^2) Preliminary Notions - Bounded Quantifier Laws
SEU535 ( -0 +0 _0 ^2) Preliminary Notions - Bounded Quantifier Laws
SEU536 ( -0 +0 _0 ^2) Preliminary Notions - Bounded Quantifier Laws
SEU537 ( -0 +0 _0 ^2) Preliminary Notions - Bounded Quantifier Laws
SEU538 ( -0 +0 _0 ^2) Preliminary Notions - Bounded Quantifier Laws
SEU539 ( -0 +0 _0 ^2) Preliminary Notions - Bounded Quantifier Laws
SEU540 ( -0 +0 _0 ^2) Preliminary Notions - Dependent Connective Laws
SEU541 ( -0 +0 _0 ^2) Preliminary Notions - Dependent Connective Laws
SEU542 ( -0 +0 _0 ^1) Preliminary Notions - Negated Quantifiers
SEU543 ( -0 +0 _0 ^1) Preliminary Notions - Negated Quantifiers
SEU544 ( -0 +0 _0 ^2) Preliminary Notions - Equivalence Laws
SEU545 ( -0 +0 _0 ^2) Preliminary Notions - Equivalence Laws
SEU546 ( -0 +0 _0 ^2) Preliminary Notions - Equivalence Laws
SEU547 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU548 ( -0 +0 _0 ^2) A simple congruence property of in
SEU549 ( -0 +0 _0 ^2) Preliminary Notions - Equality Laws
SEU550 ( -0 +0 _0 ^2) A simple congruence property of exu
SEU551 ( -0 +0 _0 ^3) A simple congruence property of emptyset
SEU552 ( -0 +0 _0 ^2) A simple congruence property of setadjoin
SEU553 ( -0 +0 _0 ^2) A simple congruence property of powerset
SEU554 ( -0 +0 _0 ^1) A simple congruence property of setunion
SEU555 ( -0 +0 _0 ^1) A simple congruence property of omega
SEU556 ( -0 +0 _0 ^1) Preliminary Notions - Equality Laws
SEU557 ( -0 +0 _0 ^2) A simple congruence property of descr
SEU558 ( -0 +0 _0 ^2) A simple congruence property of dsetconstr
SEU559 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU560 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU561 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU562 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU563 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU564 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU565 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU566 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU567 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU568 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU569 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU570 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU571 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU572 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU573 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU574 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU575 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU576 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU577 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU578 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU579 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU580 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU581 ( -0 +0 _0 ^2) Preliminary Notions - Relations on Sets - Subsets
SEU582 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU583 ( -0 +0 _0 ^1) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU584 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU585 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU586 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU587 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU588 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU589 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU590 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU591 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU592 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU593 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU594 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU595 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU596 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU597 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU598 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU599 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU600 ( -0 +0 _0 ^2) Preliminary Notions - Ops on Sets - Unions and Intersections
SEU601 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU602 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU603 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU604 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU605 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU606 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU607 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU608 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU609 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU610 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Set Difference
SEU611 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Symmetric Difference
SEU612 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Symmetric Difference
SEU613 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Symmetric Difference
SEU614 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Symmetric Difference
SEU615 ( -0 +0 _0 ^2) Preliminary Notions - Operations on Sets - Symmetric Difference
SEU616 ( -0 +0 _0 ^1) Ordered Pairs - Kuratowski Pairs
SEU617 ( -0 +0 _0 ^2) Ordered Pairs - Kuratowski Pairs
SEU618 ( -0 +0 _0 ^2) Ordered Pairs - Kuratowski Pairs
SEU619 ( -0 +0 _0 ^2) Ordered Pairs - Kuratowski Pairs
SEU620 ( -0 +0 _0 ^2) Ordered Pairs - Kuratowski Pairs
SEU621 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU622 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU623 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU624 ( -0 +0 _0 ^1) Ordered Pairs - Cartesian Products
SEU625 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU626 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU627 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU628 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU629 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU630 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU631 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU632 ( -0 +0 _0 ^2) Ordered Pairs - Cartesian Products
SEU633 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU634 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU635 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU636 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU637 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU638 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU639 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU640 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU641 ( -0 +0 _0 ^2) Ordered Pairs - Singletons
SEU642 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU643 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU644 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU645 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU646 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU647 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU648 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU649 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU650 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU651 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU652 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU653 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU654 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU655 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU656 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU657 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU658 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU659 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU660 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU661 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU662 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU663 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU664 ( -0 +0 _0 ^2) Ordered Pairs - Properties of Pairs
SEU665 ( -0 +0 _0 ^2) Ordered Pairs - Sets of Pairs
SEU666 ( -0 +0 _0 ^2) Ordered Pairs - Sets of Pairs
SEU667 ( -0 +0 _0 ^2) Ordered Pairs - Sets of Pairs
SEU668 ( -0 +0 _0 ^2) Ordered Pairs - Sets of Pairs
SEU669 ( -0 +0 _0 ^2) Ordered Pairs - Sets of Pairs
SEU670 ( -0 +0 _0 ^2) Ordered Pairs - Sets of Pairs
SEU671 ( -0 +0 _0 ^2) Ordered Pairs - Sets of Pairs
SEU672 ( -0 +0 _0 ^2) Functions
SEU673 ( -0 +0 _0 ^2) Functions - Application
SEU674 ( -0 +0 _0 ^2) Functions - Application
SEU675 ( -0 +0 _0 ^2) Functions - Application
SEU676 ( -0 +0 _0 ^2) Functions - Application
SEU677 ( -0 +0 _0 ^2) Functions - Lambda Abstraction
SEU678 ( -0 +0 _0 ^2) Functions - Lambda Abstraction
SEU679 ( -0 +0 _0 ^2) Functions - Lambda Abstraction
SEU680 ( -0 +0 _0 ^2) Functions - Lambda Abstraction
SEU681 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU682 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU683 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU684 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU685 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU686 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU687 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU688 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU689 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU690 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU691 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU692 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU693 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU694 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU695 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU696 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU697 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU698 ( -0 +0 _0 ^1) Functions - Extensionality and Beta Reduction
SEU699 ( -0 +0 _0 ^2) Functions - Extensionality and Beta Reduction
SEU700 ( -0 +0 _0 ^2) Conditionals
SEU701 ( -0 +0 _0 ^2) Conditionals
SEU702 ( -0 +0 _0 ^2) Conditionals
SEU703 ( -0 +0 _0 ^2) Conditionals
SEU704 ( -0 +0 _0 ^2) Conditionals
SEU705 ( -0 +0 _0 ^2) Conditionals
SEU706 ( -0 +0 _0 ^2) Conditionals
SEU707 ( -0 +0 _0 ^2) Conditionals
SEU708 ( -0 +0 _0 ^2) Conditionals
SEU709 ( -0 +0 _0 ^2) Conditionals
SEU710 ( -0 +0 _0 ^1) Typed Set Theory - Types of Set Operators
SEU711 ( -0 +0 _0 ^2) Typed Set Theory - Types of Set Operators
SEU712 ( -0 +0 _0 ^2) Typed Set Theory - Types of Set Operators
SEU713 ( -0 +0 _0 ^2) Typed Set Theory - Types of Set Operators
SEU714 ( -0 +0 _0 ^2) Typed Set Theory - Types of Set Operators
SEU715 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU716 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU717 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU718 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU719 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU720 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU721 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU722 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU723 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU724 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU725 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU726 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU727 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU728 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU729 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU730 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU731 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU732 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU733 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU734 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU735 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU736 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU737 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU738 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU739 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU740 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU741 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU742 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU743 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU744 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU745 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU746 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU747 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets
SEU748 ( -0 +0 _0 ^1) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU749 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU750 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU751 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU752 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU753 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU754 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU755 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU756 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU757 ( -0 +0 _0 ^2) Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
SEU758 ( -0 +0 _0 ^2) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Lemmas
SEU759 ( -0 +0 _0 ^2) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Lemmas
SEU760 ( -0 +0 _0 ^2) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Lemmas
SEU761 ( -0 +0 _0 ^2) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Lemmas
SEU762 ( -0 +0 _0 ^2) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Lemmas
SEU763 ( -0 +0 _0 ^1) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Problems
SEU764 ( -0 +0 _0 ^2) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Problems
SEU765 ( -0 +0 _0 ^1) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Problems
SEU766 ( -0 +0 _0 ^1) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Problems
SEU767 ( -0 +0 _0 ^1) Typed Set Theory - First Wizard of Oz Examples - WoZ1 Problems
SEU768 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU769 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU770 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU771 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU772 ( -0 +0 _0 ^1) Binary Relations on a Set
SEU773 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU774 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU775 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU776 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU777 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU778 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU779 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU780 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU781 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU782 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU783 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU784 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU785 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU786 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU787 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU788 ( -0 +0 _0 ^2) Binary Relations on a Set
SEU789 ( -0 +0 _0 ^2) Binary Relations on a Set - Second Wizard of Oz Examples
SEU790 ( -0 +0 _0 ^2) Binary Relations on a Set - Second Wizard of Oz Examples
SEU791 ( -0 +0 _0 ^2) Binary Relations on a Set - Second Wizard of Oz Examples
SEU792 ( -0 +0 _0 ^2) Binary Relations on a Set - Second Wizard of Oz Examples
SEU793 ( -0 +0 _0 ^2) More about Functions - Images of Functions
SEU794 ( -0 +0 _0 ^2) More about Functions - Images of Functions
SEU795 ( -0 +0 _0 ^2) More about Functions - Images of Functions
SEU796 ( -0 +0 _0 ^2) More about Functions - Images of Functions
SEU797 ( -0 +0 _0 ^2) More about Functions - Images of Functions
SEU798 ( -0 +0 _0 ^2) More about Functions - Injective Functions
SEU799 ( -0 +0 _0 ^2) More about Functions - Injective Functions
SEU800 ( -0 +0 _0 ^2) More about Functions - Injective Functions
SEU801 ( -0 +0 _0 ^2) More about Functions - Surjective Functions
SEU802 ( -0 +0 _0 ^2) More about Functions - Surjective Functions
SEU803 ( -0 +0 _0 ^2) More about Functions - Surjective Functions
SEU804 ( -0 +0 _0 ^2) More Functions - Surjective Functions - Surjective Cantor Theorem
SEU805 ( -0 +0 _0 ^2) The Foundation Axiom
SEU806 ( -0 +0 _0 ^2) The Foundation Axiom
SEU807 ( -0 +0 _0 ^2) The Foundation Axiom
SEU808 ( -0 +0 _0 ^2) Omega and Peano
SEU809 ( -0 +0 _0 ^2) Omega and Peano
SEU810 ( -0 +0 _0 ^2) Omega and Peano
SEU811 ( -0 +0 _0 ^2) Omega and Peano
SEU812 ( -0 +0 _0 ^2) Transitive Sets
SEU813 ( -0 +0 _0 ^2) Transitive Sets
SEU814 ( -0 +0 _0 ^2) Transitive Sets
SEU815 ( -0 +0 _0 ^2) Transitive Sets
SEU816 ( -0 +0 _0 ^2) Ordinals
SEU817 ( -0 +0 _0 ^2) Ordinals
SEU818 ( -0 +0 _0 ^2) Ordinals
SEU819 ( -0 +0 _0 ^2) Ordinals
SEU820 ( -0 +0 _0 ^2) Ordinals
SEU821 ( -0 +0 _0 ^2) Ordinals
SEU822 ( -0 +0 _0 ^2) Ordinals
SEU823 ( -0 +0 _0 ^2) Ordinals
SEU824 ( -0 +0 _0 ^3) Ordinals
SEU825 ( -0 +0 _0 ^1) setextAx and powersetAx and notinemptyset are consistent
SEU826 ( -0 +0 _0 ^1) About sets 1
SEU827 ( -0 +0 _0 ^1) About sets 2
SEU828 ( -0 +0 _0 ^1) About powersets 1
SEU829 ( -0 +0 _0 ^1) About powersets 2
SEU831 ( -0 +0 _0 ^1) TPS problem GAZING-THM32
SEU832 ( -0 +0 _0 ^1) TPS problem GAZING-THM31
SEU833 ( -0 +0 _0 ^1) TPS problem GAZING-THM24
SEU834 ( -0 +0 _0 ^1) TPS problem GAZING-THM21
SEU836 ( -0 +0 _0 ^1) TPS problem GAZING-THM19
SEU839 ( -0 +0 _0 ^1) TPS problem GAZING-THM26
SEU841 ( -0 +0 _0 ^1) TPS problem GAZING-THM7
SEU842 ( -0 +0 _0 ^1) TPS problem GAZING-THM25
SEU843 ( -0 +0 _0 ^1) TPS problem GAZING-THM23
SEU844 ( -0 +0 _0 ^1) TPS problem GAZING-THM8
SEU845 ( -0 +0 _0 ^1) TPS problem GAZING-THM12
SEU846 ( -0 +0 _0 ^1) TPS problem GAZING-THM11
SEU847 ( -0 +0 _0 ^1) TPS problem GAZING-THM41
SEU848 ( -0 +0 _0 ^1) TPS problem GAZING-THM38
SEU849 ( -0 +0 _0 ^1) TPS problem GAZING-THM39
SEU850 ( -0 +0 _0 ^1) TPS problem GAZING-THM9
SEU851 ( -0 +0 _0 ^1) TPS problem GAZING-THM42
SEU852 ( -0 +0 _0 ^1) TPS problem GAZING-THM36
SEU853 ( -0 +0 _0 ^1) TPS problem GAZING-THM35
SEU854 ( -0 +0 _0 ^1) TPS problem GAZING-THM34
SEU855 ( -0 +0 _0 ^1) TPS problem GAZING-THM33
SEU856 ( -0 +0 _0 ^1) TPS problem GAZING-THM46
SEU857 ( -0 +0 _0 ^1) TPS problem GAZING-THM43
SEU858 ( -0 +0 _0 ^1) TPS problem THM163
SEU859 ( -0 +0 _0 ^1) TPS problem THM164
SEU860 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU861 ( -0 +0 _0 ^1) TPS problem THM531E
SEU862 ( -0 +0 _0 ^1) TPS problem from FINITE-FINITE1-EQUIV
SEU863 ( -0 +0 _0 ^1) TPS problem from FINITE-FINITE1-EQUIV
SEU864 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU865 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU866 ( -0 +0 _0 ^1) TPS problem from PIGEON-HOLE
SEU867 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU868 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU869 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU871 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU872 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU873 ( -0 +0 _0 ^1) TPS problem from FINITE-SET-THMS
SEU874 ( -0 +0 _0 ^1) TPS problem from SET-TOPOLOGY-THMS
SEU875 ( -0 +0 _0 ^1) TPS problem from SET-TOPOLOGY-THMS
SEU876 ( -0 +0 _0 ^1) TPS problem from SET-TOPOLOGY-THMS
SEU877 ( -0 +0 _0 ^1) TPS problem from SET-TOPOLOGY-THMS
SEU878 ( -0 +0 _0 ^1) TPS problem from SET-TOPOLOGY-THMS
SEU879 ( -0 +0 _0 ^1) TPS problem from SET-TOPOLOGY-THMS
SEU880 ( -0 +0 _0 ^1) TPS problem from SET-TOPOLOGY-THMS
SEU881 ( -0 +0 _0 ^1) TPS problem from SET-TOPOLOGY-THMS
SEU882 ( -0 +0 _0 ^1) TPS problem THM139
SEU883 ( -0 +0 _0 ^1) TPS problem X5212
SEU884 ( -0 +0 _0 ^1) TPS problem THM30B
SEU885 ( -0 +0 _0 ^1) TPS problem THM30A
SEU886 ( -0 +0 _0 ^1) TPS problem X5203
SEU887 ( -0 +0 _0 ^1) TPS problem THM28
SEU888 ( -0 +0 _0 ^1) TPS problem THM500C-WFF
SEU889 ( -0 +0 _0 ^1) TPS problem THM29A
SEU890 ( -0 +0 _0 ^1) TPS problem THM29
SEU891 ( -0 +0 _0 ^1) TPS problem THM34B
SEU892 ( -0 +0 _0 ^1) TPS problem X6104
SEU893 ( -0 +0 _0 ^1) TPS problem THM34A
SEU894 ( -0 +0 _0 ^1) TPS problem THM15-0
SEU895 ( -0 +0 _0 ^1) TPS problem X5202
SEU896 ( -0 +0 _0 ^1) TPS problem THM500
SEU897 ( -0 +0 _0 ^1) TPS problem THM30
SEU898 ( -0 +0 _0 ^1) TPS problem THM132
SEU899 ( -0 +0 _0 ^1) TPS problem THM34
SEU901 ( -0 +0 _0 ^1) TPS problem THM131D
SEU902 ( -0 +0 _0 ^1) TPS problem THM143
SEU903 ( -0 +0 _0 ^1) TPS problem THM131
SEU904 ( -0 +0 _0 ^1) TPS problem THM126
SEU905 ( -0 +0 _0 ^1) TPS problem THM126A
SEU906 ( -0 +0 _0 ^1) TPS problem from FUNS-AND-SETS-THMS
SEU907 ( -0 +0 _0 ^1) TPS problem from FUNS-AND-SETS-THMS
SEU908 ( -0 +0 _0 ^1) TPS problem from MISTAKEN-LEASTCLOSEDUNDER
SEU909 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CATEGORY-THMS
SEU910 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CATEGORY-THMS
SEU911 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CATEGORY-THMS
SEU912 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CATEGORY-THMS
SEU913 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CATEGORY-THMS
SEU914 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CATEGORY-THMS
SEU915 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CATEGORY-THMS
SEU916 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CATEGORY-THMS
SEU917 ( -0 +0 _0 ^1) TPS problem THM8
SEU918 ( -0 +0 _0 ^1) TPS problem THM197
SEU919 ( -0 +0 _0 ^1) TPS problem THM127
SEU920 ( -0 +0 _0 ^1) TPS problem FN-THM-4
SEU921 ( -0 +0 _0 ^1) TPS problem THM588LEM2
SEU922 ( -0 +0 _0 ^1) TPS problem THM128
SEU923 ( -0 +0 _0 ^1) TPS problem THM54
SEU924 ( -0 +0 _0 ^1) TPS problem THM134
SEU925 ( -0 +0 _0 ^1) TPS problem THM7-TPS2
SEU926 ( -0 +0 _0 ^1) TPS problem THM113
SEU927 ( -0 +0 _0 ^1) TPS problem THM92
SEU928 ( -0 +0 _0 ^1) TPS problem THM48A
SEU929 ( -0 +0 _0 ^1) TPS problem THM170
SEU930 ( -0 +0 _0 ^1) TPS problem THM171A
SEU931 ( -0 +0 _0 ^1) TPS problem THM171
SEU932 ( -0 +0 _0 ^1) TPS problem THM141
SEU933 ( -0 +0 _0 ^1) TPS problem THM196B
SEU934 ( -0 +0 _0 ^1) TPS problem THM14
SEU935 ( -0 +0 _0 ^1) TPS problem FN-THM-2
SEU936 ( -0 +0 _0 ^1) TPS problem FN-THM-3
SEU937 ( -0 +0 _0 ^1) TPS problem THM48
SEU938 ( -0 +0 _0 ^1) TPS problem THM196
SEU939 ( -0 +0 _0 ^1) TPS problem THM112B
SEU940 ( -0 +0 _0 ^1) TPS problem THM112A
SEU941 ( -0 +0 _0 ^1) TPS problem FN-THM-1
SEU942 ( -0 +0 _0 ^1) TPS problem THM15B
SEU943 ( -0 +0 _0 ^1) TPS problem THM172
SEU944 ( -0 +0 _0 ^1) TPS problem THM15C
SEU945 ( -0 +0 _0 ^1) TPS problem THM3
SEU946 ( -0 +0 _0 ^1) TPS problem THM15A
SEU947 ( -0 +0 _0 ^1) TPS problem THM15B-V2
SEU948 ( -0 +0 _0 ^1) TPS problem THM135
SEU949 ( -0 +0 _0 ^1) TPS problem THM589
SEU950 ( -0 +0 _0 ^1) TPS problem THM573
SEU951 ( -0 +0 _0 ^1) TPS problem THM574
SEU953 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU954 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU955 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU956 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU957 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU958 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU959 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU960 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU961 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU963 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU965 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU966 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU967 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU968 ( -0 +0 _0 ^1) TPS problem from FUNCTION-THMS
SEU969 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-RELNS
SEU970 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-RELNS
SEU971 ( -0 +0 _0 ^1) TPS problem from CHECKERBOARD-RELNS
SEU972 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU973 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU974 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU975 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU976 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU977 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU978 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU979 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU980 ( -0 +0 _0 ^1) TPS problem from COINDUCTIVE-PU-ALG-THMS
SEU982 ( -0 +0 _0 ^1) TPS problem from S-COI-THMS
SEU983 ( -0 +0 _0 ^1) TPS problem from S-COI-THMS
SEU984 ( -0 +0 _0 ^1) TPS problem from FINITE-SETS-CHECKERBOARD
SEU985 ( -0 +0 _0 ^1) TPS problem from FINITE-SETS-RELNS-THMS
SEU986 ( -0 +0 _0 ^1) TPS problem from FINITE-SETS-RELNS-THMS
SEU987 ( -0 +0 _0 ^1) TPS problem from FUNS-AND-RELNS-THMS
SEU988 ( -0 +0 _0 ^1) TPS problem from FUNS-AND-RELNS-THMS
SEU989 ( -0 +0 _0 ^1) TPS problem from GRAPHS-THMS
SEU990 ( -0 +0 _0 ^1) TPS problem from GRAPHS-THMS
SEU991 ( -0 +0 _0 ^1) TPS problem from GRAPHS-THMS
SEU992 ( -0 +0 _0 ^1) TPS problem from GRAPHS-THMS
SEU993 ( -0 +0 _0 ^1) TPS problem from GRAPHS-THMS
SEU994 ( -0 +0 _0 ^1) TPS problem from LATTICES
SEU995 ( -0 +0 _0 ^1) TPS problem THM24
SEU996 ( -0 +0 _0 ^1) TPS problem MODULAR-THM
SEU997 ( -0 +0 _0 ^1) TPS problem CD-LATTICE-THM
SEU998 ( -0 +0 _0 ^1) TPS problem 3-DIAMOND-THM
SEU999 ( -0 +0 _0 ^1) TPS problem PENTAGON-THM2B
-------------------------------------------------------------------------------
Domain SEV = Set Theory Continued
497 problems (490 abstract), 1 CNF, 6 FOF, 6 TFF, 484 THF
-------------------------------------------------------------------------------
SEV000 ( -0 +0 _0 ^1) TPS problem MODULAR-EQUIV-THM
SEV001 ( -0 +0 _0 ^1) TPS problem DISTRIB-THM
SEV002 ( -0 +0 _0 ^1) TPS problem from LATTICES-THMS
SEV003 ( -0 +0 _0 ^1) TPS problem from LATTICES-THMS
SEV004 ( -0 +0 _0 ^1) TPS problem from LATTICES-THMS
SEV005 ( -0 +0 _0 ^1) TPS problem from LATTICES-THMS
SEV006 ( -0 +0 _0 ^1) TPS problem from LATTICES-THMS
SEV007 ( -0 +0 _0 ^1) TPS problem from LATTICES-THMS
SEV008 ( -0 +0 _0 ^1) TPS problem THM261
SEV009 ( -0 +0 _0 ^1) TPS problem THM261-B
SEV010 ( -0 +0 _0 ^1) TPS problem THM260
SEV011 ( -0 +0 _0 ^1) TPS problem THM260-B
SEV012 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV013 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV014 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV015 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV016 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV017 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV018 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV019 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV020 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV021 ( -0 +0 _0 ^3) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV022 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV023 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV024 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV025 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV026 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV027 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV028 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV029 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV030 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV031 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV032 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV033 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV034 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV035 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV037 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV038 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV039 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV040 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV041 ( -0 +0 _0 ^1) TPS problem from EQUIVALENCE-RELATIONS-THMS
SEV042 ( -0 +0 _0 ^1) TPS problem THM600
SEV043 ( -0 +0 _0 ^1) TPS problem from PERS-THMS
SEV044 ( -0 +0 _0 ^1) TPS problem from PERS-THMS
SEV045 ( -0 +0 _0 ^1) TPS problem from PERS-THMS
SEV046 ( -0 +0 _0 ^1) TPS problem from PERS-THMS
SEV047 ( -0 +0 _0 ^1) TPS problem THM175
SEV048 ( -0 +0 _0 ^1) TPS problem THM120
SEV049 ( -0 +0 _0 ^1) TPS problem THM120A
SEV050 ( -0 +0 _0 ^1) TPS problem THM599
SEV051 ( -0 +0 _0 ^1) TPS problem THM557
SEV052 ( -0 +0 _0 ^1) TPS problem THM120B
SEV053 ( -0 +0 _0 ^1) TPS problem THM89B
SEV054 ( -0 +0 _0 ^1) TPS problem THM403
SEV055 ( -0 +0 _0 ^1) TPS problem THM402
SEV056 ( -0 +0 _0 ^1) TPS problem THM275
SEV057 ( -0 +0 _0 ^1) TPS problem EQP1-1A
SEV058 ( -0 +0 _0 ^1) TPS problem THM122
SEV059 ( -0 +0 _0 ^1) TPS problem THM89A
SEV060 ( -0 +0 _0 ^1) TPS problem THM173
SEV061 ( -0 +0 _0 ^1) TPS problem THM176
SEV062 ( -0 +0 _0 ^1) TPS problem T146A
SEV063 ( -0 +0 _0 ^1) TPS problem THM136
SEV064 ( -0 +0 _0 ^1) TPS problem THM120C
SEV065 ( -0 +0 _0 ^1) TPS problem THM177
SEV066 ( -0 +0 _0 ^1) TPS problem THM120D
SEV067 ( -0 +0 _0 ^1) TPS problem THM553
SEV068 ( -0 +0 _0 ^1) TPS problem THM275A-1
SEV069 ( -0 +0 _0 ^1) TPS problem THM575
SEV070 ( -0 +0 _0 ^1) TPS problem THM577
SEV071 ( -0 +0 _0 ^1) TPS problem THM576
SEV072 ( -0 +0 _0 ^1) TPS problem THM522
SEV074 ( -0 +0 _0 ^1) TPS problem THM523
SEV075 ( -0 +0 _0 ^1) TPS problem THM152
SEV076 ( -0 +0 _0 ^1) TPS problem THM401B
SEV079 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV080 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV081 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV082 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV083 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV084 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV085 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV086 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV087 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV088 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV089 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV090 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV091 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV092 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV093 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV094 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV095 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV096 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV097 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV098 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV099 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV100 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV101 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV102 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV103 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV104 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV105 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV106 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV107 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV108 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV109 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV113 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV114 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV115 ( -0 +0 _0 ^1) TPS problem from RELN-THMS
SEV116 ( -0 +0 _0 ^1) TPS problem STRANGE-HO-EXAMPLE
SEV117 ( -0 +0 _0 ^1) TPS problem from PER-CLOSURE-THMS
SEV118 ( -0 +0 _0 ^1) TPS problem from PER-CLOSURE-THMS
SEV119 ( -0 +0 _0 ^1) TPS problem THM252
SEV120 ( -0 +0 _0 ^1) TPS problem THM70
SEV121 ( -0 +0 _0 ^1) TPS problem THM47C
SEV122 ( -0 +0 _0 ^1) TPS problem THM530
SEV123 ( -0 +0 _0 ^1) TPS problem from SETS-OF-RELNS-THMS
SEV124 ( -0 +0 _0 ^1) TPS problem from SETS-OF-RELNS-THMS
SEV125 ( -0 +0 _0 ^1) TPS problem from SETS-OF-RELNS-THMS
SEV126 ( -0 +0 _0 ^1) TPS problem from SETS-OF-RELNS-THMS
SEV127 ( -0 +0 _0 ^1) TPS problem from SETS-OF-RELNS-THMS
SEV128 ( -0 +0 _0 ^1) TPS problem from SETS-OF-RELNS-THMS
SEV129 ( -0 +0 _0 ^1) TPS problem from SETS-OF-RELNS-THMS
SEV130 ( -0 +0 _0 ^1) TPS problem from SETS-OF-RELNS-THMS
SEV131 ( -0 +0 _0 ^1) TPS problem THM202
SEV132 ( -0 +0 _0 ^1) TPS problem from TC-THMS
SEV133 ( -0 +0 _0 ^1) TPS problem from TC-THMS
SEV134 ( -0 +0 _0 ^1) TPS problem THM201
SEV135 ( -0 +0 _0 ^1) TPS problem THM151
SEV136 ( -0 +0 _0 ^1) TPS problem THM203
SEV137 ( -0 +0 _0 ^1) TPS problem THM204
SEV138 ( -0 +0 _0 ^1) TPS problem THM150
SEV140 ( -0 +0 _0 ^1) TPS problem THM250C
SEV141 ( -0 +0 _0 ^1) TPS problem THM250
SEV143 ( -0 +0 _0 ^1) TPS problem THM146
SEV144 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV146 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV148 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV149 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV150 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV152 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV153 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV154 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV155 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV156 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV157 ( -0 +0 _0 ^1) TPS problem from TRANSITIVE-CLOSURE
SEV158 ( -0 +0 _0 ^1) TPS problem THM120I-1
SEV159 ( -0 +0 _0 ^1) TPS problem THM181
SEV160 ( -0 +0 _0 ^1) TPS problem THM186
SEV161 ( -0 +0 _0 ^1) TPS problem THM183
SEV162 ( -0 +0 _0 ^1) TPS problem THM184
SEV163 ( -0 +0 _0 ^1) TPS problem THM187
SEV164 ( -0 +0 _0 ^1) TPS problem THM185
SEV165 ( -0 +0 _0 ^1) TPS problem EXISTS-CART-SET-PROD
SEV166 ( -0 +0 _0 ^1) TPS problem THM182
SEV167 ( -0 +0 _0 ^1) TPS problem THM189
SEV168 ( -0 +0 _0 ^1) TPS problem from PAIRS-THMS
SEV169 ( -0 +0 _0 ^1) TPS problem from PAIRS-THMS
SEV170 ( -0 +0 _0 ^1) TPS problem from PAIRS-THMS
SEV171 ( -0 +0 _0 ^1) TPS problem from PAIRS-FUNS-THMS
SEV172 ( -0 +0 _0 ^1) TPS problem from SETPAIRS-THMS
SEV173 ( -0 +0 _0 ^1) TPS problem from SETPAIRS-THMS
SEV174 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS
SEV175 ( -0 +0 _0 ^1) TPS problem THM144A
SEV176 ( -0 +0 _0 ^1) TPS problem THM25
SEV177 ( -0 +0 _0 ^1) TPS problem THM144
SEV179 ( -0 +0 _0 ^1) TPS problem from CANTOR-THMS
SEV180 ( -0 +0 _0 ^1) TPS problem from CANTOR-THMS
SEV181 ( -0 +0 _0 ^1) TPS problem from CANTOR-THMS
SEV182 ( -0 +0 _0 ^1) TPS problem from CANTOR-THMS
SEV183 ( -0 +0 _0 ^1) TPS problem from SET-TOP-ACS-THMS
SEV184 ( -0 +0 _0 ^1) TPS problem from SET-TOP-CAT-ACS-THMS
SEV185 ( -0 +0 _0 ^1) TPS problem THM564
SEV186 ( -0 +0 _0 ^1) TPS problem THM565
SEV187 ( -0 +0 _0 ^1) TPS problem from CLOS-SYS-THMS
SEV188 ( -0 +0 _0 ^1) TPS problem from CLOS-SYS-THMS
SEV189 ( -0 +0 _0 ^1) TPS problem from CLOS-SYS-THMS
SEV190 ( -0 +0 _0 ^1) TPS problem THM580
SEV191 ( -0 +0 _0 ^1) TPS problem S-JOINFN-MONOTONE
SEV192 ( -0 +0 _0 ^1) TPS problem CS-DUC-RELNS
SEV193 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV194 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV195 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV196 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV197 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV198 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV199 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV200 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV203 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV204 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV205 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV206 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV207 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV208 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV209 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV210 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV211 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV212 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV213 ( -0 +0 _0 ^1) TPS problem from S-THMS
SEV214 ( -0 +0 _0 ^1) TPS problem from S-T-THMS
SEV215 ( -0 +0 _0 ^1) TPS problem from S-T-THMS
SEV216 ( -0 +0 _0 ^1) TPS problem from S-T-THMS
SEV217 ( -0 +0 _0 ^1) TPS problem from S-T-THMS
SEV218 ( -0 +0 _0 ^1) TPS problem from CHOICE-COVER-THMS
SEV219 ( -0 +0 _0 ^1) TPS problem from S-SEQ-COI-THMS
SEV220 ( -0 +0 _0 ^1) TPS problem X5205
SEV221 ( -0 +0 _0 ^1) TPS problem THM61
SEV222 ( -0 +0 _0 ^1) TPS problem THM60
SEV223 ( -0 +0 _0 ^1) TPS problem X5204
SEV224 ( -0 +0 _0 ^1) TPS problem from FUNS-AND-SETS-OF-SETS-THMS
SEV225 ( -0 +0 _0 ^1) TPS problem from REALS-THMS
SEV226 ( -0 +0 _0 ^1) TPS problem from REALS-THMS
SEV227 ( -0 +0 _0 ^1) TPS problem X5200
SEV228 ( -0 +0 _0 ^1) TPS problem THM91A
SEV229 ( -0 +0 _0 ^1) TPS problem X5209
SEV230 ( -0 +0 _0 ^1) TPS problem THM88
SEV231 ( -0 +0 _0 ^1) TPS problem X5201
SEV232 ( -0 +0 _0 ^1) TPS problem X6007
SEV233 ( -0 +0 _0 ^1) TPS problem THM46
SEV234 ( -0 +0 _0 ^1) TPS problem BLEDSOE-FENG-SV-10
SEV235 ( -0 +0 _0 ^1) TPS problem THM46A
SEV236 ( -0 +0 _0 ^1) TPS problem THM91
SEV237 ( -0 +0 _0 ^1) TPS problem THM616
SEV238 ( -0 +0 _0 ^1) TPS problem THM2D
SEV239 ( -0 +0 _0 ^1) TPS problem X5211
SEV240 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV241 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV242 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV243 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV244 ( -0 +0 _0 ^2) TPS problem from SETS-OF-SETS-THMS
SEV245 ( -0 +0 _0 ^2) TPS problem from SETS-OF-SETS-THMS
SEV246 ( -0 +0 _0 ^2) TPS problem from SETS-OF-SETS-THMS
SEV248 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV249 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV250 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV251 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV252 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV253 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV254 ( -0 +0 _0 ^1) TPS problem from SETS-OF-SETS-THMS
SEV256 ( -0 +0 _0 ^1) TPS problem THM625A
SEV257 ( -0 +0 _0 ^1) TPS problem THM625
SEV258 ( -0 +0 _0 ^1) TPS problem DISCRETE-TOPOLOGY
SEV259 ( -0 +0 _0 ^1) TPS problem CLOSURE-THM0
SEV260 ( -0 +0 _0 ^1) TPS problem CLOSED-THM1
SEV261 ( -0 +0 _0 ^1) TPS problem INDISCRETE-TOPOLOGY
SEV262 ( -0 +0 _0 ^1) TPS problem NBHD-THM2
SEV263 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV264 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV265 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV266 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV267 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV268 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV269 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV270 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV271 ( -0 +0 _0 ^1) TPS problem from TOPOLOGY-THMS
SEV272 ( -0 +0 _0 ^1) TPS problem X6007A
SEV273 ( -0 +0 _0 ^1) TPS problem THM542
SEV274 ( -0 +0 _0 ^1) TPS problem from WELL-ORD-THMS
SEV275 ( -0 +0 _0 ^1) TPS problem from WELL-ORD-THMS
SEV276 ( -0 +0 _0 ^1) TPS problem from WELL-ORD-THMS
SEV277 ( -0 +0 _0 ^1) TPS problem from WELL-ORD-THMS
SEV278 ( -0 +0 _0 ^1) TPS problem from WELL-ORD-THMS
SEV279 ( -0 +0 _0 ^1) TPS problem from WELL-ORD-THMS
SEV280 ( -0 +0 _0 ^1) TPS problem from WELL-ORD-THMS
SEV281 ( -0 +0 _0 ^1) TPS problem from WELL-ORD-THMS
SEV282 ( -0 +0 _0 ^1) TPS problem TTTP6100
SEV285 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV286 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV288 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV289 ( -0 +0 _0 ^1) TPS problem TTTP6101
SEV290 ( -0 +0 _0 ^1) TPS problem BLEDSOE1
SEV291 ( -0 +0 _0 ^1) TPS problem THM130-B
SEV292 ( -0 +0 _0 ^1) TPS problem BLEDSOE7A
SEV293 ( -0 +0 _0 ^1) TPS problem X6101
SEV294 ( -0 +0 _0 ^1) TPS problem TTTP6102
SEV295 ( -0 +0 _0 ^1) TPS problem THM130-NAT
SEV296 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV297 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV298 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV299 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV300 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV301 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV302 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV303 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV304 ( -0 +0 _0 ^1) TPS problem from TTTP-NATS-THMS
SEV305 ( -0 +0 _0 ^2) TPS problem THM2
SEV306 ( -0 +0 _0 ^1) TPS problem THM2F
SEV308 ( -0 +0 _0 ^1) TPS problem THM1A
SEV309 ( -0 +0 _0 ^1) TPS problem THM1
SEV310 ( -0 +0 _0 ^1) TPS problem from SET-KNASTER-TARSKI-INST
SEV311 ( -0 +0 _0 ^1) TPS problem from SET-KNASTER-TARSKI-INST
SEV312 ( -0 +0 _0 ^1) TPS problem from SET-KNASTER-TARSKI
SEV313 ( -0 +0 _0 ^1) TPS problem from CLOS-SYS-FP-THMS
SEV314 ( -0 +0 _0 ^1) TPS problem from CLOS-SYS-FP-THMS
SEV315 ( -0 +0 _0 ^1) TPS problem from CLOS-SYS-FP-THMS
SEV316 ( -0 +0 _0 ^1) TPS problem from CLOS-SYS-FP-THMS
SEV317 ( -0 +0 _0 ^1) TPS problem THM145-A
SEV318 ( -0 +0 _0 ^1) TPS problem THM145-B
SEV319 ( -0 +0 _0 ^2) TPS problem THM145L
SEV321 ( -0 +0 _0 ^1) TPS problem from KNASTER-TARSKI
SEV322 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV323 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV324 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV325 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV326 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV327 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV328 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV329 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV330 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV331 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV332 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV333 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV334 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV335 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV336 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV337 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV338 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV339 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV340 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV341 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV342 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV343 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV344 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV345 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV346 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV347 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV348 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV349 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV350 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV351 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV352 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV354 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV355 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV356 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV357 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV358 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV359 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV360 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV361 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV362 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV363 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV364 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV365 ( -0 +0 _0 ^1) TPS problem from GVB-MB-AXIOMS
SEV366 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV368 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV369 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV370 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV371 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV372 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV373 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV374 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV375 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV376 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV377 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV378 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV379 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV380 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV381 ( -0 +0 _0 ^1) TPS problem from GVB-MB-THMS
SEV382 ( -0 +0 _0 ^1) TPS problem TRANS-IND
SEV383 ( -0 +0 _0 ^1) TPS problem BLEDSOE-FENG-7
SEV384 ( -0 +0 _0 ^1) TPS problem THM117B
SEV385 ( -0 +0 _0 ^1) TPS problem X6004
SEV386 ( -0 +0 _0 ^1) TPS problem TTTP5306A
SEV387 ( -0 +0 _0 ^1) TPS problem GAZING-THM44
SEV388 ( -0 +0 _0 ^1) TPS problem THM36
SEV389 ( -0 +0 _0 ^1) TPS problem THM37
SEV390 ( -0 +0 _0 ^1) TPS problem THM35
SEV391 ( -0 +0 _0 ^1) TPS problem THM87
SEV392 ( -0 +0 _0 ^1) TPS problem THM38
SEV393 ( -0 +0 _0 ^1) TPS problem THM39
SEV394 ( -0 +0 _0 ^1) TPS problem THM269
SEV396 ( -0 +0 _0 ^1) TPS problem THM31
SEV397 ( -0 +0 _0 ^1) TPS problem THM59
SEV398 ( -0 +0 _0 ^1) TPS problem THM67A
SEV399 ( -0 +0 _0 ^1) TPS problem THM597
SEV400 ( -0 +0 _0 ^1) TPS problem THM590
SEV401 ( -0 +0 _0 ^1) TPS problem THM67
SEV402 ( -0 +0 _0 ^1) TPS problem THM596
SEV403 ( -0 +0 _0 ^1) TPS problem THM598
SEV404 ( -0 +0 _0 ^1) TPS problem THM595
SEV405 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV406 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV408 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV409 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV410 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV411 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV412 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV413 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV414 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV416 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV417 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV418 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV419 ( -0 +0 _0 ^1) TPS problem from SETS-THMS
SEV420 ( -0 +0 _0 ^1) Size of disjoint sets' union
SEV421 ( -0 +0 _1 ^0) Correctness of an efficient emptiness check
SEV422 ( -0 +0 _1 ^0) Maintaining correct size when inserting fresh element
SEV423 ( -0 +0 _1 ^0) Maintaining size after inserting any element
SEV424 ( -0 +0 _1 ^0) Allocating and inserting three objects 
SEV425 ( -0 +0 _1 ^0) Allocating and inserting at least three objects
SEV426 ( -0 +0 _1 ^0) Bound on the number of allocated objects in a recursive function
SEV427 ( -0 +0 _0 ^1) If two sets cover a type, a choice function must give an element 
SEV428 ( -0 +0 _0 ^1) If a union is nonempty we can choose a nonempty set in the set.
SEV429 ( -0 +0 _0 ^1) Injective functions f:I->I have left inverses
SEV430 ( -0 +0 _0 ^1) Surjective functions f:I->I have right inverses
SEV431 ( -0 +0 _0 ^1) Injective functions f:A->B have left inverses
SEV432 ( -0 +0 _0 ^1) Surjective functions f:A->B have right inverses
SEV433 ( -0 +0 _0 ^1) There are at most 2 individuals if there is an injection into o
SEV434 ( -0 +0 _0 ^1) There are at most 2 individuals if there is a surjection from o
SEV435 ( -0 +1 _0 ^0) Axioms from the Mizar Mathematical Library
SEV436 ( -1 +0 _0 ^0) Membership and subsets, union, intersection, difference
SEV437 ( -0 +1 _0 ^0) Naive set theory based on Goedel's set theory
SEV438 ( -0 +1 _0 ^0) Order relation (Naive set theory)
SEV439 ( -0 +1 _0 ^0) Ordinal numbers
SEV440 ( -0 +0 _0 ^1) Basic set theory, functions, relations
SEV441 ( -0 +0 _0 ^1) Binary relations
SEV442 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1994, Problem 1
SEV443 ( -0 +0 _0 ^1) International Mathematical Olympiad, 1994, Problem 6
SEV444 ( -0 +0 _0 ^1) EXTENSION
SEV445 ( -0 +0 _0 ^1) IN_UNIV
SEV446 ( -0 +0 _0 ^1) IN_SING
SEV447 ( -0 +0 _0 ^1) NOT_EQUAL_SETS
SEV448 ( -0 +0 _0 ^1) SUBSET_ANTISYM_EQ
SEV449 ( -0 +0 _0 ^1) PSUBSET_SUBSET_TRANS
SEV450 ( -0 +0 _0 ^1) UNION_IDEMPOT
SEV451 ( -0 +0 _0 ^1) UNION_UNIV_
SEV452 ( -0 +0 _0 ^1) INTER_IDEMPOT
SEV453 ( -0 +0 _0 ^1) INTER_UNIV_
SEV454 ( -0 +0 _0 ^1) DISJOINT_UNION
SEV455 ( -0 +0 _0 ^1) DECOMPOSITION
SEV456 ( -0 +0 _0 ^1) INSERT_UNION
SEV457 ( -0 +0 _0 ^1) INSERT_AC_
SEV458 ( -0 +0 _0 ^1) UNION_ACI_
SEV459 ( -0 +0 _0 ^1) DELETE_SUBSET
SEV460 ( -0 +0 _0 ^1) DELETE_INTER
SEV461 ( -0 +0 _0 ^1) EMPTY_UNIONS
SEV462 ( -0 +0 _0 ^1) UNIONS_MONO_IMAGE
SEV463 ( -0 +0 _0 ^1) SUBSET_INTERS
SEV464 ( -0 +0 _0 ^1) IMAGE_o
SEV465 ( -0 +0 _0 ^1) FORALL_IN_IMAGE
SEV466 ( -0 +0 _0 ^1) SURJECTIVE_IMAGE_EQ
SEV467 ( -0 +0 _0 ^1) FORALL_IN_GSPEC_
SEV468 ( -0 +0 _0 ^1) UNIONS_IMAGE
SEV469 ( -0 +0 _0 ^1) IMAGE_INTERS
SEV470 ( -0 +0 _0 ^1) UNIONS_OVER_INTERS
SEV471 ( -0 +0 _0 ^1) BIJECTIVE_ON_LEFT_RIGHT_INVERSE
SEV472 ( -0 +0 _0 ^1) FINITE_RESTRICT
SEV473 ( -0 +0 _0 ^1) FINITE_FINITE_UNIONS
SEV474 ( -0 +0 _0 ^1) INFINITE_IMAGE
SEV475 ( -0 +0 _0 ^1) EXISTS_SUBSET_IMAGE_INJ
SEV476 ( -0 +0 _0 ^1) FINITE_DIFF
SEV477 ( -0 +0 _0 ^1) FINREC_UNIQUE_LEMMA
SEV478 ( -0 +0 _0 ^1) CARD_CLAUSES_
SEV479 ( -0 +0 _0 ^1) HAS_SIZE_SUC
SEV480 ( -0 +0 _0 ^1) CARD_UNION_LE
SEV481 ( -0 +0 _0 ^1) FINITE_PRODUCT
SEV482 ( -0 +0 _0 ^1) FORALL_IN_CROSS
SEV483 ( -0 +0 _0 ^1) CROSS_INTER_
SEV484 ( -0 +0 _0 ^1) CROSS_UNIONS_UNIONS
SEV485 ( -0 +0 _0 ^1) FINITE_BOOL
SEV486 ( -0 +0 _0 ^1) FINITE_NUMSEG_LT
SEV487 ( -0 +0 _0 ^1) PAIRWISE_EMPTY
SEV488 ( -0 +0 _0 ^1) PAIRWISE_CHAIN_UNIONS
SEV489 ( -0 +0 _0 ^1) FORALL_IN_CLAUSES_
SEV490 ( -0 +0 _0 ^1) INJECTIVE_ON_PREIMAGE
SEV491 ( -0 +0 _0 ^1) BIJECTIONS_CARD_EQ
SEV492 ( -0 +0 _0 ^1) SUP_UNIQUE_FINITE
SEV493 ( -0 +0 _0 ^1) INF_FINITE
SEV494 ( -0 +0 _0 ^1) NUMSEG_REC
SEV495 ( -0 +0 _0 ^1) SUPPORT_SUPPORT
SEV496 ( -0 +0 _0 ^1) SUPPORT_CLAUSES_
SEV497 ( -0 +0 _0 ^1) ITERATE_CLAUSES
SEV498 ( -0 +0 _0 ^1) ITERATE_EQ_NEUTRAL
SEV499 ( -0 +0 _0 ^1) ITERATE_EQ_GENERAL
SEV500 ( -0 +0 _0 ^1) ITERATE_OP_GEN
SEV501 ( -0 +0 _0 ^1) NSUM_ADD_GEN
SEV502 ( -0 +0 _0 ^1) NSUM_DELETE
SEV503 ( -0 +0 _0 ^1) NSUM_RESTRICT
SEV504 ( -0 +0 _0 ^1) NSUM_SUBSET_SIMPLE
SEV505 ( -0 +0 _0 ^1) NSUM_UNION_NONZERO
SEV506 ( -0 +0 _0 ^1) NSUM_EQ_0_IFF_NUMSEG
SEV507 ( -0 +0 _0 ^1) SUM_CLAUSES_
SEV508 ( -0 +0 _0 ^1) SUM_LT_ALL
SEV509 ( -0 +0 _0 ^1) SUM_SING
SEV510 ( -0 +0 _0 ^1) SUM_BOUND
SEV511 ( -0 +0 _0 ^1) SUM_SUM_RESTRICT
SEV512 ( -0 +0 _0 ^1) SUM_IMAGE_NONZERO
SEV513 ( -0 +0 _0 ^1) SUM_CASES
SEV514 ( -0 +0 _0 ^1) SUM_POS_LE_NUMSEG
SEV515 ( -0 +1 _0 ^0) The conclusion of Russell's paradox
SEV516 ( -0 +1 _0 ^0) Condition for no universal set
-------------------------------------------------------------------------------
Domain SWB = Semantic Web
204 problems (108 abstract), 0 CNF, 204 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
SWB001 ( -0 +4 _0 ^0) Subgraph Entailment
SWB002 ( -0 +4 _0 ^0) Existential Blank Nodes
SWB003 ( -0 +4 _0 ^0) Blank Nodes for Literals
SWB004 ( -0 +4 _0 ^0) Axiomatic Triples
SWB005 ( -0 +4 _0 ^0) Everything is a Resource
SWB006 ( -0 +4 _0 ^0) Literal Values represented by URIs and Blank Nodes
SWB007 ( -0 +4 _0 ^0) Equal Classes
SWB008 ( -0 +4 _0 ^0) Inverse Functional Data Properties
SWB009 ( -0 +4 _0 ^0) Existential Restriction Entailments
SWB010 ( -0 +4 _0 ^0) Negative Property Assertions
SWB011 ( -0 +4 _0 ^0) Entity Types as Classes
SWB012 ( -0 +4 _0 ^0) Template Class
SWB013 ( -0 +4 _0 ^0) Cliques
SWB014 ( -0 +4 _0 ^0) Harry belongs to some Species
SWB015 ( -0 +4 _0 ^0) Reflective Tautologies I
SWB016 ( -0 +4 _0 ^0) Reflective Tautologies II
SWB017 ( -0 +4 _0 ^0) Built-in Based Definitions
SWB018 ( -0 +4 _0 ^0) Modified Logical Vocabulary Semantics
SWB019 ( -0 +4 _0 ^0) Disjoint Annotation Properties
SWB020 ( -0 +4 _0 ^0) Logical Complications
SWB021 ( -0 +4 _0 ^0) Composite Enumerations
SWB022 ( -0 +4 _0 ^0) List Member Access
SWB023 ( -0 +4 _0 ^0) Unique List Components
SWB024 ( -0 +4 _0 ^0) Cardinality Restrictions on Complex Properties
SWB025 ( -0 +4 _0 ^0) Cyclic Dependencies between Complex Properties
SWB026 ( -0 +4 _0 ^0) Inferred Property Characteristics I
SWB027 ( -0 +4 _0 ^0) Inferred Property Characteristics II
SWB028 ( -0 +4 _0 ^0) Inferred Property Characteristics III
SWB029 ( -0 +4 _0 ^0) Ex Falso Quodlibet
SWB030 ( -0 +4 _0 ^0) Bad Class
SWB031 ( -0 +4 _0 ^0) Large Universe
SWB032 ( -0 +4 _0 ^0) Datatype Relationships
SWB033 ( -0 +1 _0 ^0) Datatype Relationships
SWB034 ( -0 +1 _0 ^0) Datatype Relationships
SWB035 ( -0 +1 _0 ^0) Datatype Relationships
SWB036 ( -0 +1 _0 ^0) OWL Pizzas
SWB037 ( -0 +1 _0 ^0) Class Complement Extensional
SWB038 ( -0 +1 _0 ^0) Class De Morgan
SWB039 ( -0 +1 _0 ^0) Class Intersection Extensional
SWB040 ( -0 +1 _0 ^0) Class Modus Tollens
SWB041 ( -0 +1 _0 ^0) Class Union Extensional
SWB042 ( -0 +1 _0 ^0) Property Chain Extensional
SWB043 ( -0 +1 _0 ^0) Singleton Property Chain As Subsumption
SWB044 ( -0 +1 _0 ^0) Asymmetric Property Extensional
SWB045 ( -0 +1 _0 ^0) Functional Property Extensional
SWB046 ( -0 +1 _0 ^0) Inverse-Functional Property Extensional
SWB047 ( -0 +1 _0 ^0) Functional Inverse Property As Inverse-Functional
SWB048 ( -0 +1 _0 ^0) Irreflexive Property Extensional
SWB049 ( -0 +1 _0 ^0) Reflexive Property Extensional
SWB050 ( -0 +1 _0 ^0) Symmetric Property Extensional
SWB051 ( -0 +1 _0 ^0) Transitive Property Extensional
SWB052 ( -0 +1 _0 ^0) Transitive Irreflexive Property As Asymmetric
SWB053 ( -0 +1 _0 ^0) Empty Class As Sub-Class
SWB054 ( -0 +1 _0 ^0) Universal Class As Super-Class
SWB055 ( -0 +1 _0 ^0) Individual Enumeration Extensional
SWB056 ( -0 +1 _0 ^0) Individual Enumeration Closed
SWB057 ( -0 +1 _0 ^0) Individual Difference Extensional
SWB058 ( -0 +1 _0 ^0) Class Disjointness Extensional
SWB059 ( -0 +1 _0 ^0) Disjoint Class Union Composite
SWB060 ( -0 +1 _0 ^0) Disjoint Class Union As Disjointness
SWB061 ( -0 +1 _0 ^0) Disjoint Class Union As Union
SWB062 ( -0 +1 _0 ^0) Property Disjointness Extensional
SWB063 ( -0 +1 _0 ^0) Class Equivalence Extensional
SWB064 ( -0 +1 _0 ^0) Property Equivalence Extensional
SWB065 ( -0 +1 _0 ^0) Individual Equality Extensional
SWB066 ( -0 +1 _0 ^0) Inverse Property Extensional
SWB067 ( -0 +1 _0 ^0) Double Inverse Property As Equivalence
SWB068 ( -0 +1 _0 ^0) N-Ary Individual Difference Extensional
SWB069 ( -0 +1 _0 ^0) N-Ary Class Disjointness Extensional
SWB070 ( -0 +1 _0 ^0) N-Ary Property Disjointness Extensional
SWB071 ( -0 +1 _0 ^0) Negative Individual Property Assertion Extensional
SWB072 ( -0 +1 _0 ^0) Empty Data Property Extensional Low
SWB073 ( -0 +1 _0 ^0) Empty Data Property As Sub-Property
SWB074 ( -0 +1 _0 ^0) Universal Data Property Extensional Low
SWB075 ( -0 +1 _0 ^0) Universal Data Property As Super-Property
SWB076 ( -0 +1 _0 ^0) Property Range Extensional OWL
SWB077 ( -0 +1 _0 ^0) Property Range Sub-Property OWL
SWB078 ( -0 +1 _0 ^0) Property Range Super-Class OWL
SWB079 ( -0 +1 _0 ^0) Class Subsumption Extensional OWL
SWB080 ( -0 +1 _0 ^0) Property Subsumption Extensional OWL
SWB081 ( -0 +1 _0 ^0) Universal Restriction Comparison By Class
SWB082 ( -0 +1 _0 ^0) Universal Restriction Comparison By Property
SWB083 ( -0 +1 _0 ^0) Universal Restriction Extensional
SWB084 ( -0 +1 _0 ^0) Exact-2-QCR Intensional
SWB085 ( -0 +1 _0 ^0) Exact-2-QCR Extensional
SWB086 ( -0 +1 _0 ^0) Self-Restriction Comparison By Property
SWB087 ( -0 +1 _0 ^0) Self-Restriction Extensional
SWB088 ( -0 +1 _0 ^0) Max-QCR Comparison By Cardinality
SWB089 ( -0 +1 _0 ^0) Max-QCR Comparison By Class
SWB090 ( -0 +1 _0 ^0) Max-QCR Comparison By Property
SWB091 ( -0 +1 _0 ^0) Max-1-QCR Extensional
SWB092 ( -0 +1 _0 ^0) Max-0-QCR Extensional
SWB093 ( -0 +1 _0 ^0) Min-QCR Comparison By Cardinality
SWB094 ( -0 +1 _0 ^0) Min-QCR Comparison By Class
SWB095 ( -0 +1 _0 ^0) Min-QCR Comparison By Property
SWB096 ( -0 +1 _0 ^0) Min-1-QCR Intensional
SWB097 ( -0 +1 _0 ^0) Min-1-QCR Extensional
SWB098 ( -0 +1 _0 ^0) Existential Restriction Comparison By Class
SWB099 ( -0 +1 _0 ^0) Existential Restriction Comparison By Property
SWB100 ( -0 +1 _0 ^0) Existential Restriction Intensional
SWB101 ( -0 +1 _0 ^0) Cardinality Restriction As QCR
SWB102 ( -0 +1 _0 ^0) Data-QCR As Object-QCR
SWB103 ( -0 +1 _0 ^0) Exact-QCR As Min-QCR Max-QCR Intersection
SWB104 ( -0 +1 _0 ^0) Universal Class As Min-QCR Max-QCR Union
SWB105 ( -0 +1 _0 ^0) Universal Existential Restriction Duality
SWB106 ( -0 +1 _0 ^0) Self-Restriction As Existential Restriction
SWB107 ( -0 +1 _0 ^0) Has-Restriction As Existential Restriction
SWB108 ( -0 +1 _0 ^0) Existential Restriction As Min-QCR
-------------------------------------------------------------------------------
Domain SWC = Software Creation
847 problems (424 abstract), 423 CNF, 423 FOF, 0 TFF, 1 THF
-------------------------------------------------------------------------------
SWC001 ( -1 +1 _0 ^0) cond_as_set_x_as_set
SWC002 ( -1 +1 _0 ^0) cond_del_max_x_del_max
SWC003 ( -1 +1 _0 ^0) cond_filter_ne_segment_x_del_max
SWC004 ( -1 +1 _0 ^0) cond_filter_ne_segment_x_filter_some
SWC005 ( -1 +1 _0 ^0) cond_filter_ne_segment_x_tail1
SWC006 ( -1 +1 _0 ^0) cond_filter_segment_x_filter_segment
SWC007 ( -1 +1 _0 ^0) cond_filter_segment_x_initialize
SWC008 ( -1 +1 _0 ^0) cond_filter_segment_x_run_eq_front1
SWC009 ( -1 +1 _0 ^0) cond_filter_segment_x_run_strict_ord_front2
SWC010 ( -1 +1 _0 ^0) cond_filter_some_x_del_max
SWC011 ( -1 +1 _0 ^0) cond_filter_some_x_filter_some
SWC012 ( -1 +1 _0 ^0) cond_filter_some_x_lead
SWC013 ( -1 +1 _0 ^0) cond_head1_x_head1
SWC014 ( -1 +1 _0 ^0) cond_head2_x_head3
SWC015 ( -1 +1 _0 ^0) cond_head3_x_head2
SWC016 ( -1 +1 _0 ^0) cond_id_front_total1_x_id_front_total1
SWC017 ( -1 +1 _0 ^0) cond_id_front_total1_x_ne_segment_front_total2
SWC018 ( -1 +1 _0 ^0) cond_id_front_total1_x_run_eq_front2
SWC019 ( -1 +1 _0 ^0) cond_id_front_total2_x_copy
SWC020 ( -1 +1 _0 ^0) cond_id_front_total2_x_ne_segment_front_total2
SWC021 ( -1 +1 _0 ^0) cond_id_front_total2_x_run_strict_ord_front1
SWC022 ( -1 +1 _0 ^0) cond_id_front_x_head1
SWC023 ( -1 +1 _0 ^0) cond_id_front_x_id_front_total2
SWC024 ( -1 +1 _0 ^0) cond_id_front_x_run_eq_front2
SWC025 ( -1 +1 _0 ^0) cond_id_nil_iff_x_as_set
SWC026 ( -1 +1 _0 ^0) cond_id_nil_iff_x_id_nil_iff
SWC027 ( -1 +1 _0 ^0) cond_id_nil_iff_x_maximal
SWC028 ( -1 +1 _0 ^0) cond_id_nil_iff_x_ne_segment_rear_total2
SWC029 ( -1 +1 _0 ^0) cond_id_nil_iff_x_rot_l_total2
SWC030 ( -1 +1 _0 ^0) cond_id_nil_iff_x_rotate
SWC031 ( -1 +1 _0 ^0) cond_id_nil_iff_x_run_ord_front1
SWC032 ( -1 +1 _0 ^0) cond_id_nil_iff_x_run_strict_ord_front2
SWC033 ( -1 +1 _0 ^0) cond_id_nil_iff_x_set_min_elems
SWC034 ( -1 +1 _0 ^0) cond_id_nil_iff_x_set_unique_elems
SWC035 ( -1 +1 _0 ^0) cond_id_nil_x_copy
SWC036 ( -1 +1 _0 ^0) cond_id_nil_x_id_nil
SWC037 ( -1 +1 _0 ^0) cond_id_nil_x_id_segment_total2
SWC038 ( -1 +1 _0 ^0) cond_id_nil_x_ne_segment_front_total2
SWC039 ( -1 +1 _0 ^0) cond_id_nil_x_pivot
SWC040 ( -1 +1 _0 ^0) cond_id_nil_x_rot_r_total2
SWC041 ( -1 +1 _0 ^0) cond_id_nil_x_run_eq_front2
SWC042 ( -1 +1 _0 ^0) cond_id_nil_x_run_ord_front2
SWC043 ( -1 +1 _0 ^0) cond_id_nil_x_run_strict_ord_front2
SWC044 ( -1 +1 _0 ^0) cond_id_nil_x_segment_rear
SWC045 ( -1 +1 _0 ^0) cond_id_nil_x_set_duplicate_elems
SWC046 ( -1 +1 _0 ^0) cond_id_nil_x_set_unique_elems
SWC047 ( -1 +1 _0 ^0) cond_id_rear_total1_x_copy
SWC048 ( -1 +1 _0 ^0) cond_id_rear_total1_x_ne_segment_rear_total2
SWC049 ( -1 +1 _0 ^0) cond_id_rear_total2_x_ne_segment_rear_total1
SWC050 ( -1 +1 _0 ^0) cond_id_rear_x_id_rear
SWC051 ( -1 +1 _0 ^0) cond_id_rear_x_ne_segment_rear_total1
SWC052 ( -1 +1 _0 ^0) cond_id_segment_total1_x_id_front_total1
SWC053 ( -1 +1 _0 ^0) cond_id_segment_total1_x_id_front_total2
SWC054 ( -1 +1 _0 ^0) cond_id_segment_total1_x_id_segment_total1
SWC055 ( -1 +1 _0 ^0) cond_id_segment_total1_x_maximal
SWC056 ( -1 +1 _0 ^0) cond_id_segment_total1_x_minimal
SWC057 ( -1 +1 _0 ^0) cond_id_segment_total1_x_ne_segment_front_total2
SWC058 ( -1 +1 _0 ^0) cond_id_segment_total1_x_ne_segment_rear_total2
SWC059 ( -1 +1 _0 ^0) cond_id_segment_total1_x_ne_segment_total1
SWC060 ( -1 +1 _0 ^0) cond_id_segment_total1_x_ne_segment_total2
SWC061 ( -1 +1 _0 ^0) cond_id_segment_total1_x_rot_l_total2
SWC062 ( -1 +1 _0 ^0) cond_id_segment_total1_x_rot_l_total3
SWC063 ( -1 +1 _0 ^0) cond_id_segment_total1_x_rot_r_total2
SWC064 ( -1 +1 _0 ^0) cond_id_segment_total1_x_rot_r_total3
SWC065 ( -1 +1 _0 ^0) cond_id_segment_total1_x_run_eq_front2
SWC066 ( -1 +1 _0 ^0) cond_id_segment_total1_x_run_ord_max1
SWC067 ( -1 +1 _0 ^0) cond_id_segment_total1_x_run_strict_ord_max2
SWC068 ( -1 +1 _0 ^0) cond_id_segment_total2_x_double
SWC069 ( -1 +1 _0 ^0) cond_id_segment_total2_x_id_segment_total1
SWC070 ( -1 +1 _0 ^0) cond_id_segment_total2_x_ne_segment_front_total2
SWC071 ( -1 +1 _0 ^0) cond_id_segment_total2_x_pivot
SWC072 ( -1 +1 _0 ^0) cond_id_segment_total2_x_rot_l_total1
SWC073 ( -1 +1 _0 ^0) cond_id_segment_total2_x_rot_r_total1
SWC074 ( -1 +1 _0 ^0) cond_id_segment_total2_x_rot_r_total3
SWC075 ( -1 +1 _0 ^0) cond_id_segment_total2_x_rotate
SWC076 ( -1 +1 _0 ^0) cond_id_segment_total2_x_run_eq_max2
SWC077 ( -1 +1 _0 ^0) cond_id_segment_total2_x_run_strict_ord_front1
SWC078 ( -1 +1 _0 ^0) cond_id_segment_total2_x_some_total2
SWC079 ( -1 +1 _0 ^0) cond_id_segment_x_head1
SWC080 ( -1 +1 _0 ^0) cond_id_segment_x_id_front
SWC081 ( -1 +1 _0 ^0) cond_id_segment_x_id_front_total2
SWC082 ( -1 +1 _0 ^0) cond_id_segment_x_id_segment_total1
SWC083 ( -1 +1 _0 ^0) cond_id_segment_x_insert
SWC084 ( -1 +1 _0 ^0) cond_id_segment_x_maximal
SWC085 ( -1 +1 _0 ^0) cond_id_segment_x_ne_segment_front_total2
SWC086 ( -1 +1 _0 ^0) cond_id_segment_x_ne_segment_total2
SWC087 ( -1 +1 _0 ^0) cond_id_segment_x_rot_l1
SWC088 ( -1 +1 _0 ^0) cond_id_segment_x_rot_l_total3
SWC089 ( -1 +1 _0 ^0) cond_id_segment_x_rot_r_total1
SWC090 ( -1 +1 _0 ^0) cond_id_segment_x_rotate
SWC091 ( -1 +1 _0 ^0) cond_id_segment_x_run_ord_front1
SWC092 ( -1 +1 _0 ^0) cond_id_segment_x_run_strict_ord_front2
SWC093 ( -1 +1 _0 ^0) cond_id_segment_x_some_total1
SWC094 ( -1 +1 _0 ^0) cond_insert_x_copy
SWC095 ( -1 +1 _0 ^0) cond_insert_x_insert
SWC096 ( -1 +1 _0 ^0) cond_last_x_last
SWC097 ( -1 +1 _0 ^0) cond_lead_x_lead
SWC098 ( -1 +1 _0 ^0) cond_maximal_x_maximal
SWC099 ( -1 +1 _0 ^0) cond_ne_segment_front_total1_x_run_eq_front1
SWC100 ( -1 +1 _0 ^0) cond_ne_segment_front_total1_x_run_strict_ord_front2
SWC101 ( -1 +1 _0 ^0) cond_ne_segment_front_total2_x_run_eq_front2
SWC102 ( -1 +1 _0 ^0) cond_ne_segment_front_x_copy
SWC103 ( -1 +1 _0 ^0) cond_ne_segment_front_x_ne_segment_front_total1
SWC104 ( -1 +1 _0 ^0) cond_ne_segment_front_x_run_ord_front2
SWC105 ( -1 +1 _0 ^0) cond_ne_segment_rear_total1_x_ne_segment_rear_total2
SWC106 ( -1 +1 _0 ^0) cond_ne_segment_rear_x_last
SWC107 ( -1 +1 _0 ^0) cond_ne_segment_total1_x_maximal
SWC108 ( -1 +1 _0 ^0) cond_ne_segment_total1_x_ne_segment_rear_total2
SWC109 ( -1 +1 _0 ^0) cond_ne_segment_total1_x_pivot
SWC110 ( -1 +1 _0 ^0) cond_ne_segment_total1_x_run_eq_front2
SWC111 ( -1 +1 _0 ^0) cond_ne_segment_total1_x_run_ord_max1
SWC112 ( -1 +1 _0 ^0) cond_ne_segment_total1_x_run_strict_ord_max2
SWC113 ( -1 +1 _0 ^0) cond_ne_segment_total1_x_some_total2
SWC114 ( -1 +1 _0 ^0) cond_ne_segment_total2_x_maximal
SWC115 ( -1 +1 _0 ^0) cond_ne_segment_total2_x_minimal
SWC116 ( -1 +1 _0 ^0) cond_ne_segment_total2_x_ne_segment_total1
SWC117 ( -1 +1 _0 ^0) cond_ne_segment_total2_x_run_eq_max1
SWC118 ( -1 +1 _0 ^0) cond_ne_segment_total2_x_run_ord_max2
SWC119 ( -1 +1 _0 ^0) cond_ne_segment_total2_x_some_total1
SWC120 ( -1 +1 _0 ^0) cond_ne_segment_x_head2
SWC121 ( -1 +1 _0 ^0) cond_ne_segment_x_ne_segment
SWC122 ( -1 +1 _0 ^0) cond_ne_segment_x_ne_segment_rear_total1
SWC123 ( -1 +1 _0 ^0) cond_ne_segment_x_run_eq_front1
SWC124 ( -1 +1 _0 ^0) cond_ne_segment_x_run_ord_front2
SWC125 ( -1 +1 _0 ^0) cond_ne_segment_x_run_strict_ord_max1
SWC126 ( -1 +1 _0 ^0) cond_ne_segment_x_some1
SWC127 ( -1 +1 _0 ^0) cond_ne_segment_x_some_total3
SWC128 ( -1 +1 _0 ^0) cond_pr_works_always_x_filter_segment
SWC129 ( -1 +1 _0 ^0) cond_pr_works_on_cycles_x_dup_tos
SWC130 ( -1 +1 _0 ^0) cond_pr_works_on_cycles_x_head1
SWC131 ( -1 +1 _0 ^0) cond_pr_works_on_cycles_x_ne_segment_rear
SWC132 ( -1 +1 _0 ^0) cond_pr_works_on_cycles_x_rot_l2
SWC133 ( -1 +1 _0 ^0) cond_pr_works_on_cycles_x_rot_r2
SWC134 ( -1 +1 _0 ^0) cond_pr_works_on_cycles_x_segment_rear_ne
SWC135 ( -1 +1 _0 ^0) cond_pr_works_on_cycles_x_tail2
SWC136 ( -1 +1 _0 ^0) cond_pr_works_on_nonempty_x_del_max
SWC137 ( -1 +1 _0 ^0) cond_pr_works_on_nonempty_x_greatest
SWC138 ( -1 +1 _0 ^0) cond_pr_works_on_nonempty_x_id_front
SWC139 ( -1 +1 _0 ^0) cond_pr_works_on_nonempty_x_id_rear
SWC140 ( -1 +1 _0 ^0) cond_pr_works_on_nonempty_x_lead
SWC141 ( -1 +1 _0 ^0) cond_pr_works_on_nonempty_x_rot_l1
SWC142 ( -1 +1 _0 ^0) cond_pr_works_on_nonempty_x_rot_r1
SWC143 ( -1 +1 _0 ^0) cond_pr_works_on_nonempty_x_tail1
SWC144 ( -1 +1 _0 ^0) cond_pr_works_on_pairs_x_filter_ne_segment
SWC145 ( -1 +1 _0 ^0) cond_pr_works_on_pairs_x_head2
SWC146 ( -1 +1 _0 ^0) cond_pr_works_on_pairs_x_id_segment
SWC147 ( -1 +1 _0 ^0) cond_pr_works_on_pairs_x_ne_segment
SWC148 ( -1 +1 _0 ^0) cond_pr_works_on_pairs_x_smallest
SWC149 ( -1 +1 _0 ^0) cond_pr_works_on_pairs_x_swap_ends
SWC150 ( -1 +1 _0 ^0) cond_pr_works_on_pairs_x_tail1
SWC151 ( -1 +1 _0 ^0) cond_pr_works_on_total_ord_x_pr_works_on_total_ord
SWC152 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_maximal
SWC153 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_pst_cyc_sorted
SWC154 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_pst_equal1
SWC155 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_pst_sorted2
SWC156 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_run_eq_front1
SWC157 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_run_eq_max2
SWC158 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_run_ord_front2
SWC159 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_run_ord_max2
SWC160 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_run_strict_ord_front2
SWC161 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_run_strict_ord_max2
SWC162 ( -1 +1 _0 ^0) cond_pst_cyc_sorted_x_some_total3
SWC163 ( -1 +1 _0 ^0) cond_pst_diff_adj1_x_maximal
SWC164 ( -1 +1 _0 ^0) cond_pst_diff_adj1_x_minimal
SWC165 ( -1 +1 _0 ^0) cond_pst_diff_adj1_x_pivot
SWC166 ( -1 +1 _0 ^0) cond_pst_diff_adj1_x_pst_singleton
SWC167 ( -1 +1 _0 ^0) cond_pst_diff_adj1_x_run_strict_ord_front2
SWC168 ( -1 +1 _0 ^0) cond_pst_diff_adj1_x_run_strict_ord_max2
SWC169 ( -1 +1 _0 ^0) cond_pst_diff_adj1_x_some_total2
SWC170 ( -1 +1 _0 ^0) cond_pst_diff_adj1_x_some_total3
SWC171 ( -1 +1 _0 ^0) cond_pst_diff_adj2_x_maximal
SWC172 ( -1 +1 _0 ^0) cond_pst_diff_adj2_x_minimal
SWC173 ( -1 +1 _0 ^0) cond_pst_diff_adj2_x_pivot
SWC174 ( -1 +1 _0 ^0) cond_pst_diff_adj2_x_pst_singleton
SWC175 ( -1 +1 _0 ^0) cond_pst_diff_adj2_x_run_strict_ord_front2
SWC176 ( -1 +1 _0 ^0) cond_pst_diff_adj2_x_run_strict_ord_max2
SWC177 ( -1 +1 _0 ^0) cond_pst_diff_adj2_x_some_total2
SWC178 ( -1 +1 _0 ^0) cond_pst_diff_adj2_x_some_total3
SWC179 ( -1 +1 _0 ^0) cond_pst_different2_x_pivot
SWC180 ( -1 +1 _0 ^0) cond_pst_different2_x_pst_strict_sorted2
SWC181 ( -1 +1 _0 ^0) cond_pst_different2_x_run_strict_ord_max2
SWC182 ( -1 +1 _0 ^0) cond_pst_different3_x_initialize
SWC183 ( -1 +1 _0 ^0) cond_pst_different3_x_maximal
SWC184 ( -1 +1 _0 ^0) cond_pst_different3_x_minimal
SWC185 ( -1 +1 _0 ^0) cond_pst_different3_x_pst_different3
SWC186 ( -1 +1 _0 ^0) cond_pst_different3_x_run_strict_ord_front1
SWC187 ( -1 +1 _0 ^0) cond_pst_different3_x_some_total2
SWC188 ( -1 +1 _0 ^0) cond_pst_equal1_x_minimal
SWC189 ( -1 +1 _0 ^0) cond_pst_equal1_x_pst_equal1
SWC190 ( -1 +1 _0 ^0) cond_pst_equal1_x_pst_equal3
SWC191 ( -1 +1 _0 ^0) cond_pst_equal1_x_run_eq_front1
SWC192 ( -1 +1 _0 ^0) cond_pst_equal1_x_some_total2
SWC193 ( -1 +1 _0 ^0) cond_pst_equal1_x_some_total3
SWC194 ( -1 +1 _0 ^0) cond_pst_equal2_x_pst_equal1
SWC195 ( -1 +1 _0 ^0) cond_pst_equal2_x_run_eq_front1
SWC196 ( -1 +1 _0 ^0) cond_pst_equal2_x_run_eq_front2
SWC197 ( -1 +1 _0 ^0) cond_pst_equal2_x_some_total3
SWC198 ( -1 +1 _0 ^0) cond_pst_equal3_x_maximal
SWC199 ( -1 +1 _0 ^0) cond_pst_equal3_x_pst_equal2
SWC200 ( -1 +1 _0 ^0) cond_pst_equal3_x_pst_singleton
SWC201 ( -1 +1 _0 ^0) cond_pst_equal3_x_run_eq_max1
SWC202 ( -1 +1 _0 ^0) cond_pst_equal3_x_run_eq_max2
SWC203 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_copy
SWC204 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_head2
SWC205 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_id_nil_iff
SWC206 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_id_segment_total1
SWC207 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_maximal
SWC208 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_ne_segment_front_total2
SWC209 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_ne_segment_total2
SWC210 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_pst_singleton_ne
SWC211 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_rot_l_total3
SWC212 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_rot_r_total3
SWC213 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_run_eq_max2
SWC214 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_run_strict_ord_front1
SWC215 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_set_max_elems
SWC216 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_set_min_elems
SWC217 ( -1 +1 _0 ^0) cond_pst_not_nil_ne_x_some_total1
SWC218 ( -1 +1 _0 ^0) cond_pst_not_nil_x_insert_some
SWC219 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_minimal
SWC220 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_pst_pivoted1
SWC221 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_pst_pivoted2
SWC222 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_pst_pivoted3
SWC223 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_pst_sorted2
SWC224 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_run_eq_front2
SWC225 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_run_eq_max2
SWC226 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_run_ord_front2
SWC227 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_run_ord_max2
SWC228 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_run_strict_ord_front2
SWC229 ( -1 +1 _0 ^0) cond_pst_pivoted1_x_some_total3
SWC230 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_pst_equal1
SWC231 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_pst_pivoted1
SWC232 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_pst_pivoted3
SWC233 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_pst_strict_sorted2
SWC234 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_run_eq_front2
SWC235 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_run_eq_max2
SWC236 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_run_ord_max2
SWC237 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_run_strict_ord_front2
SWC238 ( -1 +1 _0 ^0) cond_pst_pivoted2_x_run_strict_ord_max2
SWC239 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_maximal
SWC240 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_pst_equal3
SWC241 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_pst_pivoted1
SWC242 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_pst_pivoted3
SWC243 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_pst_sorted1
SWC244 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_run_eq_front1
SWC245 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_run_eq_front2
SWC246 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_run_eq_max2
SWC247 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_run_ord_front1
SWC248 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_run_ord_max2
SWC249 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_run_strict_ord_front1
SWC250 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_run_strict_ord_front2
SWC251 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_run_strict_ord_max2
SWC252 ( -1 +1 _0 ^0) cond_pst_pivoted3_x_some_total2
SWC253 ( -1 +1 _0 ^0) cond_pst_singleton_ne_x_head2
SWC254 ( -1 +1 _0 ^0) cond_pst_singleton_ne_x_last
SWC255 ( -1 +1 _0 ^0) cond_pst_singleton_ne_x_pst_singleton_ne
SWC256 ( -1 +1 _0 ^0) cond_pst_singleton_ne_x_some_total2
SWC257 ( -1 +1 _0 ^0) cond_pst_sorted1_x_maximal
SWC258 ( -1 +1 _0 ^0) cond_pst_sorted1_x_minimal
SWC259 ( -1 +1 _0 ^0) cond_pst_sorted1_x_pivot
SWC260 ( -1 +1 _0 ^0) cond_pst_sorted1_x_pst_equal1
SWC261 ( -1 +1 _0 ^0) cond_pst_sorted1_x_pst_equal3
SWC262 ( -1 +1 _0 ^0) cond_pst_sorted1_x_pst_sorted1
SWC263 ( -1 +1 _0 ^0) cond_pst_sorted1_x_pst_sorted2
SWC264 ( -1 +1 _0 ^0) cond_pst_sorted1_x_pst_strict_sorted1
SWC265 ( -1 +1 _0 ^0) cond_pst_sorted1_x_pst_strict_sorted2
SWC266 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_eq
SWC267 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_eq_front1
SWC268 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_eq_max1
SWC269 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_ord_front1
SWC270 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_strict_ord
SWC271 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_strict_ord_front1
SWC272 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_strict_ord_front2
SWC273 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_strict_ord_max1
SWC274 ( -1 +1 _0 ^0) cond_pst_sorted1_x_run_strict_ord_max2
SWC275 ( -1 +1 _0 ^0) cond_pst_sorted1_x_some_total1
SWC276 ( -1 +1 _0 ^0) cond_pst_sorted1_x_some_total2
SWC277 ( -1 +1 _0 ^0) cond_pst_sorted1_x_some_total3
SWC278 ( -1 +1 _0 ^0) cond_pst_sorted2_x_pst_equal1
SWC279 ( -1 +1 _0 ^0) cond_pst_sorted2_x_pst_sorted2
SWC280 ( -1 +1 _0 ^0) cond_pst_sorted2_x_run_eq_front2
SWC281 ( -1 +1 _0 ^0) cond_pst_sorted2_x_run_ord_front2
SWC282 ( -1 +1 _0 ^0) cond_pst_sorted2_x_run_ord_max2
SWC283 ( -1 +1 _0 ^0) cond_pst_sorted2_x_run_strict_ord_front2
SWC284 ( -1 +1 _0 ^0) cond_pst_sorted2_x_some_total1
SWC285 ( -1 +1 _0 ^0) cond_pst_sorted2_x_some_total3
SWC286 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_maximal
SWC287 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_minimal
SWC288 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_pivot
SWC289 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_pst_strict_sorted1
SWC290 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_pst_strict_sorted2
SWC291 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_run_strict_ord_max1
SWC292 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_some_total1
SWC293 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_some_total2
SWC294 ( -1 +1 _0 ^0) cond_pst_strict_sorted1_x_some_total3
SWC295 ( -1 +1 _0 ^0) cond_pst_strict_sorted2_x_maximal
SWC296 ( -1 +1 _0 ^0) cond_pst_strict_sorted2_x_run_strict_ord
SWC297 ( -1 +1 _0 ^0) cond_pst_strict_sorted2_x_some_total1
SWC298 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_minimal
SWC299 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_pivot
SWC300 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_pst_sorted1
SWC301 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_run_eq
SWC302 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_run_ord
SWC303 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_run_ord_front2
SWC304 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_run_ord_max2
SWC305 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_run_strict_ord_front1
SWC306 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_some_total2
SWC307 ( -1 +1 _0 ^0) cond_pst_top_sorted_x_some_total3
SWC308 ( -1 +1 _0 ^0) cond_rot_l1_x_rot_l_total3
SWC309 ( -1 +1 _0 ^0) cond_rot_l2_x_rot_l_total3
SWC310 ( -1 +1 _0 ^0) cond_rot_l_total1_x_rot_l_total2
SWC311 ( -1 +1 _0 ^0) cond_rot_l_total2_x_rot_l_total1
SWC312 ( -1 +1 _0 ^0) cond_rot_l_total2_x_rot_l_total2
SWC313 ( -1 +1 _0 ^0) cond_rot_l_total2_x_rot_l_total3
SWC314 ( -1 +1 _0 ^0) cond_rot_l_total3_x_rot_l_total1
SWC315 ( -1 +1 _0 ^0) cond_rot_l_total3_x_rot_l_total2
SWC316 ( -1 +1 _0 ^0) cond_rot_r1_x_rot_r2
SWC317 ( -1 +1 _0 ^0) cond_rot_r2_x_rot_r2
SWC318 ( -1 +1 _0 ^0) cond_rot_r2_x_rot_r_total3
SWC319 ( -1 +1 _0 ^0) cond_rot_r_total1_x_rot_r_total3
SWC320 ( -1 +1 _0 ^0) cond_rot_r_total2_x_rot_r_total2
SWC321 ( -1 +1 _0 ^0) cond_rot_r_total2_x_rot_r_total3
SWC322 ( -1 +1 _0 ^0) cond_rot_r_total3_x_rot_r_total3
SWC323 ( -1 +1 _0 ^0) cond_rotate_x_rot_l_total2
SWC324 ( -1 +1 _0 ^0) cond_rotate_x_rot_l_total3
SWC325 ( -1 +1 _0 ^0) cond_rotate_x_rot_r_total2
SWC326 ( -1 +1 _0 ^0) cond_run_eq_front2_x_run_eq_front1
SWC327 ( -1 +1 _0 ^0) cond_run_eq_front2_x_run_eq_front2
SWC328 ( -1 +1 _0 ^0) cond_run_eq_x_initialize
SWC329 ( -1 +1 _0 ^0) cond_run_eq_x_maximal
SWC330 ( -1 +1 _0 ^0) cond_run_eq_x_pivot
SWC331 ( -1 +1 _0 ^0) cond_run_eq_x_run_eq_front2
SWC332 ( -1 +1 _0 ^0) cond_run_eq_x_some_total3
SWC333 ( -1 +1 _0 ^0) cond_run_ord_max1_x_run_ord_max1
SWC334 ( -1 +1 _0 ^0) cond_run_ord_max1_x_run_ord_max2
SWC335 ( -1 +1 _0 ^0) cond_run_ord_x_minimal
SWC336 ( -1 +1 _0 ^0) cond_run_ord_x_pivot
SWC337 ( -1 +1 _0 ^0) cond_run_ord_x_run_eq
SWC338 ( -1 +1 _0 ^0) cond_run_ord_x_run_eq_max2
SWC339 ( -1 +1 _0 ^0) cond_run_ord_x_run_ord_max2
SWC340 ( -1 +1 _0 ^0) cond_run_ord_x_run_strict_ord
SWC341 ( -1 +1 _0 ^0) cond_run_ord_x_some_total1
SWC342 ( -1 +1 _0 ^0) cond_run_ord_x_some_total2
SWC343 ( -1 +1 _0 ^0) cond_run_strict_ord_front2_x_run_strict_ord_front2
SWC344 ( -1 +1 _0 ^0) cond_run_strict_ord_max2_x_run_strict_ord_max2
SWC345 ( -1 +1 _0 ^0) cond_run_strict_ord_x_maximal
SWC346 ( -1 +1 _0 ^0) cond_run_strict_ord_x_pivot
SWC347 ( -1 +1 _0 ^0) cond_run_strict_ord_x_run_strict_ord_front2
SWC348 ( -1 +1 _0 ^0) cond_run_strict_ord_x_some_total3
SWC349 ( -1 +1 _0 ^0) cond_segment_front_ne_x_initialize
SWC350 ( -1 +1 _0 ^0) cond_segment_front_ne_x_run_eq_front1
SWC351 ( -1 +1 _0 ^0) cond_segment_front_ne_x_run_strict_ord_front2
SWC352 ( -1 +1 _0 ^0) cond_segment_front_x_ne_segment_front_total1
SWC353 ( -1 +1 _0 ^0) cond_segment_front_x_run_ord_front2
SWC354 ( -1 +1 _0 ^0) cond_segment_ne_x_head1
SWC355 ( -1 +1 _0 ^0) cond_segment_ne_x_lead
SWC356 ( -1 +1 _0 ^0) cond_segment_ne_x_minimal
SWC357 ( -1 +1 _0 ^0) cond_segment_ne_x_ne_segment_front_total2
SWC358 ( -1 +1 _0 ^0) cond_segment_ne_x_ne_segment_total2
SWC359 ( -1 +1 _0 ^0) cond_segment_ne_x_run_eq_max1
SWC360 ( -1 +1 _0 ^0) cond_segment_ne_x_run_ord_max1
SWC361 ( -1 +1 _0 ^0) cond_segment_ne_x_run_strict_ord_max1
SWC362 ( -1 +1 _0 ^0) cond_segment_ne_x_segment_ne
SWC363 ( -1 +1 _0 ^0) cond_segment_ne_x_some_total1
SWC364 ( -1 +1 _0 ^0) cond_segment_ne_x_tail3
SWC365 ( -1 +1 _0 ^0) cond_segment_rear_ne_x_ne_segment_rear_total1
SWC366 ( -1 +1 _0 ^0) cond_segment_rear_ne_x_tail2
SWC367 ( -1 +1 _0 ^0) cond_segment_rear_x_ne_segment_rear_total2
SWC368 ( -1 +1 _0 ^0) cond_segment_x_minimal
SWC369 ( -1 +1 _0 ^0) cond_segment_x_ne_segment_total1
SWC370 ( -1 +1 _0 ^0) cond_segment_x_run_eq_front2
SWC371 ( -1 +1 _0 ^0) cond_segment_x_run_ord_front2
SWC372 ( -1 +1 _0 ^0) cond_segment_x_run_strict_ord_front2
SWC373 ( -1 +1 _0 ^0) cond_segment_x_segment_rear
SWC374 ( -1 +1 _0 ^0) cond_segment_x_some_total2
SWC375 ( -1 +1 _0 ^0) cond_set_eq_x_copy
SWC376 ( -1 +1 _0 ^0) cond_set_eq_x_rot_r_total1
SWC377 ( -1 +1 _0 ^0) cond_set_eq_x_rot_r_total2
SWC378 ( -1 +1 _0 ^0) cond_set_eq_x_rotate
SWC379 ( -1 +1 _0 ^0) cond_set_min_elems_x_set_min_elems
SWC380 ( -1 +1 _0 ^0) cond_some1_x_head3
SWC381 ( -1 +1 _0 ^0) cond_some1_x_some1
SWC382 ( -1 +1 _0 ^0) cond_some2_x_head1
SWC383 ( -1 +1 _0 ^0) cond_some2_x_maximal
SWC384 ( -1 +1 _0 ^0) cond_some2_x_pivot
SWC385 ( -1 +1 _0 ^0) cond_some2_x_some_total3
SWC386 ( -1 +1 _0 ^0) cond_some_total1_x_some_total2
SWC387 ( -1 +1 _0 ^0) cond_some_total2_x_some_total1
SWC388 ( -1 +1 _0 ^0) cond_some_total2_x_some_total3
SWC389 ( -1 +1 _0 ^0) cond_some_total3_x_pivot
SWC390 ( -1 +1 _0 ^0) cond_some_total3_x_some_total1
SWC391 ( -1 +1 _0 ^0) cond_subst_x_copy
SWC392 ( -1 +1 _0 ^0) cond_subst_x_minimal
SWC393 ( -1 +1 _0 ^0) cond_subst_x_ne_segment_total1
SWC394 ( -1 +1 _0 ^0) cond_subst_x_ne_segment_total2
SWC395 ( -1 +1 _0 ^0) cond_subst_x_rot_l_total1
SWC396 ( -1 +1 _0 ^0) cond_subst_x_rot_r_total1
SWC397 ( -1 +1 _0 ^0) cond_subst_x_rot_r_total2
SWC398 ( -1 +1 _0 ^0) cond_subst_x_run_eq_front2
SWC399 ( -1 +1 _0 ^0) cond_subst_x_run_eq_max2
SWC400 ( -1 +1 _0 ^0) cond_subst_x_run_ord
SWC401 ( -1 +1 _0 ^0) cond_subst_x_run_ord_max1
SWC402 ( -1 +1 _0 ^0) cond_subst_x_run_ord_max2
SWC403 ( -1 +1 _0 ^0) cond_subst_x_run_strict_ord_max1
SWC404 ( -1 +1 _0 ^0) cond_subst_x_run_strict_ord_max2
SWC405 ( -1 +1 _0 ^0) cond_subst_x_set_eq
SWC406 ( -1 +1 _0 ^0) cond_subst_x_set_min_elems
SWC407 ( -1 +1 _0 ^0) cond_subst_x_some_total2
SWC408 ( -1 +1 _0 ^0) cond_superst_x_double
SWC409 ( -1 +1 _0 ^0) cond_superst_x_rot_l_total3
SWC410 ( -1 +1 _0 ^0) cond_superst_x_rot_r_total1
SWC411 ( -1 +1 _0 ^0) cond_superst_x_superst
SWC412 ( -1 +1 _0 ^0) cond_swap_ends_x_swap_ends
SWC413 ( -1 +1 _0 ^0) cond_swap_tos_x_swap_tos
SWC414 ( -1 +1 _0 ^0) cond_swap_x_swap_tos
SWC415 ( -1 +1 _0 ^0) cond_tail1_x_tail1
SWC416 ( -1 +1 _0 ^0) cond_tail2_x_tail3
SWC417 ( -1 +1 _0 ^0) cond_turn_x_rot_l2
SWC418 ( -1 +1 _0 ^0) cond_turn_x_rot_l_total1
SWC419 ( -1 +1 _0 ^0) cond_turn_x_rot_l_total2
SWC420 ( -1 +1 _0 ^0) cond_turn_x_rot_l_total3
SWC421 ( -1 +1 _0 ^0) cond_turn_x_rot_r_total1
SWC422 ( -1 +1 _0 ^0) cond_turn_x_turn
SWC423 ( -1 +1 _0 ^0) List specification
SWC425 ( -0 +0 _0 ^1) Conflict detection of 2 conceptual schemata (e.g. UML-schemata)
-------------------------------------------------------------------------------
Domain SWV = Software Verification
1450 problems (998 abstract), 1003 CNF, 346 FOF, 54 TFF, 47 THF
-------------------------------------------------------------------------------
SWV001 ( -1 +0 _0 ^0) PV1
SWV002 ( -1 +0 _0 ^0) E1
SWV003 ( -1 +0 _0 ^0) E2
SWV004 ( -1 +0 _0 ^0) E3
SWV005 ( -1 +0 _0 ^0) E4
SWV006 ( -1 +0 _0 ^0) E5
SWV007 ( -1 +0 _0 ^0) E6
SWV008 ( -1 +0 _0 ^0) E7
SWV009 ( -1 +0 _0 ^0) A condition from Hoare's FIND program
SWV010 ( -1 +1 _0 ^1) Fact 1 of the Neumann-Stubblebine analysis
SWV011 ( -1 +1 _0 ^0) Fact 2 of the Neumann-Stubblebine analysis
SWV012 ( -1 +1 _0 ^0) Fact 3 of the Neumann-Stubblebine analysis
SWV013 ( -1 +1 _0 ^0) Fact 5 of the Neumann-Stubblebine analysis
SWV014 ( -1 +1 _0 ^0) Fact 6 of the Neumann-Stubblebine analysis
SWV015 ( -1 +1 _0 ^0) Fact 7 of the Neumann-Stubblebine analysis
SWV016 ( -1 +1 _0 ^0) Fact 7 of the Neumann-Stubblebine analysis
SWV017 ( -1 +1 _0 ^0) Fact 8 of the Neumann-Stubblebine analysis
SWV018 ( -1 +1 _0 ^0) Fact 8 of the Neumann-Stubblebine analysis
SWV019 ( -1 +0 _0 ^0) Maximal array element
SWV020 ( -1 +0 _0 ^0) Program verification axioms
SWV021 ( -1 +0 _0 ^0) Show that the add function is commutative.
SWV022 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0001
SWV023 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0005
SWV024 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0009
SWV025 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0013
SWV026 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0017
SWV027 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0021
SWV028 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0025
SWV029 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0029
SWV030 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0033
SWV031 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0037
SWV032 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0041
SWV033 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0045
SWV034 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0049
SWV035 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0053
SWV036 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0057
SWV037 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0061
SWV038 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0065
SWV039 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0069
SWV040 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0073
SWV041 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0077
SWV042 ( -0 +1 _0 ^0) Unsimplified proof obligation gauss_init_0081
SWV043 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0001
SWV044 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0004
SWV045 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0007
SWV046 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0010
SWV047 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0013
SWV048 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0016
SWV049 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0019
SWV050 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0022
SWV051 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0025
SWV052 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0028
SWV053 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0031
SWV054 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0034
SWV055 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0037
SWV056 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0040
SWV057 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0043
SWV058 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0046
SWV059 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_norm_0049
SWV060 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0001
SWV061 ( -0 +1 _0 ^1) Unsimplified proof obligation cl5_nebula_array_0002
SWV062 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0003
SWV063 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0004
SWV064 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0005
SWV065 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0006
SWV066 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0007
SWV067 ( -0 +1 _0 ^1) Unsimplified proof obligation cl5_nebula_array_0008
SWV068 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0009
SWV069 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0010
SWV070 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0011
SWV071 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0012
SWV072 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0013
SWV073 ( -0 +1 _0 ^1) Unsimplified proof obligation cl5_nebula_array_0014
SWV074 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0015
SWV075 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0016
SWV076 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0017
SWV077 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0018
SWV078 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0019
SWV079 ( -0 +1 _0 ^1) Unsimplified proof obligation cl5_nebula_array_0020
SWV080 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0021
SWV081 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0022
SWV082 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0023
SWV083 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0024
SWV084 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0025
SWV085 ( -0 +1 _0 ^1) Unsimplified proof obligation cl5_nebula_array_0026
SWV086 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0027
SWV087 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0028
SWV088 ( -0 +1 _0 ^0) Unsimplified proof obligation cl5_nebula_array_0029
SWV089 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0001
SWV090 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0002
SWV091 ( -0 +1 _0 ^1) Unsimplified proof obligation quaternion_ds1_inuse_0003
SWV092 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0004
SWV093 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0005
SWV094 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0006
SWV095 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0007
SWV096 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0008
SWV097 ( -0 +1 _0 ^1) Unsimplified proof obligation quaternion_ds1_inuse_0009
SWV098 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0010
SWV099 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0011
SWV100 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0012
SWV101 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0013
SWV102 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0014
SWV103 ( -0 +1 _0 ^1) Unsimplified proof obligation quaternion_ds1_inuse_0015
SWV104 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0016
SWV105 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0017
SWV106 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_inuse_0018
SWV107 ( -0 +1 _0 ^1) Unsimplified proof obligation quaternion_ds1_inuse_0019
SWV108 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0001
SWV109 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0002
SWV110 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0003
SWV111 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0004
SWV112 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0005
SWV113 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0006
SWV114 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0007
SWV115 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0008
SWV116 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0009
SWV117 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0010
SWV118 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0011
SWV119 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0012
SWV120 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0013
SWV121 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0014
SWV122 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0015
SWV123 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0016
SWV124 ( -0 +1 _0 ^0) Unsimplified proof obligation quaternion_ds1_symm_0017
SWV125 ( -0 +1 _0 ^0) Unsimplified proof obligation thruster_array_0001
SWV126 ( -0 +1 _0 ^0) Unsimplified proof obligation thruster_init_0001
SWV127 ( -0 +1 _0 ^0) Unsimplified proof obligation thruster_init_0002
SWV128 ( -0 +1 _0 ^0) Unsimplified proof obligation thruster_inuse_0001
SWV129 ( -0 +1 _0 ^0) Unsimplified proof obligation thruster_inuse_0002
SWV130 ( -0 +1 _0 ^0) Unsimplified proof obligation thruster_symm_0001
SWV131 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0001
SWV132 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0002
SWV133 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0003
SWV134 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0004
SWV135 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0005
SWV136 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0006
SWV137 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0007
SWV138 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0008
SWV139 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0009
SWV140 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0010
SWV141 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0011
SWV142 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0012
SWV143 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0013
SWV144 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0014
SWV145 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0015
SWV146 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0016
SWV147 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0017
SWV148 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0018
SWV149 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0019
SWV150 ( -0 +1 _0 ^0) Simplified proof obligation gauss_array_0020
SWV151 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0001
SWV152 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0002
SWV153 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0003
SWV154 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0004
SWV155 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0005
SWV156 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0006
SWV157 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0007
SWV158 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0008
SWV159 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0009
SWV160 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0010
SWV161 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0011
SWV162 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0012
SWV163 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0013
SWV164 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_norm_0014
SWV165 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0001
SWV166 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0006
SWV167 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0011
SWV168 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0016
SWV169 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0021
SWV170 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0026
SWV171 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0031
SWV172 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0036
SWV173 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0041
SWV174 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0046
SWV175 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0051
SWV176 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0056
SWV177 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0061
SWV178 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0066
SWV179 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0071
SWV180 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0076
SWV181 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0081
SWV182 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0086
SWV183 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0091
SWV184 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0096
SWV185 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0101
SWV186 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0106
SWV187 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0111
SWV188 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0116
SWV189 ( -0 +1 _0 ^0) Simplified proof obligation cl5_nebula_init_0121
SWV190 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0001
SWV191 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0002
SWV192 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0003
SWV193 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0004
SWV194 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0005
SWV195 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0006
SWV196 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0007
SWV197 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0008
SWV198 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0009
SWV199 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0010
SWV200 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0011
SWV201 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0012
SWV202 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0013
SWV203 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0014
SWV204 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0015
SWV205 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0016
SWV206 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0017
SWV207 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0018
SWV208 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0019
SWV209 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0020
SWV210 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_inuse_0021
SWV211 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0001
SWV212 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0041
SWV213 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0081
SWV214 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0121
SWV215 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0161
SWV216 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0201
SWV217 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0241
SWV218 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0281
SWV219 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0321
SWV220 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0361
SWV221 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0401
SWV222 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0441
SWV223 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0481
SWV224 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0521
SWV225 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0561
SWV226 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0601
SWV227 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0641
SWV228 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0681
SWV229 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0721
SWV230 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0761
SWV231 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0801
SWV232 ( -0 +1 _0 ^0) Simplified proof obligation quaternion_ds1_symm_0841
SWV233 ( -0 +1 _0 ^0) Protocol attack problem
SWV234 ( -0 +2 _0 ^0) XOR typecast attack on the 4758 CCA API
SWV235 ( -0 +1 _0 ^0) XOR import/export attack on the 4758 CCA API
SWV236 ( -0 +1 _0 ^0) IBM's known exporter attack on the 4758 CCA API
SWV237 ( -0 +1 _0 ^0) Visa Security Module (VSM) attack
SWV238 ( -0 +1 _0 ^0) Visa Security Module (VSM) attack denied
SWV239 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV240 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV241 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV242 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV243 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV244 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV245 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV246 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV247 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV248 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV249 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV250 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV251 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV252 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV253 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV254 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV255 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV256 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV257 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV258 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV259 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV260 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV261 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV262 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV263 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV264 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV265 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV266 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV267 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV268 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV269 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV270 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV271 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV272 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV273 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV274 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV275 ( -2 +0 _0 ^0) Cryptographic protocol problem for messages
SWV276 ( -2 +0 _0 ^0) Cryptographic protocol problem for events
SWV277 ( -2 +0 _0 ^0) Cryptographic protocol problem for events
SWV278 ( -2 +0 _0 ^0) Cryptographic protocol problem for events
SWV279 ( -2 +0 _0 ^0) Cryptographic protocol problem for public
SWV280 ( -2 +0 _0 ^0) Cryptographic protocol problem for public
SWV281 ( -2 +0 _0 ^0) Cryptographic protocol problem for public
SWV282 ( -2 +0 _0 ^0) Cryptographic protocol problem for public
SWV283 ( -2 +0 _0 ^0) Cryptographic protocol problem for public
SWV284 ( -2 +0 _0 ^0) Cryptographic protocol problem for shared
SWV286 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV287 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV288 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV289 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV290 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV291 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV292 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV293 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV294 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV295 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV296 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV297 ( -1 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV298 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV299 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV300 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV301 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV302 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV303 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV304 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV305 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV306 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV307 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV308 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV309 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV310 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV311 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV312 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV313 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV314 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV315 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV316 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV317 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV318 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV319 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV320 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV321 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV322 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV323 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV324 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV325 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV326 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV327 ( -2 +0 _0 ^0) Cryptographic protocol problem for Otway Rees
SWV328 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV329 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV330 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV331 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV332 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV333 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV334 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV335 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV336 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV337 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV338 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV339 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV340 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV341 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV342 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV343 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV344 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV345 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV346 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV347 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV348 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV349 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV350 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV351 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV352 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV353 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV354 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV355 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV356 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV357 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV358 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV359 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV360 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV361 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV362 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV363 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV364 ( -2 +0 _0 ^0) Cryptographic protocol problem for Yahalom
SWV365 ( -0 +1 _0 ^0) Priority queue checker: lemma_I_s base
SWV366 ( -0 +1 _0 ^0) Priority queue checker: lemma_I_s induction
SWV367 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_s_I_remove base
SWV368 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_s_I_remove induction
SWV369 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_s_I base
SWV370 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_s_I induction
SWV371 ( -0 +1 _0 ^0) Priority queue checker: lemma_pi_min_elem
SWV372 ( -0 +2 _0 ^0) Priority queue checker: lemma_contains_cpq_min_elem
SWV373 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_contains_min_not_ok
SWV374 ( -0 +1 _0 ^0) Priority queue checker: lemma_ok_find_min
SWV375 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_ok_not_phi
SWV376 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_ok_persistence
SWV377 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_ok_persistence_induction step 1
SWV378 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_ok_persistence_induction step 2
SWV379 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_ok_persistence_induction step 3
SWV380 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_ok_persistence_induction step 4
SWV381 ( -0 +4 _0 ^0) Priority queue checker: lemma_min_elem_smallest
SWV382 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_min_elem_not_phi
SWV383 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_check_not_phi
SWV384 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_min_elem_not_check_induction
SWV385 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_min_elem_not_check_induction02
SWV386 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_min_elem_not_check_ind_steps 1
SWV387 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_min_elem_not_check_ind_steps 2
SWV388 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_min_elem_not_check_ind_steps 3
SWV389 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_min_elem_not_check_ind_steps 4
SWV390 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_01
SWV391 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_02
SWV392 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_02_1 base
SWV393 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_02_1 step
SWV394 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_02_2
SWV395 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_02_2_1 base
SWV396 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_02_2_1 step
SWV397 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_02_3
SWV398 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_03
SWV399 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_03_1
SWV400 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_03_2 base
SWV401 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_03_2 step
SWV402 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_03_3 base
SWV403 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_03_3 step
SWV404 ( -0 +1 _0 ^0) Priority queue checker: tmp_not_check_04
SWV405 ( -0 +1 _0 ^0) Priority queue checker: lemma_check_characterization base
SWV406 ( -0 +1 _0 ^0) Priority queue checker: lemma_check_characterization step
SWV407 ( -0 +1 _0 ^0) Priority queue checker: lemma_not_min_elem_not_check
SWV408 ( -0 +2 _0 ^0) Priority queue checker: lemma_not_min_elem_pair
SWV409 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_update
SWV410 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_pair base
SWV411 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_pair step
SWV412 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_update_01
SWV413 ( -0 +1 _0 ^0) Priority queue checker: lemma_contains_update_02
SWV414 ( -0 +1 _0 ^0) Priority queue checker: Formula (12)
SWV415 ( -0 +2 _0 ^0) Priority queue checker: Formula (7)
SWV416 ( -0 +2 _0 ^0) Priority queue checker: Formula (8)
SWV417 ( -0 +2 _0 ^0) Priority queue checker: Formula (9)
SWV418 ( -8 +0 _0 ^0) Counter k=060
SWV419 ( -8 +0 _0 ^0) Distributed mutual exclusion algorithm k=05
SWV420 ( -8 +0 _0 ^0) Checking Gigamax Cache coherence protocol k=05
SWV421 (-16 +0 _0 ^0) Mutex algorithm 1st process access A k=060
SWV422 (-16 +0 _0 ^0) Mutex algorithm second process access A k=060
SWV423 ( -8 +0 _0 ^0) Production cell control liveness k=010
SWV424 ( -8 +0 _0 ^0) Simple access control busy state k=050
SWV425 ( -0 +0 _0 ^2) ICL logic mapping to modal logic implies 'unit'
SWV426 ( -0 +0 _0 ^4) ICL logic mapping to modal logic implies 'cuc'
SWV427 ( -0 +0 _0 ^2) ICL logic mapping to modal logic implies 'idem'
SWV428 ( -0 +0 _0 ^2) ICL logic mapping to modal logic K implies that Example 1 holds
SWV429 ( -0 +0 _0 ^2) ICL^=> logic mapping to modal logic implies 'refl'
SWV430 ( -0 +0 _0 ^2) ICL^=> logic mapping to modal logic implies 'trans'
SWV431 ( -0 +0 _0 ^2) ICL^=> logic mapping to modal logic implies 'speaking_for'
SWV432 ( -0 +0 _0 ^2) ICL^=> logic mapping to modal logic implies 'handoff'
SWV433 ( -0 +0 _0 ^2) ICL^=> logic mapping to modal logic implies that Example 2 holds
SWV434 ( -0 +0 _0 ^2) ICL^B logic mapping to modal logic implies 'trust'
SWV435 ( -0 +0 _0 ^2) ICL^B logic mapping to modal logic implies 'untrust'
SWV436 ( -0 +0 _0 ^2) ICL^B logic mapping to modal logic implies that Example 3 holds
SWV437 ( -0 +1 _0 ^1) Can Alice read the secret file?
SWV438 ( -0 +1 _0 ^1) Can Babu read the non-secret file?
SWV439 ( -0 +1 _0 ^1) Can Babu read the secret file?
SWV440 ( -0 +1 _0 ^1) Can Alice read the non-secret file?
SWV441 ( -0 +0 _0 ^1) (K says (A => B)) => (K says A) => (K says B) in BL
SWV442 ( -0 +0 _0 ^1) A => A in BL
SWV443 ( -0 +0 _0 ^1) (K says A) => (K says A) in BL
SWV444 ( -0 +0 _0 ^1) (loca says A) => (K says A) in BL
SWV445 ( -0 +0 _0 ^1) (K says K says A) => (K says A) in BL
SWV446 ( -0 +0 _0 ^1) K says ((K says A) => A) in BL
SWV447 ( -0 +0 _0 ^1) Nipkow's simple map-cons problem
SWV448 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i1_p86
SWV449 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i26_p30
SWV450 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i26_p36
SWV451 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i26_p121
SWV452 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i26_p216
SWV453 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i26_p217
SWV454 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i26_p250
SWV455 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i26_p257
SWV456 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i27_p134
SWV457 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i30_p30
SWV458 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i31_p257
SWV459 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i31_p261
SWV460 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i51_p96
SWV461 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i52_p18
SWV462 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i52_p30
SWV463 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i52_p38
SWV464 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i52_p46
SWV465 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i52_p59
SWV466 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i52_p114
SWV467 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i52_p188
SWV468 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i53_p88
SWV469 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i53_p93
SWV470 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i55_p24
SWV471 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i55_p30
SWV472 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i55_p60
SWV473 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i55_p75
SWV474 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i55_p675
SWV475 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i56_p34
SWV476 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i56_p36
SWV477 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i56_p42
SWV478 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i56_p114
SWV479 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i56_p116
SWV480 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i56_p122
SWV481 ( -0 +1 _0 ^0) Establishing that there cannot be two leaders, part i56_p219
SWV482 ( -0 +2 _0 ^0) PKCS11 for 2 handles and 2 keys
SWV483 ( -0 +2 _0 ^0) PKCS11 for 3 handles and 3 keys
SWV484 ( -0 +2 _0 ^0) PKCS11 for 4 handles and 2 keys
SWV485 ( -0 +2 _0 ^0) PKCS11 for 4 handles and 4 keys
SWV486 ( -0 +3 _0 ^0) Matrix is lower-triangular
SWV487 ( -0 +2 _0 ^0) Matrix is upper triangular
SWV488 ( -0 +2 _0 ^0) Matrix has no zero on the diagonal
SWV489 ( -0 +1 _0 ^0) Matrix is diagonal
SWV490 ( -0 +1 _0 ^0) Matrix is diagonal invertible
SWV491 ( -0 +2 _0 ^0) Matrix is identity
SWV492 ( -0 +1 _0 ^0) Matrix is lower-triangular and invertible
SWV493 ( -3 +0 _0 ^0) Store commutativity (t1_np_nf_ai_00030)
SWV494 ( -3 +0 _0 ^0) Store commutativity (t1_np_nf_ai_00030)
SWV495 ( -3 +0 _0 ^0) Store commutativity (t1_np_nf_ni_00030)
SWV496 ( -3 +0 _0 ^0) Store commutativity (t1_np_nf_ni_00030)
SWV497 ( -3 +0 _0 ^0) Store commutativity (t1_np_sf_ai_00030)
SWV498 ( -3 +0 _0 ^0) Store commutativity (t1_np_sf_ai_00030)
SWV499 ( -3 +0 _0 ^0) Store commutativity (t1_np_sf_ni_00030)
SWV500 ( -3 +0 _0 ^0) Store commutativity (t1_np_sf_ni_00030)
SWV501 ( -3 +0 _0 ^0) Store commutativity (t1_pp_nf_ai_00030)
SWV502 ( -3 +0 _0 ^0) Store commutativity (t1_pp_nf_ai_00030)
SWV503 ( -3 +0 _0 ^0) Store commutativity (t1_pp_nf_ni_00030)
SWV504 ( -3 +0 _0 ^0) Store commutativity (t1_pp_nf_ni_00030)
SWV505 ( -3 +0 _0 ^0) Store commutativity (t1_pp_sf_ai_00030)
SWV506 ( -3 +0 _0 ^0) Store commutativity (t1_pp_sf_ai_00030)
SWV507 ( -3 +0 _0 ^0) Store commutativity (t1_pp_sf_ni_00030)
SWV508 ( -3 +0 _0 ^0) Store commutativity (t1_pp_sf_ni_00030)
SWV509 ( -3 +0 _0 ^0) Store commutativity (t2_np_nf_ai_00030)
SWV510 ( -3 +0 _0 ^0) Store commutativity (t2_np_nf_ai_00030)
SWV511 ( -3 +0 _0 ^0) Store commutativity (t2_np_nf_ni_00030)
SWV512 ( -3 +0 _0 ^0) Store commutativity (t2_np_sf_ai_00030)
SWV513 ( -3 +0 _0 ^0) Store commutativity (t2_np_sf_ai_00030)
SWV514 ( -3 +0 _0 ^0) Store commutativity (t2_np_sf_ni_00030)
SWV515 ( -3 +0 _0 ^0) Store commutativity (t3_np_nf_ai_00030)
SWV516 ( -3 +0 _0 ^0) Store commutativity (t3_np_nf_ai_00030)
SWV517 ( -3 +0 _0 ^0) Store commutativity (t3_np_nf_ni_00030)
SWV518 ( -3 +0 _0 ^0) Store commutativity (t3_np_nf_ni_00030)
SWV519 ( -3 +0 _0 ^0) Store commutativity (t3_np_sf_ai_00030)
SWV520 ( -3 +0 _0 ^0) Store commutativity (t3_np_sf_ai_00030)
SWV521 ( -3 +0 _0 ^0) Store commutativity (t3_np_sf_ni_00030)
SWV522 ( -3 +0 _0 ^0) Store commutativity (t3_np_sf_ni_00030)
SWV523 ( -3 +0 _0 ^0) Store commutativity (t3_pp_nf_ai_00030)
SWV524 ( -3 +0 _0 ^0) Store commutativity (t3_pp_nf_ai_00030)
SWV525 ( -3 +0 _0 ^0) Store commutativity (t3_pp_nf_ni_00030)
SWV526 ( -3 +0 _0 ^0) Store commutativity (t3_pp_nf_ni_00030)
SWV527 ( -3 +0 _0 ^0) Store commutativity (t3_pp_sf_ai_00030)
SWV528 ( -3 +0 _0 ^0) Store commutativity (t3_pp_sf_ai_00030)
SWV529 ( -3 +0 _0 ^0) Store commutativity (t3_pp_sf_ni_00030)
SWV530 ( -3 +0 _0 ^0) Store commutativity (t3_pp_sf_ni_00030)
SWV531 ( -3 +0 _0 ^0) Swap elements (t1_np_nf_ai_00004)
SWV532 ( -3 +0 _0 ^0) Swap elements (t1_np_nf_ai_00004)
SWV533 ( -3 +0 _0 ^0) Swap elements (t1_np_sf_ai_00004)
SWV534 ( -3 +0 _0 ^0) Swap elements (t1_np_sf_ai_00004)
SWV535 ( -3 +0 _0 ^0) Swap elements (t1_pp_nf_ai_00004)
SWV536 ( -3 +0 _0 ^0) Swap elements (t1_pp_nf_ai_00004)
SWV537 ( -3 +0 _0 ^0) Swap elements (t1_pp_sf_ai_00004)
SWV538 ( -3 +0 _0 ^0) Swap elements (t1_pp_sf_ai_00004)
SWV539 ( -3 +0 _0 ^0) Swap elements (t2_np_nf_ai_00004)
SWV540 ( -3 +0 _0 ^0) Swap elements (t2_np_sf_ai_00004)
SWV541 ( -3 +0 _0 ^0) Swap elements (t3_np_nf_ai_00004)
SWV542 ( -3 +0 _0 ^0) Swap elements (t3_np_nf_ai_00004)
SWV543 ( -3 +0 _0 ^0) Swap elements (t3_np_sf_ai_00004)
SWV544 ( -3 +0 _0 ^0) Swap elements (t3_np_sf_ai_00004)
SWV545 ( -3 +0 _0 ^0) Swap elements (t3_pp_nf_ai_00004)
SWV546 ( -3 +0 _0 ^0) Swap elements (t3_pp_nf_ai_00004)
SWV547 ( -3 +0 _0 ^0) Swap elements (t3_pp_sf_ai_00004)
SWV548 ( -3 +0 _0 ^0) Swap elements (t3_pp_sf_ai_00004)
SWV549 ( -3 +0 _0 ^0) Store inverse (t1_np_nf_ai_00004)
SWV550 ( -3 +0 _0 ^0) Store inverse (t1_np_nf_ai_00004)
SWV551 ( -3 +0 _0 ^0) Store inverse (t1_np_sf_ai_00004)
SWV552 ( -3 +0 _0 ^0) Store inverse (t1_np_sf_ai_00004)
SWV553 ( -3 +0 _0 ^0) Store inverse (t1_pp_nf_ai_00004)
SWV554 ( -3 +0 _0 ^0) Store inverse (t1_pp_nf_ai_00004)
SWV555 ( -3 +0 _0 ^0) Store inverse (t1_pp_sf_ai_00004)
SWV556 ( -3 +0 _0 ^0) Store inverse (t1_pp_sf_ai_00004)
SWV557 ( -3 +0 _0 ^0) Store inverse (t2_np_nf_ai_00004)
SWV558 ( -3 +0 _0 ^0) Store inverse (t2_np_sf_ai_00004)
SWV559 ( -3 +0 _0 ^0) Store inverse (t3_np_nf_ai_00004)
SWV560 ( -3 +0 _0 ^0) Store inverse (t3_np_nf_ai_00004)
SWV561 ( -3 +0 _0 ^0) Store inverse (t3_np_sf_ai_00004)
SWV562 ( -3 +0 _0 ^0) Store inverse (t3_np_sf_ai_00004)
SWV563 ( -3 +0 _0 ^0) Store inverse (t3_pp_nf_ai_00004)
SWV564 ( -3 +0 _0 ^0) Store inverse (t3_pp_nf_ai_00004)
SWV565 ( -3 +0 _0 ^0) Store inverse (t3_pp_sf_ai_00004)
SWV566 ( -3 +0 _0 ^0) Store inverse (t3_pp_sf_ai_00004)
SWV567 ( -3 +0 _0 ^0) Arrays and integer offsets (t1_ios_np_sf_ai_00013)
SWV568 ( -3 +0 _0 ^0) Queue (t1_native_record_ios_np_sf_ai_00030)
SWV569 ( -3 +0 _0 ^0) Queue (t1_record_ios_np_sf_ai_00030)
SWV570 ( -3 +0 _0 ^0) Circular queue (t1_native_record_ios_mod_np_sf_ai_00043)
SWV571 ( -3 +0 _0 ^0) Circular queue (t1_record_ios_mod_np_sf_ai_00043)
SWV572 ( -1 +0 _0 ^0) LAN infrastructure
SWV573 ( -1 +0 _1 ^0) Fast Fourier Transform 028_3
SWV574 ( -1 +0 _0 ^0) Fast Fourier Transform 036_1
SWV575 ( -1 +0 _0 ^0) Fast Fourier Transform 037_55
SWV576 ( -1 +0 _0 ^0) Fast Fourier Transform 039_5
SWV577 ( -1 +0 _1 ^0) Fast Fourier Transform 045_3
SWV578 ( -1 +0 _0 ^0) Fast Fourier Transform 054_1
SWV579 ( -1 +0 _0 ^0) Fast Fourier Transform 056_5
SWV580 ( -1 +0 _0 ^0) Fast Fourier Transform 058_5
SWV581 ( -1 +0 _1 ^0) Fast Fourier Transform 067_3
SWV582 ( -1 +0 _0 ^0) Fast Fourier Transform 074_16
SWV583 ( -1 +0 _0 ^0) Fast Fourier Transform 078_3
SWV584 ( -1 +0 _0 ^0) Fast Fourier Transform 079_3
SWV585 ( -1 +0 _1 ^0) Fast Fourier Transform 080_3
SWV586 ( -1 +0 _0 ^0) Fast Fourier Transform 085_3
SWV587 ( -1 +0 _0 ^0) Fast Fourier Transform 089_3
SWV588 ( -1 +0 _0 ^0) Fast Fourier Transform 093_3
SWV589 ( -1 +0 _1 ^0) Fast Fourier Transform 097_1
SWV590 ( -1 +0 _0 ^0) Fast Fourier Transform 100_5
SWV591 ( -1 +0 _0 ^0) Fast Fourier Transform 102_5
SWV592 ( -1 +0 _0 ^0) Fast Fourier Transform 120_3
SWV593 ( -1 +0 _1 ^0) Fast Fourier Transform 125_1
SWV594 ( -1 +0 _0 ^0) Fast Fourier Transform 127_27
SWV595 ( -1 +0 _0 ^0) Fast Fourier Transform 130_27
SWV596 ( -1 +0 _0 ^0) Fast Fourier Transform 134_34
SWV597 ( -1 +0 _1 ^0) Fast Fourier Transform 135_35
SWV598 ( -1 +0 _0 ^0) Fast Fourier Transform 136_38
SWV599 ( -1 +0 _0 ^0) Fast Fourier Transform 144_3
SWV600 ( -1 +0 _0 ^0) Fast Fourier Transform 145_3
SWV601 ( -1 +0 _1 ^0) Fast Fourier Transform 146_3
SWV602 ( -1 +0 _0 ^0) Fast Fourier Transform 147_3
SWV603 ( -1 +0 _0 ^0) Fast Fourier Transform 148_3
SWV604 ( -1 +0 _0 ^0) Fast Fourier Transform 153_3
SWV605 ( -1 +0 _1 ^0) Fast Fourier Transform 154_3
SWV606 ( -1 +0 _0 ^0) Fast Fourier Transform 155_3
SWV607 ( -1 +0 _0 ^0) Fast Fourier Transform 160_3
SWV608 ( -1 +0 _0 ^0) Fast Fourier Transform 161_3
SWV609 ( -1 +0 _1 ^0) Fast Fourier Transform 167_1
SWV610 ( -1 +0 _0 ^0) Fast Fourier Transform 169_5
SWV611 ( -1 +0 _0 ^0) Fast Fourier Transform 174_5
SWV612 ( -1 +0 _0 ^0) Fast Fourier Transform 178_5
SWV613 ( -1 +0 _1 ^0) Fast Fourier Transform 179_5
SWV614 ( -1 +0 _0 ^0) Fast Fourier Transform 180_5
SWV615 ( -1 +0 _0 ^0) Fast Fourier Transform 182_5
SWV616 ( -1 +0 _0 ^0) Fast Fourier Transform 185_5
SWV617 ( -1 +0 _1 ^0) Fast Fourier Transform 187_5
SWV618 ( -1 +0 _0 ^0) Fast Fourier Transform 194_1
SWV619 ( -1 +0 _0 ^0) Fast Fourier Transform 196_5
SWV620 ( -1 +0 _0 ^0) Fast Fourier Transform 201_5
SWV621 ( -1 +0 _1 ^0) Fast Fourier Transform 205_5
SWV622 ( -1 +0 _0 ^0) Fast Fourier Transform 206_5
SWV623 ( -1 +0 _0 ^0) Fast Fourier Transform 207_5
SWV624 ( -1 +0 _0 ^0) Fast Fourier Transform 208_5
SWV625 ( -1 +0 _1 ^0) Fast Fourier Transform 210_5
SWV626 ( -1 +0 _0 ^0) Fast Fourier Transform 213_5
SWV627 ( -1 +0 _0 ^0) Fast Fourier Transform 215_5
SWV628 ( -1 +0 _0 ^0) Fast Fourier Transform 221_3
SWV629 ( -1 +0 _1 ^0) Fast Fourier Transform 225_3
SWV630 ( -1 +0 _0 ^0) Fast Fourier Transform 229_3
SWV631 ( -1 +0 _0 ^0) Fast Fourier Transform 233_3
SWV632 ( -1 +0 _0 ^0) Fast Fourier Transform 240_1
SWV633 ( -1 +0 _1 ^0) Fast Fourier Transform 242_5
SWV634 ( -1 +0 _0 ^0) Fast Fourier Transform 244_5
SWV635 ( -1 +0 _0 ^0) Fast Fourier Transform 252_3
SWV636 ( -1 +0 _0 ^0) Fast Fourier Transform 253_3
SWV637 ( -1 +0 _1 ^0) Fast Fourier Transform 275_3
SWV638 ( -1 +0 _0 ^0) Fast Fourier Transform 283_1
SWV639 ( -1 +0 _0 ^0) Fast Fourier Transform 288_5
SWV640 ( -1 +0 _0 ^0) Fast Fourier Transform 294_5
SWV641 ( -1 +0 _1 ^0) Fast Fourier Transform 296_5
SWV642 ( -1 +0 _0 ^0) Fast Fourier Transform 297_5
SWV643 ( -1 +0 _0 ^0) Fast Fourier Transform 298_5
SWV644 ( -1 +0 _0 ^0) Fast Fourier Transform 299_5
SWV645 ( -1 +0 _1 ^0) Fast Fourier Transform 309_1
SWV646 ( -1 +0 _0 ^0) Fast Fourier Transform 314_5
SWV647 ( -1 +0 _0 ^0) Fast Fourier Transform 321_5
SWV648 ( -1 +0 _0 ^0) Fast Fourier Transform 322_5
SWV649 ( -1 +0 _1 ^0) Fast Fourier Transform 324_5
SWV650 ( -1 +0 _0 ^0) Fast Fourier Transform 325_5
SWV651 ( -1 +0 _0 ^0) Fast Fourier Transform 326_5
SWV652 ( -1 +0 _0 ^0) Fast Fourier Transform 327_5
SWV653 ( -1 +0 _1 ^0) Fast Fourier Transform 328_5
SWV654 ( -1 +0 _0 ^0) Fast Fourier Transform 329_5
SWV655 ( -1 +0 _0 ^0) Fast Fourier Transform 338_1
SWV656 ( -1 +0 _0 ^0) Fast Fourier Transform 343_5
SWV657 ( -1 +0 _1 ^0) Fast Fourier Transform 349_5
SWV658 ( -1 +0 _0 ^0) Fast Fourier Transform 351_5
SWV659 ( -1 +0 _0 ^0) Fast Fourier Transform 352_5
SWV660 ( -1 +0 _0 ^0) Fast Fourier Transform 353_5
SWV661 ( -1 +0 _1 ^0) Fast Fourier Transform 354_5
SWV662 ( -1 +0 _0 ^0) Fast Fourier Transform 365_1
SWV663 ( -1 +0 _0 ^0) Fast Fourier Transform 370_5
SWV664 ( -1 +0 _0 ^0) Fast Fourier Transform 377_5
SWV665 ( -1 +0 _1 ^0) Fast Fourier Transform 378_5
SWV666 ( -1 +0 _0 ^0) Fast Fourier Transform 380_5
SWV667 ( -1 +0 _0 ^0) Fast Fourier Transform 381_5
SWV668 ( -1 +0 _0 ^0) Fast Fourier Transform 382_5
SWV669 ( -1 +0 _1 ^0) Fast Fourier Transform 383_5
SWV670 ( -1 +0 _0 ^0) Fast Fourier Transform 384_5
SWV671 ( -1 +0 _0 ^0) Fast Fourier Transform 385_5
SWV672 ( -1 +0 _0 ^0) Fast Fourier Transform 386_5
SWV673 ( -1 +0 _0 ^0) Fast Fourier Transform 399_3
SWV674 ( -1 +0 _0 ^0) Fast Fourier Transform 400_5
SWV675 ( -1 +0 _0 ^0) Fast Fourier Transform 402_4
SWV676 ( -1 +0 _0 ^0) Fast Fourier Transform 403_3
SWV677 ( -1 +0 _0 ^0) Fast Fourier Transform 409_1
SWV678 ( -1 +0 _0 ^0) Fast Fourier Transform 411_5
SWV679 ( -1 +0 _0 ^0) Fast Fourier Transform 414_5
SWV680 ( -1 +0 _0 ^0) Fast Fourier Transform 420_3
SWV681 ( -1 +0 _0 ^0) Fast Fourier Transform 426_3
SWV682 ( -1 +0 _0 ^0) Fast Fourier Transform 427_3
SWV683 ( -1 +0 _0 ^0) Fast Fourier Transform 428_3
SWV684 ( -1 +0 _0 ^0) Fast Fourier Transform 429_3
SWV685 ( -1 +0 _0 ^0) Fast Fourier Transform 430_3
SWV686 ( -1 +0 _0 ^0) Fast Fourier Transform 431_3
SWV687 ( -1 +0 _0 ^0) Fast Fourier Transform 432_3
SWV688 ( -1 +0 _0 ^0) Fast Fourier Transform 434_3
SWV689 ( -1 +0 _0 ^0) Fast Fourier Transform 435_47
SWV690 ( -1 +0 _0 ^0) Fast Fourier Transform 436_45
SWV691 ( -1 +0 _0 ^0) Fast Fourier Transform 446_7
SWV692 ( -1 +0 _0 ^0) Fast Fourier Transform 450_7
SWV693 ( -1 +0 _0 ^0) Fast Fourier Transform 453_7
SWV694 ( -1 +0 _0 ^0) Fast Fourier Transform 456_7
SWV695 ( -1 +0 _0 ^0) Fast Fourier Transform 458_7
SWV696 ( -1 +0 _0 ^0) Fast Fourier Transform 460_7
SWV697 ( -1 +0 _0 ^0) Fast Fourier Transform 495_1
SWV698 ( -1 +0 _0 ^0) Fast Fourier Transform 497_19
SWV699 ( -1 +0 _0 ^0) Fast Fourier Transform 501_14
SWV700 ( -1 +0 _0 ^0) Fast Fourier Transform 503_23
SWV701 ( -1 +0 _0 ^0) Fast Fourier Transform 503_34
SWV702 ( -1 +0 _0 ^0) Fast Fourier Transform 504_7
SWV703 ( -1 +0 _0 ^0) Fast Fourier Transform 507_37
SWV704 ( -1 +0 _0 ^0) Fast Fourier Transform 508_31
SWV705 ( -1 +0 _0 ^0) Fast Fourier Transform 508_42
SWV706 ( -1 +0 _0 ^0) Fast Fourier Transform 509_7
SWV707 ( -1 +0 _0 ^0) Fast Fourier Transform 515_1
SWV708 ( -1 +0 _0 ^0) Fast Fourier Transform 517_19
SWV709 ( -1 +0 _0 ^0) Fast Fourier Transform 521_14
SWV710 ( -1 +0 _0 ^0) Fast Fourier Transform 523_23
SWV711 ( -1 +0 _0 ^0) Fast Fourier Transform 523_34
SWV712 ( -1 +0 _0 ^0) Fast Fourier Transform 524_7
SWV713 ( -1 +0 _0 ^0) Fast Fourier Transform 527_37
SWV714 ( -1 +0 _0 ^0) Fast Fourier Transform 528_31
SWV715 ( -1 +0 _0 ^0) Fast Fourier Transform 528_42
SWV716 ( -1 +0 _0 ^0) Fast Fourier Transform 529_7
SWV717 ( -1 +0 _0 ^0) Fast Fourier Transform 534_3
SWV718 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 098_1
SWV719 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 099_1
SWV720 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 102_1
SWV721 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 118_1
SWV722 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 124_1
SWV723 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 132_1
SWV724 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 137_1
SWV725 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 144_1
SWV726 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 145_1
SWV727 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 147_1
SWV728 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 160_1
SWV729 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 168_1
SWV730 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 169_1
SWV731 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 176_1
SWV732 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 186_1
SWV733 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 216_1
SWV734 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 218_1
SWV735 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 220_1
SWV736 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 233_1
SWV737 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 234_1
SWV738 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 235_1
SWV739 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 237_1
SWV740 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 245_1
SWV741 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 255_1
SWV742 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 268_1
SWV743 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 269_1
SWV744 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 270_1
SWV745 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 271_1
SWV746 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 272_1
SWV747 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 273_1
SWV748 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 275_1
SWV749 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 277_1
SWV750 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 280_1
SWV751 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 291_1
SWV752 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 304_1
SWV753 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 305_1
SWV754 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 315_1
SWV755 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 316_1
SWV756 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 319_1
SWV757 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 321_1
SWV758 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 331_1
SWV759 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 343_1
SWV760 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 344_1
SWV761 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 345_1
SWV762 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 346_1
SWV763 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 348_1
SWV764 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 350_1
SWV765 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 362_1
SWV766 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 363_1
SWV767 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 364_1
SWV768 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 366_1
SWV769 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 368_1
SWV770 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 381_1
SWV771 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 389_1
SWV772 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 390_1
SWV773 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 394_1
SWV774 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 395_1
SWV775 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 400_1
SWV776 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 401_1
SWV777 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 405_1
SWV778 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 406_1
SWV779 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 407_1
SWV780 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 413_1
SWV781 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 414_1
SWV782 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 430_1
SWV783 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 431_1
SWV784 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 432_1
SWV785 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 433_1
SWV786 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 434_1
SWV787 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 435_1
SWV788 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 436_1
SWV789 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 437_1
SWV790 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 439_1
SWV791 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 440_1
SWV792 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 442_1
SWV793 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 444_1
SWV794 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 462_1
SWV795 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 470_1
SWV796 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 471_1
SWV797 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 472_1
SWV798 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 473_1
SWV799 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 474_1
SWV800 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 476_1
SWV801 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 478_1
SWV802 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 480_1
SWV803 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 482_1
SWV804 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 490_1
SWV805 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 491_1
SWV806 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 492_1
SWV807 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 493_1
SWV808 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 494_1
SWV809 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 495_1
SWV810 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 496_1
SWV811 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 497_1
SWV812 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 499_1
SWV813 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 500_1
SWV814 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 502_1
SWV815 ( -1 +0 _1 ^0) Needham-Schroeder shared-key protocol 504_1
SWV816 ( -1 +0 _0 ^0) Needham-Schroeder shared-key protocol 518_1
SWV817 ( -1 +0 _0 ^0) Hoare logic with procedures 112_1
SWV818 ( -1 +0 _0 ^0) Hoare logic with procedures 114_1
SWV819 ( -1 +0 _0 ^0) Hoare logic with procedures 116_1
SWV820 ( -1 +0 _0 ^0) Hoare logic with procedures 127_1
SWV821 ( -1 +0 _0 ^0) Hoare logic with procedures 132_1
SWV822 ( -1 +0 _0 ^0) Hoare logic with procedures 138_1
SWV823 ( -1 +0 _0 ^0) Hoare logic with procedures 143_1
SWV824 ( -1 +0 _0 ^0) Hoare logic with procedures 145_1
SWV825 ( -1 +0 _0 ^0) Hoare logic with procedures 158_1
SWV826 ( -1 +0 _0 ^0) Hoare logic with procedures 163_1
SWV827 ( -1 +0 _0 ^0) Hoare logic with procedures 168_1
SWV828 ( -1 +0 _0 ^0) Hoare logic with procedures 175_1
SWV829 ( -1 +0 _0 ^0) Hoare logic with procedures 177_1
SWV830 ( -1 +0 _0 ^0) Hoare logic with procedures 183_1
SWV831 ( -1 +0 _0 ^0) Hoare logic with procedures 188_1
SWV832 ( -1 +0 _0 ^0) Hoare logic with procedures 193_1
SWV833 ( -1 +0 _0 ^0) Hoare logic with procedures 198_1
SWV834 ( -1 +0 _0 ^0) Hoare logic with procedures 200_1
SWV835 ( -1 +0 _0 ^0) Hoare logic with procedures 212_1
SWV836 ( -1 +0 _0 ^0) Hoare logic with procedures 214_1
SWV837 ( -1 +0 _0 ^0) Hoare logic with procedures 216_1
SWV838 ( -1 +0 _0 ^0) Hoare logic with procedures 218_1
SWV839 ( -1 +0 _0 ^0) Hoare logic with procedures 221_1
SWV840 ( -1 +0 _0 ^0) Hoare logic with procedures 226_1
SWV841 ( -1 +0 _0 ^0) Hoare logic with procedures 231_1
SWV842 ( -1 +0 _0 ^0) Hoare logic with procedures 238_1
SWV843 ( -1 +0 _0 ^0) Hoare logic with procedures 240_1
SWV844 ( -1 +0 _0 ^0) Hoare logic with procedures 242_1
SWV845 ( -1 +0 _0 ^0) Hoare logic with procedures 252_1
SWV846 ( -1 +0 _0 ^0) Hoare logic with procedures 254_1
SWV847 ( -1 +0 _0 ^0) Hoare logic with procedures 256_1
SWV848 ( -1 +0 _0 ^0) Hoare logic with procedures 258_1
SWV849 ( -1 +0 _0 ^0) Hoare logic with procedures 260_1
SWV850 ( -1 +0 _0 ^0) Hoare logic with procedures 268_1
SWV851 ( -1 +0 _0 ^0) Hoare logic with procedures 270_1
SWV852 ( -1 +0 _0 ^0) Hoare logic with procedures 272_1
SWV853 ( -1 +0 _0 ^0) Hoare logic with procedures 274_1
SWV854 ( -1 +0 _0 ^0) Hoare logic with procedures 276_1
SWV855 ( -1 +0 _0 ^0) Hoare logic with procedures 281_1
SWV856 ( -1 +0 _0 ^0) Hoare logic with procedures 283_1
SWV857 ( -1 +0 _0 ^0) Hoare logic with procedures 285_1
SWV858 ( -1 +0 _0 ^0) Hoare logic with procedures 287_1
SWV859 ( -1 +0 _0 ^0) Hoare logic with procedures 291_1
SWV860 ( -1 +0 _0 ^0) Hoare logic with procedures 293_1
SWV861 ( -1 +0 _0 ^0) Hoare logic with procedures 295_1
SWV862 ( -1 +0 _0 ^0) Hoare logic with procedures 307_1
SWV863 ( -1 +0 _0 ^0) Hoare logic with procedures 315_1
SWV864 ( -1 +0 _0 ^0) Hoare logic with procedures 317_1
SWV865 ( -1 +0 _0 ^0) Hoare logic with procedures 319_1
SWV866 ( -1 +0 _0 ^0) Hoare logic with procedures 321_1
SWV867 ( -1 +0 _0 ^0) Hoare logic with procedures 327_1
SWV868 ( -1 +0 _0 ^0) Hoare logic with procedures 329_1
SWV869 ( -1 +0 _0 ^0) Hoare logic with procedures 338_1
SWV870 ( -1 +0 _0 ^0) Hoare logic with procedures 340_1
SWV871 ( -1 +0 _0 ^0) Hoare logic with procedures 342_1
SWV872 ( -1 +0 _0 ^0) Hoare logic with procedures 345_1
SWV873 ( -1 +0 _0 ^0) Hoare logic with procedures 347_1
SWV874 ( -1 +0 _0 ^0) Hoare logic with procedures 351_1
SWV875 ( -1 +0 _0 ^0) Hoare logic with procedures 353_1
SWV876 ( -1 +0 _0 ^0) Hoare logic with procedures 366_1
SWV877 ( -1 +0 _0 ^0) Hoare logic with procedures 368_1
SWV878 ( -1 +0 _0 ^0) Hoare logic with procedures 371_1
SWV879 ( -1 +0 _0 ^0) Hoare logic with procedures 373_1
SWV880 ( -1 +0 _0 ^0) Hoare logic with procedures 375_1
SWV881 ( -1 +0 _0 ^0) Hoare logic with procedures 377_1
SWV882 ( -1 +0 _0 ^0) Hoare logic with procedures 379_1
SWV883 ( -1 +0 _0 ^0) Hoare logic with procedures 381_1
SWV884 ( -1 +0 _0 ^0) Hoare logic with procedures 383_1
SWV885 ( -1 +0 _0 ^0) Hoare logic with procedures 385_1
SWV886 ( -1 +0 _0 ^0) Hoare logic with procedures 387_1
SWV887 ( -1 +0 _0 ^0) Hoare logic with procedures 393_1
SWV888 ( -1 +0 _0 ^0) Hoare logic with procedures 395_1
SWV889 ( -1 +0 _0 ^0) Hoare logic with procedures 401_1
SWV890 ( -1 +0 _0 ^0) Hoare logic with procedures 403_1
SWV891 ( -1 +0 _0 ^0) Hoare logic with procedures 405_10
SWV892 ( -1 +0 _0 ^0) Hoare logic with procedures 407_1
SWV893 ( -1 +0 _0 ^0) Hoare logic with procedures 409_1
SWV894 ( -1 +0 _0 ^0) Hoare logic with procedures 420_1
SWV895 ( -1 +0 _0 ^0) Hoare logic with procedures 422_1
SWV896 ( -1 +0 _0 ^0) Hoare logic with procedures 424_1
SWV897 ( -1 +0 _0 ^0) Hoare logic with procedures 426_1
SWV898 ( -1 +0 _0 ^0) Hoare logic with procedures 434_1
SWV899 ( -1 +0 _0 ^0) Hoare logic with procedures 436_1
SWV900 ( -1 +0 _0 ^0) Hoare logic with procedures 438_1
SWV901 ( -1 +0 _0 ^0) Hoare logic with procedures 440_1
SWV902 ( -1 +0 _0 ^0) Hoare logic with procedures 442_1
SWV903 ( -1 +0 _0 ^0) Hoare logic with procedures 444_1
SWV904 ( -1 +0 _0 ^0) Hoare logic with procedures 450_1
SWV905 ( -1 +0 _0 ^0) Hoare logic with procedures 452_1
SWV906 ( -1 +0 _0 ^0) Hoare logic with procedures 454_1
SWV907 ( -1 +0 _0 ^0) Hoare logic with procedures 456_1
SWV908 ( -1 +0 _0 ^0) Hoare logic with procedures 458_1
SWV909 ( -1 +0 _0 ^0) Hoare logic with procedures 469_1
SWV910 ( -1 +0 _0 ^0) Hoare logic with procedures 475_1
SWV911 ( -1 +0 _0 ^0) Hoare logic with procedures 481_1
SWV912 ( -1 +0 _0 ^0) Hoare logic with procedures 486_1
SWV913 ( -1 +0 _0 ^0) Hoare logic with procedures 494_1
SWV914 ( -1 +0 _0 ^0) Hoare logic with procedures 499_1
SWV915 ( -1 +0 _0 ^0) Hoare logic with procedures 506_1
SWV916 ( -1 +0 _0 ^0) Hoare logic with procedures 508_1
SWV917 ( -1 +0 _0 ^0) Java type soundness 027_36
SWV918 ( -1 +0 _0 ^0) Java type soundness 030_39
SWV919 ( -1 +0 _0 ^0) Java type soundness 040_3
SWV920 ( -1 +0 _0 ^0) Java type soundness 058_5
SWV921 ( -1 +0 _0 ^0) Java type soundness 063_5
SWV922 ( -1 +0 _0 ^0) Java type soundness 076_5
SWV923 ( -1 +0 _0 ^0) Java type soundness 088_5
SWV924 ( -1 +0 _0 ^0) Java type soundness 100_5
SWV925 ( -1 +0 _0 ^0) Java type soundness 112_1
SWV926 ( -1 +0 _0 ^0) Java type soundness 122_1
SWV927 ( -1 +0 _0 ^0) Java type soundness 136_29
SWV928 ( -1 +0 _0 ^0) Java type soundness 140_27
SWV929 ( -1 +0 _0 ^0) Java type soundness 144_5
SWV930 ( -1 +0 _0 ^0) Java type soundness 150_5
SWV931 ( -1 +0 _0 ^0) Java type soundness 155_26
SWV932 ( -1 +0 _0 ^0) Java type soundness 160_5
SWV933 ( -1 +0 _0 ^0) Java type soundness 164_28
SWV934 ( -1 +0 _0 ^0) Java type soundness 185_1
SWV935 ( -1 +0 _0 ^0) Java type soundness 198_11
SWV936 ( -1 +0 _0 ^0) Java type soundness 219_24
SWV937 ( -1 +0 _0 ^0) Java type soundness 225_5
SWV938 ( -1 +0 _0 ^0) Java type soundness 229_5
SWV939 ( -1 +0 _0 ^0) Java type soundness 233_33
SWV940 ( -1 +0 _0 ^0) Java type soundness 239_5
SWV941 ( -1 +0 _0 ^0) Java type soundness 251_3
SWV942 ( -1 +0 _0 ^0) Java type soundness 257_7
SWV943 ( -1 +0 _0 ^0) Java type soundness 267_14
SWV944 ( -1 +0 _0 ^0) Java type soundness 278_69
SWV945 ( -1 +0 _0 ^0) Java type soundness 289_7
SWV946 ( -1 +0 _0 ^0) Java type soundness 294_3
SWV947 ( -1 +0 _0 ^0) Java type soundness 297_42
SWV948 ( -1 +0 _0 ^0) Java type soundness 302_27
SWV949 ( -1 +0 _0 ^0) Java type soundness 317_2
SWV950 ( -1 +0 _0 ^0) Java type soundness 322_39
SWV951 ( -1 +0 _0 ^0) Java type soundness 326_18
SWV952 ( -1 +0 _0 ^0) Java type soundness 330_5
SWV953 ( -1 +0 _0 ^0) Java type soundness 342_33
SWV954 ( -1 +0 _0 ^0) Java type soundness 347_60
SWV955 ( -1 +0 _0 ^0) Java type soundness 350_38
SWV956 ( -1 +0 _0 ^0) Java type soundness 358_7
SWV957 ( -1 +0 _0 ^0) Java type soundness 364_56
SWV958 ( -1 +0 _0 ^0) Java type soundness 367_50
SWV959 ( -1 +0 _0 ^0) Java type soundness 369_34
SWV960 ( -1 +0 _0 ^0) Java type soundness 378_3
SWV961 ( -1 +0 _0 ^0) Java type soundness 386_30
SWV962 ( -1 +0 _0 ^0) Java type soundness 389_16
SWV963 ( -1 +0 _0 ^0) Java type soundness 395_30
SWV964 ( -1 +0 _0 ^0) Java type soundness 399_27
SWV965 ( -1 +0 _0 ^0) Java type soundness 412_48
SWV966 ( -1 +0 _0 ^0) Java type soundness 417_27
SWV967 ( -1 +0 _0 ^0) Java type soundness 428_2
SWV968 ( -1 +0 _0 ^0) Java type soundness 432_55
SWV969 ( -1 +0 _0 ^0) Java type soundness 438_2
SWV970 ( -1 +0 _0 ^0) Java type soundness 441_39
SWV971 ( -1 +0 _0 ^0) Java type soundness 450_3
SWV972 ( -1 +0 _0 ^0) Java type soundness 459_30
SWV973 ( -1 +0 _0 ^0) Java type soundness 464_31
SWV974 ( -1 +0 _0 ^0) Java type soundness 468_29
SWV975 ( -1 +0 _0 ^0) Java type soundness 481_63
SWV976 ( -1 +0 _0 ^0) Java type soundness 486_5
SWV977 ( -1 +0 _0 ^0) Java type soundness 490_5
SWV978 ( -1 +0 _0 ^0) Java type soundness 501_5
SWV979 ( -1 +0 _0 ^0) Java type soundness 504_5
SWV980 ( -1 +0 _0 ^0) Java type soundness 510_5
SWV981 ( -1 +0 _0 ^0) Java type soundness 516_5
SWV982 ( -1 +0 _0 ^0) Java type soundness 522_5
SWV983 ( -1 +0 _0 ^0) Java type soundness 528_5
SWV984 ( -1 +0 _0 ^0) Java type soundness 541_6
SWV985 ( -1 +0 _0 ^0) Java type soundness 555_24
SWV986 ( -1 +0 _0 ^0) Java type soundness 567_1
SWV987 ( -1 +0 _0 ^0) Java type soundness 581_1
SWV988 ( -1 +0 _0 ^0) Java type soundness 585_5
SWV989 ( -1 +0 _0 ^0) Java type soundness 606_1
SWV990 ( -1 +0 _0 ^0) Java type soundness 633_1
SWV991 ( -1 +0 _0 ^0) Java type soundness 637_5
SWV992 ( -1 +0 _0 ^0) Java type soundness 656_1
SWV993 ( -1 +0 _0 ^0) Java type soundness 659_1
SWV994 ( -1 +0 _0 ^0) Java type soundness 661_1
SWV995 ( -1 +0 _0 ^0) Java type soundness 664_2
SWV996 ( -0 +0 _1 ^0) Backward simplification: node deletion 2
SWV997 ( -0 +0 _1 ^0) Fix-point check 20
SWV998 ( -0 +0 _1 ^0) Fix-point check 205
SWV999 ( -0 +0 _1 ^0) Fix-point check 235
-------------------------------------------------------------------------------
Domain SWW = Software Verification Continued
888 problems (780 abstract), 73 CNF, 292 FOF, 494 TFF, 29 THF
-------------------------------------------------------------------------------
SWW000 ( -0 +0 _1 ^0) Fix-point check 236
SWW001 ( -0 +0 _1 ^0) Backward simplification: node deletion 248
SWW002 ( -0 +0 _1 ^0) Fix-point check 262
SWW003 ( -0 +0 _1 ^0) Fix-point check 292
SWW004 ( -0 +0 _1 ^0) Fix-point check 326
SWW005 ( -0 +0 _1 ^0) Backward simplification: node deletion 349
SWW006 ( -0 +0 _1 ^0) Fix-point check 357
SWW007 ( -0 +0 _1 ^0) Backward simplification: node deletion 1830
SWW008 ( -0 +0 _1 ^0) Backward simplification: node deletion 1833
SWW009 ( -0 +0 _1 ^0) Fix-point check 1840
SWW010 ( -0 +0 _1 ^0) Backward simplification: node deletion 1846
SWW011 ( -0 +0 _1 ^0) Backward simplification: node deletion 1847
SWW012 ( -0 +0 _1 ^0) Backward simplification: node deletion 1874
SWW013 ( -0 +0 _1 ^0) Fix-point check 1885
SWW014 ( -0 +0 _1 ^0) Backward simplification: node deletion 1895
SWW015 ( -0 +0 _1 ^0) Backward simplification: node deletion 1896
SWW016 ( -0 +0 _1 ^0) Backward simplification: node deletion 1905
SWW017 ( -0 +0 _1 ^0) Backward simplification: node deletion 1909
SWW018 ( -0 +0 _1 ^0) Backward simplification: node deletion 1914
SWW019 ( -0 +0 _1 ^0) Fix-point check 1916
SWW020 ( -0 +0 _1 ^0) Backward simplification: node deletion 1928
SWW021 ( -0 +0 _1 ^0) Backward simplification: node deletion 1932
SWW022 ( -0 +0 _1 ^0) Backward simplification: node deletion 1938
SWW023 ( -0 +0 _1 ^0) Fix-point check 1958
SWW024 ( -0 +0 _1 ^0) Fix-point check 1999
SWW025 ( -0 +0 _1 ^0) Fix-point check 2043
SWW026 ( -0 +0 _1 ^0) Fix-point check 2087
SWW027 ( -0 +0 _1 ^0) Backward simplification: node deletion 2107
SWW028 ( -0 +0 _1 ^0) Fix-point check 2118
SWW029 ( -0 +0 _1 ^0) Fix-point check 2132
SWW030 ( -0 +0 _1 ^0) Fix-point check 2175
SWW031 ( -0 +0 _1 ^0) Fix-point check 2218
SWW032 ( -0 +0 _1 ^0) Fix-point check 2261
SWW033 ( -0 +0 _1 ^0) Fix-point check 2302
SWW034 ( -0 +0 _1 ^0) Fix-point check 2345
SWW035 ( -0 +0 _1 ^0) Fix-point check 2351
SWW036 ( -0 +0 _1 ^0) Backward simplification: node deletion 2391
SWW037 ( -0 +0 _1 ^0) Fix-point check 2394
SWW038 ( -0 +0 _1 ^0) Fix-point check 2443
SWW039 ( -0 +0 _1 ^0) Backward simplification: node deletion 2446
SWW040 ( -0 +0 _1 ^0) Fix-point check 2484
SWW041 ( -0 +0 _1 ^0) Backward simplification: node deletion 2501
SWW042 ( -0 +0 _1 ^0) Fix-point check 2534
SWW043 ( -0 +0 _1 ^0) Fix-point check 2578
SWW044 ( -0 +0 _1 ^0) Fix-point check 2598
SWW045 ( -0 +0 _1 ^0) Backward simplification: node deletion 2608
SWW046 ( -0 +0 _1 ^0) Fix-point check 2626
SWW047 ( -0 +0 _1 ^0) Backward simplification: node deletion 2640
SWW048 ( -0 +0 _1 ^0) Fix-point check 2668
SWW049 ( -0 +0 _1 ^0) Fix-point check 2712
SWW050 ( -0 +0 _1 ^0) Fix-point check 2753
SWW051 ( -0 +0 _1 ^0) Backward simplification: node deletion 2794
SWW052 ( -0 +0 _1 ^0) Fix-point check 2802
SWW053 ( -0 +0 _1 ^0) Fix-point check 2816
SWW054 ( -0 +0 _1 ^0) Fix-point check 2845
SWW055 ( -0 +0 _1 ^0) Backward simplification: node deletion 2849
SWW056 ( -0 +0 _1 ^0) Backward simplification: node deletion 2862
SWW057 ( -0 +0 _1 ^0) Fix-point check 2895
SWW058 ( -0 +0 _1 ^0) Fix-point check 2935
SWW059 ( -0 +0 _1 ^0) Backward simplification: node deletion 2962
SWW060 ( -0 +0 _1 ^0) Fix-point check 2979
SWW061 ( -0 +0 _1 ^0) Fix-point check 3025
SWW062 ( -0 +0 _1 ^0) Fix-point check 3055
SWW063 ( -0 +0 _1 ^0) Fix-point check 3072
SWW064 ( -0 +0 _1 ^0) Backward simplification: node deletion 3077
SWW065 ( -0 +0 _1 ^0) Backward simplification: node deletion 3078
SWW066 ( -0 +0 _1 ^0) Fix-point check 3117
SWW067 ( -0 +0 _1 ^0) Backward simplification: node deletion 3152
SWW068 ( -0 +0 _1 ^0) Fix-point check 3163
SWW069 ( -0 +0 _1 ^0) Backward simplification: node deletion 3186
SWW070 ( -0 +0 _1 ^0) Backward simplification: node deletion 3199
SWW071 ( -0 +0 _1 ^0) Fix-point check 3211
SWW072 ( -0 +0 _1 ^0) Fix-point check 3248
SWW073 ( -0 +0 _1 ^0) Backward simplification: node deletion 3252
SWW074 ( -0 +0 _1 ^0) Fix-point check 3278
SWW075 ( -0 +0 _1 ^0) Fix-point check 3300
SWW076 ( -0 +0 _1 ^0) Fix-point check 3339
SWW077 ( -0 +0 _1 ^0) Backward simplification: node deletion 3375
SWW078 ( -0 +0 _1 ^0) Backward simplification: node deletion 3385
SWW079 ( -0 +0 _1 ^0) Fix-point check 3386
SWW080 ( -0 +0 _1 ^0) Fix-point check 3431
SWW081 ( -0 +0 _1 ^0) Backward simplification: node deletion 3467
SWW082 ( -0 +0 _1 ^0) Fix-point check 3472
SWW083 ( -0 +0 _1 ^0) Fix-point check 3525
SWW084 ( -0 +0 _1 ^0) Backward simplification: node deletion 3536
SWW085 ( -0 +0 _1 ^0) Backward simplification: node deletion 3537
SWW086 ( -0 +0 _1 ^0) Fix-point check 3544
SWW087 ( -0 +0 _1 ^0) Backward simplification: node deletion 3552
SWW088 ( -0 +0 _1 ^0) Backward simplification: node deletion 3553
SWW089 ( -0 +0 _1 ^0) Fix-point check 3575
SWW090 ( -0 +0 _1 ^0) Fix-point check 3617
SWW091 ( -0 +0 _1 ^0) Fix-point check 3618
SWW092 ( -0 +0 _1 ^0) Fix-point check 3620
SWW093 ( -0 +0 _1 ^0) Fix-point check 3622
SWW094 ( -0 +0 _1 ^0) Fix-point check 3623
SWW095 ( -0 +1 _0 ^0) Priority queue checker: lemma_check_characterization base
SWW096 ( -0 +1 _0 ^0) Equivalenace of the semantic and syntactic definition of and 
SWW097 ( -0 +1 _0 ^0) Equivalenace of the semantic and syntactic definition of lazy_and 
SWW098 ( -0 +1 _0 ^0) Equivalence of or1 and or2
SWW099 ( -0 +1 _0 ^0) If one is Boolean then exists1(P) = exists2(P).
SWW100 ( -0 +1 _0 ^0) If only one element non-Boolean, then exists1(P) = exists2(P)
SWW101 ( -0 +1 _0 ^0) false1 = false2
SWW102 ( -0 +1 _0 ^0) Equivalence of not1 and not2
SWW103 ( -0 +1 _0 ^0) Syntactic definitions of the logical operators
SWW171 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435517, 1000 axioms selected
SWW172 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435557, 1000 axioms selected
SWW173 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435614, 1000 axioms selected
SWW174 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435638, 1000 axioms selected
SWW175 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435667, 1000 axioms selected
SWW176 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435719, 1000 axioms selected
SWW177 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435731, 1000 axioms selected
SWW178 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435750, 1000 axioms selected
SWW179 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435801, 1000 axioms selected
SWW180 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435841, 1000 axioms selected
SWW181 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435852, 1000 axioms selected
SWW182 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435961, 1000 axioms selected
SWW183 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 435976, 1000 axioms selected
SWW184 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436008, 1000 axioms selected
SWW185 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436014, 1000 axioms selected
SWW186 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436017, 1000 axioms selected
SWW187 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436040, 1000 axioms selected
SWW188 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436050, 1000 axioms selected
SWW189 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436150, 1000 axioms selected
SWW190 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436218, 1000 axioms selected
SWW191 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436301, 1000 axioms selected
SWW192 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436367, 1000 axioms selected
SWW193 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436375, 1000 axioms selected
SWW194 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436385, 1000 axioms selected
SWW195 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436428, 1000 axioms selected
SWW196 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436457, 1000 axioms selected
SWW197 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436496, 1000 axioms selected
SWW198 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436513, 1000 axioms selected
SWW199 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436542, 1000 axioms selected
SWW200 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436548, 1000 axioms selected
SWW201 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436554, 1000 axioms selected
SWW202 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436595, 1000 axioms selected
SWW203 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436645, 1000 axioms selected
SWW204 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436686, 1000 axioms selected
SWW205 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436729, 1000 axioms selected
SWW206 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436790, 1000 axioms selected
SWW207 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436793, 1000 axioms selected
SWW208 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436796, 1000 axioms selected
SWW209 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436838, 1000 axioms selected
SWW210 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436865, 1000 axioms selected
SWW211 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436883, 1000 axioms selected
SWW212 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436896, 1000 axioms selected
SWW213 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 436927, 1000 axioms selected
SWW214 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437024, 1000 axioms selected
SWW215 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437032, 1000 axioms selected
SWW216 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437039, 1000 axioms selected
SWW217 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437055, 1000 axioms selected
SWW218 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437188, 1000 axioms selected
SWW219 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437243, 1000 axioms selected
SWW220 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437256, 1000 axioms selected
SWW221 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437286, 1000 axioms selected
SWW222 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437292, 1000 axioms selected
SWW223 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437345, 1000 axioms selected
SWW224 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437353, 1000 axioms selected
SWW225 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437364, 1000 axioms selected
SWW226 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437395, 1000 axioms selected
SWW227 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437401, 1000 axioms selected
SWW228 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437408, 1000 axioms selected
SWW229 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437418, 1000 axioms selected
SWW230 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437425, 1000 axioms selected
SWW231 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437535, 1000 axioms selected
SWW232 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437571, 1000 axioms selected
SWW233 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437578, 1000 axioms selected
SWW234 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437593, 1000 axioms selected
SWW235 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437607, 1000 axioms selected
SWW236 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437656, 1000 axioms selected
SWW237 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437661, 1000 axioms selected
SWW238 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437668, 1000 axioms selected
SWW239 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437881, 1000 axioms selected
SWW240 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437906, 1000 axioms selected
SWW241 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437942, 1000 axioms selected
SWW242 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437948, 1000 axioms selected
SWW243 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437955, 1000 axioms selected
SWW244 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437966, 1000 axioms selected
SWW245 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 437984, 1000 axioms selected
SWW246 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438015, 1000 axioms selected
SWW247 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438028, 1000 axioms selected
SWW248 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438044, 1000 axioms selected
SWW249 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438050, 1000 axioms selected
SWW250 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438056, 1000 axioms selected
SWW251 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438099, 1000 axioms selected
SWW252 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438232, 1000 axioms selected
SWW253 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438289, 1000 axioms selected
SWW254 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438294, 1000 axioms selected
SWW255 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438334, 1000 axioms selected
SWW256 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438374, 1000 axioms selected
SWW257 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438394, 1000 axioms selected
SWW258 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438432, 1000 axioms selected
SWW259 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438445, 1000 axioms selected
SWW260 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438454, 1000 axioms selected
SWW261 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438497, 1000 axioms selected
SWW262 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438508, 1000 axioms selected
SWW263 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438511, 1000 axioms selected
SWW264 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438525, 1000 axioms selected
SWW265 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438531, 1000 axioms selected
SWW266 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438548, 1000 axioms selected
SWW267 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438578, 1000 axioms selected
SWW268 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438679, 1000 axioms selected
SWW269 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438694, 1000 axioms selected
SWW270 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438763, 1000 axioms selected
SWW271 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438896, 1000 axioms selected
SWW272 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438914, 1000 axioms selected
SWW273 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438947, 1000 axioms selected
SWW274 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438953, 1000 axioms selected
SWW275 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438956, 1000 axioms selected
SWW276 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438974, 1000 axioms selected
SWW277 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 438996, 1000 axioms selected
SWW278 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439017, 1000 axioms selected
SWW279 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439060, 1000 axioms selected
SWW280 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439066, 1000 axioms selected
SWW281 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439072, 1000 axioms selected
SWW282 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439078, 1000 axioms selected
SWW283 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439185, 1000 axioms selected
SWW284 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439200, 1000 axioms selected
SWW285 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439224, 1000 axioms selected
SWW286 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439273, 1000 axioms selected
SWW287 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439334, 1000 axioms selected
SWW288 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439417, 1000 axioms selected
SWW289 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439601, 1000 axioms selected
SWW290 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439641, 1000 axioms selected
SWW291 ( -0 +1 _0 ^0) Fundamental Theorem of Algebra 439789, 1000 axioms selected
SWW292 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434693, 5000 axioms selected
SWW293 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434709, 5000 axioms selected
SWW294 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434712, 5000 axioms selected
SWW295 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434731, 5000 axioms selected
SWW296 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434750, 5000 axioms selected
SWW297 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434756, 5000 axioms selected
SWW298 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434773, 5000 axioms selected
SWW299 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434795, 5000 axioms selected
SWW300 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434814, 5000 axioms selected
SWW301 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434830, 5000 axioms selected
SWW302 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434833, 5000 axioms selected
SWW303 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434852, 5000 axioms selected
SWW304 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434871, 5000 axioms selected
SWW305 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434877, 5000 axioms selected
SWW306 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434896, 5000 axioms selected
SWW307 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434912, 5000 axioms selected
SWW308 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434931, 5000 axioms selected
SWW309 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434934, 5000 axioms selected
SWW310 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434937, 5000 axioms selected
SWW311 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434956, 5000 axioms selected
SWW312 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434967, 5000 axioms selected
SWW313 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434970, 5000 axioms selected
SWW314 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434973, 5000 axioms selected
SWW315 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434976, 5000 axioms selected
SWW316 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434982, 5000 axioms selected
SWW317 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 434986, 5000 axioms selected
SWW318 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435006, 5000 axioms selected
SWW319 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435026, 5000 axioms selected
SWW320 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435050, 5000 axioms selected
SWW321 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435053, 5000 axioms selected
SWW322 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435056, 5000 axioms selected
SWW323 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435059, 5000 axioms selected
SWW324 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435079, 5000 axioms selected
SWW325 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435085, 5000 axioms selected
SWW326 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435091, 5000 axioms selected
SWW327 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435097, 5000 axioms selected
SWW328 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435107, 5000 axioms selected
SWW329 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435126, 5000 axioms selected
SWW330 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435132, 5000 axioms selected
SWW331 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435138, 5000 axioms selected
SWW332 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435144, 5000 axioms selected
SWW333 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435147, 5000 axioms selected
SWW334 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435150, 5000 axioms selected
SWW335 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435171, 5000 axioms selected
SWW336 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435181, 5000 axioms selected
SWW337 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435184, 5000 axioms selected
SWW338 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435187, 5000 axioms selected
SWW339 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435190, 5000 axioms selected
SWW340 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435196, 5000 axioms selected
SWW341 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435199, 5000 axioms selected
SWW342 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435202, 5000 axioms selected
SWW343 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435205, 5000 axioms selected
SWW344 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435208, 5000 axioms selected
SWW345 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435211, 5000 axioms selected
SWW346 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435233, 5000 axioms selected
SWW347 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435255, 5000 axioms selected
SWW348 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435258, 5000 axioms selected
SWW349 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435261, 5000 axioms selected
SWW350 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435264, 5000 axioms selected
SWW351 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435295, 5000 axioms selected
SWW352 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435338, 5000 axioms selected
SWW353 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435344, 5000 axioms selected
SWW354 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435350, 5000 axioms selected
SWW355 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435356, 5000 axioms selected
SWW356 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435362, 5000 axioms selected
SWW357 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435408, 5000 axioms selected
SWW358 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435414, 5000 axioms selected
SWW359 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435420, 5000 axioms selected
SWW360 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435423, 5000 axioms selected
SWW361 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435426, 5000 axioms selected
SWW362 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435429, 5000 axioms selected
SWW363 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435435, 5000 axioms selected
SWW364 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435441, 5000 axioms selected
SWW365 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435444, 5000 axioms selected
SWW366 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435450, 5000 axioms selected
SWW367 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435453, 5000 axioms selected
SWW368 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435456, 5000 axioms selected
SWW369 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435466, 5000 axioms selected
SWW370 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435490, 5000 axioms selected
SWW371 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435513, 5000 axioms selected
SWW372 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435523, 5000 axioms selected
SWW373 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435529, 5000 axioms selected
SWW374 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435536, 5000 axioms selected
SWW375 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435539, 5000 axioms selected
SWW376 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435545, 5000 axioms selected
SWW377 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435564, 5000 axioms selected
SWW378 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435570, 5000 axioms selected
SWW379 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435576, 5000 axioms selected
SWW380 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435603, 5000 axioms selected
SWW381 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435609, 5000 axioms selected
SWW382 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435619, 5000 axioms selected
SWW383 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435622, 5000 axioms selected
SWW384 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435628, 5000 axioms selected
SWW385 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435658, 5000 axioms selected
SWW386 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435661, 5000 axioms selected
SWW387 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435664, 5000 axioms selected
SWW388 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435670, 5000 axioms selected
SWW389 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435715, 5000 axioms selected
SWW390 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435737, 5000 axioms selected
SWW391 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435756, 5000 axioms selected
SWW392 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435772, 5000 axioms selected
SWW393 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435778, 5000 axioms selected
SWW394 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435797, 5000 axioms selected
SWW395 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435820, 5000 axioms selected
SWW396 ( -0 +1 _0 ^0) Hoare's Logic with Procedures 435839, 5000 axioms selected
SWW397 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW398 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW399 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW400 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW401 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW402 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW403 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW404 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW405 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW406 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW407 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW408 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW409 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW410 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW411 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW412 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW413 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW414 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW415 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW416 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW417 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW418 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW419 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW420 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW421 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW422 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW423 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW424 ( -1 +0 _0 ^0) Verification Condition generated by Smallfoot
SWW425 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 10)
SWW426 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 10)
SWW427 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 11)
SWW428 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 11)
SWW429 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 12)
SWW430 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 12)
SWW431 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 13)
SWW432 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 13)
SWW433 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 14)
SWW434 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 14)
SWW435 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 15)
SWW436 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 15)
SWW437 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 16)
SWW438 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 16)
SWW439 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 17)
SWW440 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 17)
SWW441 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 18)
SWW442 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 18)
SWW443 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 19)
SWW444 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 19)
SWW445 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 20)
SWW446 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> \bot (n = 20)
SWW447 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 10)
SWW448 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 10)
SWW449 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 11)
SWW450 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 11)
SWW451 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 12)
SWW452 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 12)
SWW453 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 13)
SWW454 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 13)
SWW455 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 14)
SWW456 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 14)
SWW457 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 15)
SWW458 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 15)
SWW459 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 16)
SWW460 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 16)
SWW461 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 17)
SWW462 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 17)
SWW463 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 18)
SWW464 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 18)
SWW465 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 19)
SWW466 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 19)
SWW467 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 20)
SWW468 ( -1 +0 _0 ^0) Randomly generated entailment of the form F -> G (n = 20)
SWW469 ( -0 +2 _2 ^1) Hoare's Logic with Procedures line 112, 100 axioms selected
SWW470 ( -0 +6 _4 ^3) Hoare's Logic with Procedures line 200, 100 axioms selected
SWW471 ( -0 +6 _4 ^3) Hoare's Logic with Procedures line 269, 100 axioms selected
SWW472 ( -0 +6 _3 ^3) Hoare's Logic with Procedures line 327, 100 axioms selected
SWW473 ( -0 +6 _3 ^3) Hoare's Logic with Procedures line 383, 100 axioms selected
SWW474 ( -0 +6 _3 ^3) Hoare's Logic with Procedures line 440, 100 axioms selected
SWW475 ( -0 +6 _4 ^3) Java type soundness line 22, 100 axioms selected
SWW476 ( -0 +6 _4 ^3) Java type soundness line 197, 100 axioms selected
SWW477 ( -0 +6 _4 ^3) Java type soundness line 346, 100 axioms selected
SWW478 ( -0 +6 _3 ^3) Java type soundness line 479, 100 axioms selected
SWW479 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 18
SWW480 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 27
SWW481 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 35
SWW482 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 43
SWW483 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 50
SWW484 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 63
SWW485 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 78
SWW486 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 86
SWW487 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 100
SWW488 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 112
SWW490 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 128
SWW491 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 132
SWW492 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 142
SWW493 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 156
SWW494 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 162
SWW495 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 170
SWW496 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 176
SWW497 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 186
SWW498 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 194
SWW499 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 209
SWW500 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 213
SWW501 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 223
SWW502 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 227
SWW503 ( -0 +0 _1 ^0) Fundamental Theorem of Algebra line 235
SWW504 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 113
SWW505 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 126
SWW506 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 137
SWW507 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 144
SWW508 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 159
SWW509 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 182
SWW510 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 189
SWW511 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 199
SWW512 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 213
SWW513 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 217
SWW514 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 237
SWW515 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 241
SWW516 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 253
SWW517 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 257
SWW518 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 267
SWW519 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 272
SWW520 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 283
SWW521 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 287
SWW522 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 293
SWW523 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 307
SWW524 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 316
SWW525 ( -0 +0 _1 ^0) Hoare's Logic with Procedures line 320
SWW526 ( -0 +0 _1 ^0) Huffman's Algorithm line 385
SWW527 ( -0 +0 _1 ^0) Huffman's Algorithm line 464
SWW528 ( -0 +0 _1 ^0) Huffman's Algorithm line 468
SWW529 ( -0 +0 _1 ^0) Huffman's Algorithm line 545
SWW530 ( -0 +0 _1 ^0) Huffman's Algorithm line 569
SWW531 ( -0 +0 _1 ^0) Huffman's Algorithm line 587
SWW532 ( -0 +0 _1 ^0) Huffman's Algorithm line 625
SWW533 ( -0 +0 _1 ^0) Huffman's Algorithm line 648
SWW534 ( -0 +0 _1 ^0) Huffman's Algorithm line 689
SWW535 ( -0 +0 _1 ^0) Huffman's Algorithm line 792
SWW536 ( -0 +0 _1 ^0) Huffman's Algorithm line 806
SWW537 ( -0 +0 _1 ^0) Huffman's Algorithm line 822
SWW538 ( -0 +0 _1 ^0) Huffman's Algorithm line 895
SWW539 ( -0 +0 _1 ^0) Huffman's Algorithm line 935
SWW540 ( -0 +0 _1 ^0) Huffman's Algorithm line 978
SWW541 ( -0 +0 _1 ^0) Huffman's Algorithm line 1027
SWW542 ( -0 +0 _1 ^0) Huffman's Algorithm line 1048
SWW543 ( -0 +0 _1 ^0) Huffman's Algorithm line 1131
SWW544 ( -0 +0 _1 ^0) Huffman's Algorithm line 1135
SWW545 ( -0 +0 _1 ^0) Huffman's Algorithm line 1139
SWW546 ( -0 +0 _1 ^0) Huffman's Algorithm line 1143
SWW547 ( -0 +0 _1 ^0) Huffman's Algorithm line 1165
SWW548 ( -0 +0 _1 ^0) Huffman's Algorithm line 1217
SWW549 ( -0 +0 _1 ^0) Huffman's Algorithm line 1234
SWW550 ( -0 +0 _1 ^0) Huffman's Algorithm line 1274
SWW551 ( -0 +0 _1 ^0) Java type soundness line 26
SWW552 ( -0 +0 _1 ^0) Java type soundness line 35
SWW553 ( -0 +0 _1 ^0) Java type soundness line 42
SWW554 ( -0 +0 _1 ^0) Java type soundness line 60
SWW555 ( -0 +0 _1 ^0) Java type soundness line 76
SWW556 ( -0 +0 _1 ^0) Java type soundness line 112
SWW557 ( -0 +0 _1 ^0) Java type soundness line 123
SWW558 ( -0 +0 _1 ^0) Java type soundness line 140
SWW559 ( -0 +0 _1 ^0) Java type soundness line 150
SWW560 ( -0 +0 _1 ^0) Java type soundness line 160
SWW561 ( -0 +0 _1 ^0) Java type soundness line 185
SWW562 ( -0 +0 _1 ^0) Java type soundness line 227
SWW563 ( -0 +0 _1 ^0) Java type soundness line 236
SWW564 ( -0 +0 _1 ^0) Java type soundness line 251
SWW565 ( -0 +0 _1 ^0) Java type soundness line 265
SWW566 ( -0 +0 _1 ^0) Java type soundness line 278
SWW567 ( -0 +0 _1 ^0) Java type soundness line 291
SWW568 ( -0 +0 _1 ^0) Java type soundness line 317
SWW569 ( -0 +0 _1 ^0) Java type soundness line 326
SWW570 ( -0 +0 _1 ^0) Java type soundness line 341
SWW571 ( -0 +0 _1 ^0) Java type soundness line 350
SWW572 ( -0 +0 _1 ^0) Java type soundness line 364
SWW573 ( -0 +0 _1 ^0) Algo63-T-WP parameter partition 
SWW574 ( -0 +0 _1 ^0) Algo64-T-WP parameter quicksort
SWW575 ( -0 +0 _1 ^0) Algo65-T-WP parameter find
SWW576 ( -0 +0 _1 ^0) Arm-T-WP parameter path init l2
SWW577 ( -0 +0 _1 ^0) Bellman ford-T-WP parameter bellman ford
SWW578 ( -0 +0 _1 ^0) Binary search-T-WP parameter binary search
SWW579 ( -0 +0 _1 ^0) Binary sqrt-T-WP parameter sqrt
SWW580 ( -0 +0 _1 ^0) Bresenham-T-WP parameter bresenham
SWW581 ( -0 +0 _1 ^0) Checking a large routine-T-WP parameter routine
SWW582 ( -0 +0 _1 ^0) Conjugate-T-WP parameter conjugate
SWW583 ( -0 +0 _1 ^0) Counting sort-T-WP parameter counting sort
SWW584 ( -0 +0 _1 ^0) Decrease1-T-WP parameter search rec
SWW585 ( -0 +0 _1 ^0) Defunctionalization-T-WP parameter eval 2
SWW586 ( -0 +0 _1 ^0) Dfa example-T-one w in r2
SWW587 ( -0 +0 _1 ^0) Dijkstra-T-WP parameter shortest path code
SWW588 ( -0 +0 _1 ^0) Division-T-WP parameter division
SWW589 ( -0 +0 _1 ^0) Edit distance-T-WP parameter distance
SWW590 ( -0 +0 _1 ^0) Euler001-T-Closed formula n 15
SWW591 ( -0 +0 _1 ^0) Fib memo-T-WP parameter memo fibo
SWW592 ( -0 +0 _1 ^0) Fibonacci-T-WP parameter logfib
SWW593 ( -0 +0 _1 ^0) Fill-T-WP parameter fill
SWW594 ( -0 +0 _1 ^0) Find-T-WP parameter find
SWW595 ( -0 +0 _1 ^0) Flag2-T-nb occ store neq neq
SWW596 ( -0 +0 _1 ^0) Flag2-T-WP parameter swap
SWW597 ( -0 +0 _1 ^0) Flag-T-WP parameter dutch flag
SWW598 ( -0 +0 _1 ^0) Foveoos11 challenge2-T-WP parameter maximum
SWW599 ( -0 +0 _1 ^0) Foveoos11 challenge3-T-WP parameter two equal elements
SWW600 ( -0 +0 _1 ^0) Gcd bezout-T-WP parameter gcd
SWW601 ( -0 +0 _1 ^0) Gcd-T-WP parameter gcd odd odd
SWW602 ( -0 +0 _1 ^0) Generate all trees-T-WP parameter all trees
SWW603 ( -0 +0 _1 ^0) Generate all trees-T-WP parameter combine
SWW604 ( -0 +0 _1 ^0) Hashtbl impl-T-WP parameter clear
SWW605 ( -0 +0 _1 ^0) Hashtbl impl-T-WP parameter resize
SWW606 ( -0 +0 _1 ^0) Insertion sort naive-T-WP parameter sort
SWW607 ( -0 +0 _1 ^0) Insertion sort-T-WP parameter insertion sort
SWW608 ( -0 +0 _1 ^0) Inverse in place-T-WP parameter test1
SWW609 ( -0 +0 _1 ^0) Isqrt-T-WP parameter sqrt
SWW610 ( -0 +0 _1 ^0) Kmp-T-matches right weakening
SWW611 ( -0 +0 _1 ^0) Kmp-T-WP parameter initnext
SWW612 ( -0 +0 _1 ^0) Knuth prime numbers-T-WP parameter prime numbers
SWW613 ( -0 +0 _1 ^0) Largest prime factor-T-WP parameter largest prime factor
SWW614 ( -0 +0 _1 ^0) Lcp-T-WP parameter lcp
SWW615 ( -0 +0 _1 ^0) Linked list rev-T-WP parameter in place reverse
SWW616 ( -0 +0 _1 ^0) Maximum subarray-T-WP parameter maximum subarray rec
SWW617 ( -0 +0 _1 ^0) Max matrix-T-WP parameter maximum
SWW618 ( -0 +0 _1 ^0) Max matrix-T-WP parameter maxmat
SWW619 ( -0 +0 _1 ^0) Mergesort array-T-WP parameter bottom up mergesort
SWW620 ( -0 +0 _1 ^0) Mergesort array-T-WP parameter find run
SWW621 ( -0 +0 _1 ^0) Mergesort array-T-WP parameter merge
SWW622 ( -0 +0 _1 ^0) Mergesort array-T-WP parameter mergesort rec
SWW623 ( -0 +0 _1 ^0) Mergesort array-T-WP parameter naturalrec
SWW624 ( -0 +0 _1 ^0) Mergesort list-T-permut prefix
SWW625 ( -0 +0 _1 ^0) Mergesort list-T-WP parameter rev merge rev
SWW626 ( -0 +0 _1 ^0) Mergesort list-T-WP parameter rev sort
SWW627 ( -0 +0 _1 ^0) Mergesort list-T-WP parameter sort
SWW628 ( -0 +0 _1 ^0) Mergesort queue-T-WP parameter merge
SWW629 ( -0 +0 _1 ^0) Mergesort queue-T-WP parameter mergesort
SWW630 ( -0 +0 _1 ^0) Mjrty-T-WP parameter mjrty
SWW631 ( -0 +0 _1 ^0) Optimal replay-T-WP parameter distance
SWW632 ( -0 +0 _1 ^0) Power-T-WP parameter fast exp imperative
SWW633 ( -0 +0 _1 ^0) Power-T-WP parameter fast exp
SWW634 ( -0 +0 _1 ^0) Queens-T-WP parameter queens3
SWW635 ( -0 +0 _1 ^0) Queens-T-WP parameter t3
SWW636 ( -0 +0 _1 ^0) Quicksort-T-WP parameter quick rec
SWW637 ( -0 +0 _1 ^0) Relabel-T-WP parameter relabel
SWW638 ( -0 +0 _1 ^0) Residual-T-WP parameter accepts epsilon
SWW639 ( -0 +0 _1 ^0) Resizable array-T-WP parameter test2
SWW640 ( -0 +0 _1 ^0) Ropes-T-WP parameter insert leaves
SWW641 ( -0 +0 _1 ^0) Ropes-T-WP parameter insert
SWW642 ( -0 +0 _1 ^0) Sf-T-WP parameter factorial
SWW643 ( -0 +0 _1 ^0) Sorted list-T-WP parameter find
SWW644 ( -0 +0 _1 ^0) Sudoku-T-WP parameter check valid
SWW645 ( -0 +0 _1 ^0) Sudoku-T-WP parameter classical sudoku
SWW646 ( -0 +0 _1 ^0) Sudoku-T-WP parameter solve aux
SWW647 ( -0 +0 _1 ^0) Sum of digits-T-WP parameter f
SWW648 ( -0 +0 _1 ^0) There and back again-T-WP parameter convolution rec
SWW649 ( -0 +0 _1 ^0) There and back again-T-WP parameter palindrome rec
SWW650 ( -0 +0 _1 ^0) Tortoise and hare-T-WP parameter tortoise hare
SWW651 ( -0 +0 _1 ^0) Toy compiler-T-WP parameter soundness gen
SWW652 ( -0 +0 _1 ^0) Vacid 0 build maze-T-Ineq1
SWW653 ( -0 +0 _1 ^0) Vacid 0 build maze-T-WP parameter build maze
SWW654 ( -0 +0 _1 ^0) Vacid 0 red black trees-T-WP parameter lbalance
SWW655 ( -0 +0 _1 ^0) Vacid 0 red black trees-T-WP parameter rbalance
SWW656 ( -0 +0 _1 ^0) Verifythis fm2012 LRS-T-le trans
SWW657 ( -0 +0 _1 ^0) Verifythis fm2012 LRS-T-longest common prefix succ
SWW658 ( -0 +0 _1 ^0) Verifythis fm2012 LRS-T-WP parameter compare
SWW659 ( -0 +0 _1 ^0) Verifythis fm2012 LRS-T-WP parameter lcp
SWW660 ( -0 +0 _1 ^0) Verifythis fm2012 LRS-T-WP parameter sort
SWW661 ( -0 +0 _1 ^0) Verifythis fm2012 treedel-T-inorder zip
SWW662 ( -0 +0 _1 ^0) Verifythis PrefixSumRec-T-is power of 2 1
SWW663 ( -0 +0 _1 ^0) Verifythis PrefixSumRec-T-WP parameter compute sums
SWW664 ( -0 +0 _1 ^0) Verifythis PrefixSumRec-T-WP parameter downsweep
SWW665 ( -0 +0 _1 ^0) Verifythis PrefixSumRec-T-WP parameter upsweep
SWW666 ( -0 +0 _1 ^0) Vstte10 inverting-T-WP parameter test
SWW667 ( -0 +0 _1 ^0) Vstte10 max sum-T-WP parameter max sum
SWW668 ( -0 +0 _1 ^0) Vstte10 max sum-T-WP parameter test
SWW669 ( -0 +0 _1 ^0) Vstte10 queens-T-WP parameter bt queens
SWW670 ( -0 +0 _1 ^0) Vstte10 search list-T-WP parameter search loop
SWW671 ( -0 +0 _1 ^0) Vstte10 search list-T-WP parameter search
SWW672 ( -0 +0 _1 ^0) Vstte12 bfs-T-WP parameter bfs
SWW673 ( -0 +1 _0 ^0) Priority queue checker
SWW674 ( -0 +0 _0 ^1) ICL logic based upon modal logic based upon simple type theory
SWW675 ( -1 +0 _0 ^0) Lists in Separation Logic
SWW676 ( -0 +0 _1 ^0) Binary seach algorithm
SWW677 ( -0 +0 _1 ^0) Binary seach algorithm
SWW678 ( -0 +0 _1 ^0) Binary seach algorithm using trees
SWW679 ( -0 +0 _1 ^0) Binary seach algorithm using trees
SWW680 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 1
SWW681 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 5
SWW682 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 9
SWW683 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 13
SWW684 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 17
SWW685 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 21
SWW686 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 25
SWW687 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 29
SWW688 ( -0 +0 _1 ^0) WP parameter bottom up mergesort 33
SWW689 ( -0 +0 _1 ^0) WP parameter bottom up mergesort
SWW690 ( -0 +0 _1 ^0) WP parameter merge 1
SWW691 ( -0 +0 _1 ^0) WP parameter merge 6
SWW692 ( -0 +0 _1 ^0) WP parameter merge 11
SWW693 ( -0 +0 _1 ^0) WP parameter merge 16
SWW694 ( -0 +0 _1 ^0) WP parameter merge 21
SWW695 ( -0 +0 _1 ^0) WP parameter merge 31
SWW696 ( -0 +0 _1 ^0) WP parameter merge 36
SWW697 ( -0 +0 _1 ^0) WP parameter merge 41
SWW698 ( -0 +0 _1 ^0) WP parameter merge 46
SWW699 ( -0 +0 _1 ^0) WP parameter merge 51
SWW700 ( -0 +0 _1 ^0) WP parameter merge
SWW701 ( -0 +0 _1 ^0) WP parameter merge using 1
SWW702 ( -0 +0 _1 ^0) WP parameter merge using 4
SWW703 ( -0 +0 _1 ^0) WP parameter merge using 7
SWW704 ( -0 +0 _1 ^0) WP parameter merge using 10
SWW705 ( -0 +0 _1 ^0) WP parameter merge using 13
SWW706 ( -0 +0 _1 ^0) WP parameter merge using
SWW707 ( -0 +0 _1 ^0) WP parameter find run 1
SWW708 ( -0 +0 _1 ^0) WP parameter find run 4
SWW709 ( -0 +0 _1 ^0) WP parameter find run 7
SWW710 ( -0 +0 _1 ^0) WP parameter find run 10
SWW711 ( -0 +0 _1 ^0) WP parameter find run
SWW712 ( -0 +0 _1 ^0) WP parameter natural mergesort 1
SWW713 ( -0 +0 _1 ^0) WP parameter natural mergesort 5
SWW714 ( -0 +0 _1 ^0) WP parameter natural mergesort 9
SWW715 ( -0 +0 _1 ^0) WP parameter natural mergesort 13
SWW716 ( -0 +0 _1 ^0) WP parameter natural mergesort 17
SWW717 ( -0 +0 _1 ^0) WP parameter natural mergesort 211
SWW718 ( -0 +0 _1 ^0) WP parameter natural mergesort 22
SWW719 ( -0 +0 _1 ^0) WP parameter natural mergesort 30
SWW720 ( -0 +0 _1 ^0) WP parameter natural mergesort 34
SWW721 ( -0 +0 _1 ^0) WP parameter natural mergesort
SWW722 ( -0 +0 _1 ^0) WP parameter naturalrec 1
SWW723 ( -0 +0 _1 ^0) WP parameter naturalrec 6
SWW724 ( -0 +0 _1 ^0) WP parameter naturalrec 11
SWW725 ( -0 +0 _1 ^0) WP parameter naturalrec 16
SWW726 ( -0 +0 _1 ^0) WP parameter naturalrec 21
SWW727 ( -0 +0 _1 ^0) WP parameter naturalrec 26
SWW728 ( -0 +0 _1 ^0) WP parameter naturalrec 31
SWW729 ( -0 +0 _1 ^0) WP parameter naturalrec 36
SWW730 ( -0 +0 _1 ^0) WP parameter naturalrec
SWW731 ( -0 +0 _1 ^0) WP parameter mergesort 1
SWW732 ( -0 +0 _1 ^0) WP parameter mergesort 2
SWW733 ( -0 +0 _1 ^0) WP parameter mergesort
SWW734 ( -0 +0 _1 ^0) WP parameter mergesort rec 1
SWW735 ( -0 +0 _1 ^0) WP parameter mergesort rec 4
SWW736 ( -0 +0 _1 ^0) WP parameter mergesort rec 7
SWW737 ( -0 +0 _1 ^0) WP parameter mergesort rec 10
SWW738 ( -0 +0 _1 ^0) WP parameter mergesort rec 13
SWW739 ( -0 +0 _1 ^0) WP parameter mergesort rec
SWW740 ( -0 +0 _1 ^0) Ranise problem P01
SWW741 ( -0 +0 _1 ^0) Ranise problem P02
SWW742 ( -0 +0 _1 ^0) Ranise problem P03
SWW743 ( -0 +0 _1 ^0) Ranise problem P04
SWW744 ( -0 +0 _1 ^0) Ranise problem P05
SWW745 ( -0 +0 _1 ^0) Ranise problem P06
SWW746 ( -0 +0 _1 ^0) Ranise problem P07
SWW747 ( -0 +0 _1 ^0) Ranise problem P08
SWW748 ( -0 +0 _1 ^0) Ranise problem P09
SWW749 ( -0 +0 _1 ^0) Spec# benchmark
SWW750 ( -0 +0 _1 ^0) Spec# benchmark
SWW751 ( -0 +0 _1 ^0) Spec# benchmark
SWW752 ( -0 +0 _1 ^0) Spec# benchmark
SWW753 ( -0 +0 _1 ^0) Spec# benchmark
SWW754 ( -0 +0 _1 ^0) Spec# benchmark
SWW755 ( -0 +0 _1 ^0) Spec# benchmark
SWW756 ( -0 +0 _1 ^0) Spec# benchmark
SWW757 ( -0 +0 _1 ^0) Spec# benchmark
SWW758 ( -0 +0 _1 ^0) Spec# benchmark
SWW759 ( -0 +0 _1 ^0) Spec# benchmark
SWW760 ( -0 +0 _1 ^0) Spec# benchmark
SWW761 ( -0 +0 _1 ^0) Spec# benchmark
SWW762 ( -0 +0 _1 ^0) Spec# benchmark
SWW763 ( -0 +0 _1 ^0) Spec# benchmark
SWW764 ( -0 +0 _1 ^0) Spec# benchmark
SWW765 ( -0 +0 _1 ^0) Spec# benchmark
SWW766 ( -0 +0 _1 ^0) Spec# benchmark
SWW767 ( -0 +0 _1 ^0) Spec# benchmark
SWW768 ( -0 +0 _1 ^0) Spec# benchmark
SWW769 ( -0 +0 _1 ^0) Spec# benchmark
SWW770 ( -0 +0 _1 ^0) Spec# benchmark
SWW771 ( -0 +0 _1 ^0) Spec# benchmark
SWW772 ( -0 +0 _1 ^0) Spec# benchmark
SWW773 ( -0 +0 _1 ^0) Spec# benchmark
SWW774 ( -0 +0 _1 ^0) Spec# benchmark
SWW775 ( -0 +0 _1 ^0) Spec# benchmark
SWW776 ( -0 +0 _1 ^0) Spec# benchmark
SWW777 ( -0 +0 _1 ^0) Spec# benchmark
SWW778 ( -0 +0 _1 ^0) Spec# benchmark
SWW779 ( -0 +0 _1 ^0) Spec# benchmark
SWW780 ( -0 +0 _1 ^0) Spec# benchmark
SWW781 ( -0 +0 _1 ^0) Spec# benchmark
SWW782 ( -0 +0 _1 ^0) Spec# benchmark
SWW783 ( -0 +0 _1 ^0) Spec# benchmark
SWW784 ( -0 +0 _1 ^0) Spec# benchmark
SWW785 ( -0 +0 _1 ^0) Spec# benchmark
SWW786 ( -0 +0 _1 ^0) Spec# benchmark
SWW787 ( -0 +0 _1 ^0) Spec# benchmark
SWW788 ( -0 +0 _1 ^0) Spec# benchmark
SWW789 ( -0 +0 _1 ^0) Spec# benchmark
SWW790 ( -0 +0 _1 ^0) Spec# benchmark
SWW791 ( -0 +0 _1 ^0) Spec# benchmark
SWW792 ( -0 +0 _1 ^0) Spec# benchmark
SWW793 ( -0 +0 _1 ^0) Spec# benchmark
SWW794 ( -0 +0 _1 ^0) Spec# benchmark
SWW795 ( -0 +0 _1 ^0) Spec# benchmark
SWW796 ( -0 +0 _1 ^0) Spec# benchmark
SWW797 ( -0 +0 _1 ^0) Spec# benchmark
SWW798 ( -0 +0 _1 ^0) Spec# benchmark
SWW799 ( -0 +0 _1 ^0) Spec# benchmark
SWW800 ( -0 +0 _1 ^0) Spec# benchmark
SWW801 ( -0 +0 _1 ^0) Spec# benchmark
SWW802 ( -0 +0 _1 ^0) Spec# benchmark
SWW803 ( -0 +0 _1 ^0) Spec# benchmark
SWW804 ( -0 +0 _1 ^0) Spec# benchmark
SWW805 ( -0 +0 _1 ^0) Spec# benchmark
SWW806 ( -0 +0 _1 ^0) Spec# benchmark
SWW807 ( -0 +0 _1 ^0) Spec# benchmark
SWW808 ( -0 +0 _1 ^0) Spec# benchmark
SWW809 ( -0 +0 _1 ^0) Why benchmark problem
SWW810 ( -0 +0 _1 ^0) Why benchmark problem
SWW811 ( -0 +0 _1 ^0) Why benchmark problem
SWW812 ( -0 +0 _1 ^0) Why benchmark problem
SWW813 ( -0 +0 _1 ^0) Why benchmark problem
SWW814 ( -0 +0 _1 ^0) Why benchmark problem
SWW815 ( -0 +0 _1 ^0) Why benchmark problem
SWW816 ( -0 +0 _1 ^0) Why benchmark problem
SWW817 ( -0 +0 _1 ^0) Why benchmark problem
SWW818 ( -0 +0 _1 ^0) Why benchmark problem
SWW819 ( -0 +0 _1 ^0) Why benchmark problem
SWW820 ( -0 +0 _1 ^0) Why benchmark problem
SWW821 ( -0 +0 _1 ^0) Why benchmark problem
SWW822 ( -0 +0 _1 ^0) Fast Fourier Transform 549916
SWW823 ( -0 +0 _1 ^0) Fast Fourier Transform 629331
SWW824 ( -0 +0 _1 ^0) Fast Fourier Transform 640322
SWW825 ( -0 +0 _1 ^0) Fast Fourier Transform 660068
SWW826 ( -0 +0 _1 ^0) Fast Fourier Transform 682065
SWW827 ( -0 +0 _1 ^0) Fast Fourier Transform 701996
SWW828 ( -0 +0 _1 ^0) Fast Fourier Transform 763357
SWW829 ( -0 +0 _1 ^0) Fast Fourier Transform 802565
SWW830 ( -0 +0 _1 ^0) Fast Fourier Transform 834515
SWW831 ( -0 +0 _1 ^0) Fast Fourier Transform 869906
SWW832 ( -0 +0 _1 ^0) Fast Fourier Transform 942602
SWW833 ( -0 +0 _1 ^0) Fast Fourier Transform 614416
SWW834 ( -0 +0 _1 ^0) Fast Fourier Transform 631366
SWW835 ( -0 +0 _1 ^0) Fast Fourier Transform 640466
SWW836 ( -0 +0 _1 ^0) Fast Fourier Transform 661347
SWW837 ( -0 +0 _1 ^0) Fast Fourier Transform 675189
SWW838 ( -0 +0 _1 ^0) Fast Fourier Transform 689469
SWW839 ( -0 +0 _1 ^0) Fast Fourier Transform 747041
SWW840 ( -0 +0 _1 ^0) Fast Fourier Transform 766657
SWW841 ( -0 +0 _1 ^0) Fast Fourier Transform 788234
SWW842 ( -0 +0 _1 ^0) Fast Fourier Transform 807772
SWW843 ( -0 +0 _1 ^0) Fast Fourier Transform 828944
SWW844 ( -0 +0 _1 ^0) Fast Fourier Transform 853412
SWW845 ( -0 +0 _1 ^0) Fast Fourier Transform 872699
SWW846 ( -0 +0 _1 ^0) Fast Fourier Transform 914698
SWW847 ( -0 +0 _1 ^0) Fast Fourier Transform 943708
-------------------------------------------------------------------------------
Domain SYN = Syntactic
1308 problems (986 abstract), 844 CNF, 375 FOF, 5 TFF, 84 THF
-------------------------------------------------------------------------------
SYN000 ( -2 +2 _5 ^3) Basic TPTP FOF syntax
SYN001 ( -1 +1 _0 ^4) Pelletier 2
SYN002 ( -1 +0 _0 ^0) Odd and Even Problem
SYN003 ( -1 +0 _0 ^0) Implications that form a contradiction
SYN004 ( -1 +0 _0 ^0) Implications that form a contradiction
SYN005 ( -1 +0 _0 ^0) Disjunctions that form a contradiction
SYN006 ( -1 +0 _0 ^0) A problem to demonstrate controlling splits
SYN007 ( -0 +1 _0 ^1) Pelletier Problem 71
SYN008 ( -1 +0 _0 ^0) A problem to demonstrate the usefulness of relevancy testing
SYN009 ( -4 +0 _0 ^0) A problem to demonstrate the usefulness of relevancy testing
SYN010 ( -1 +0 _0 ^0) Example for Proposition 5.2 in [LMG94]
SYN011 ( -1 +0 _0 ^0) A problem to demonstrate C-reduction
SYN012 ( -1 +0 _0 ^0) A problem to demonstrate Model Elimination
SYN013 ( -1 +0 _0 ^0) A problem in quantification theory
SYN014 ( -2 +0 _0 ^0) A problem in quantification theory
SYN015 ( -2 +0 _0 ^0) A problem in quantification theory
SYN028 ( -1 +0 _0 ^0) EW1
SYN029 ( -1 +0 _0 ^0) EW2
SYN030 ( -1 +0 _0 ^0) EW3
SYN031 ( -1 +0 _0 ^0) MQW
SYN032 ( -1 +0 _0 ^0) Ances
SYN033 ( -1 +0 _0 ^0) DM
SYN034 ( -1 +0 _0 ^0) QW
SYN035 ( -1 +0 _0 ^0) ROB1
SYN036 ( -4 +2 _0 ^2) Andrews Challenge Problem
SYN037 ( -2 +0 _0 ^0) Andrews Challenge Problem Variant
SYN038 ( -1 +0 _0 ^0) Syntactic formula
SYN039 ( -1 +0 _0 ^0) A challenge to resolution programs
SYN040 ( -1 +1 _0 ^1) Pelletier Problem 1
SYN041 ( -1 +1 _0 ^1) Pelletier Problem 3
SYN044 ( -1 +1 _0 ^1) Pelletier Problem 10
SYN045 ( -1 +1 _0 ^2) Pelletier Problem 13
SYN046 ( -1 +1 _0 ^1) Pelletier Problem 15
SYN047 ( -1 +1 _0 ^1) Pelletier Problem 17
SYN048 ( -1 +1 _0 ^0) Pelletier Problem 18
SYN049 ( -1 +1 _0 ^1) Pelletier Problem 19
SYN050 ( -1 +1 _0 ^0) Pelletier Problem 20
SYN051 ( -1 +1 _0 ^1) Pelletier Problem 21
SYN052 ( -1 +1 _0 ^1) Pelletier Problem 22
SYN053 ( -1 +1 _0 ^0) Pelletier Problem 23
SYN054 ( -1 +1 _0 ^0) Pelletier Problem 24
SYN055 ( -1 +1 _0 ^1) Pelletier Problem 25
SYN056 ( -1 +1 _0 ^1) Pelletier Problem 26
SYN057 ( -1 +1 _0 ^1) Pelletier Problem 27
SYN058 ( -1 +1 _0 ^1) Pelletier Problem 28
SYN059 ( -1 +1 _0 ^1) Pelletier Problem 29
SYN060 ( -1 +1 _0 ^0) Pelletier Problem 30
SYN061 ( -1 +1 _0 ^0) Pelletier Problem 31
SYN062 ( -1 +1 _0 ^0) Pelletier Problem 32
SYN063 ( -2 +1 _0 ^0) Pelletier Problem 33
SYN064 ( -1 +1 _0 ^1) Pelletier Problem 35
SYN065 ( -1 +1 _0 ^0) Pelletier Problem 36
SYN066 ( -1 +1 _0 ^0) Pelletier Problem 37
SYN067 ( -3 +1 _0 ^0) Pelletier Problem 38
SYN068 ( -1 +1 _0 ^0) Pelletier Problem 44
SYN069 ( -1 +1 _0 ^0) Pelletier Problem 45
SYN070 ( -1 +1 _0 ^0) Pelletier Problem 46
SYN071 ( -1 +1 _0 ^0) Pelletier Problem 48
SYN072 ( -1 +1 _0 ^0) Pelletier Problem 49
SYN073 ( -1 +1 _0 ^0) Pelletier Problem 50
SYN074 ( -1 +1 _0 ^0) Pelletier Problem 51
SYN075 ( -1 +1 _0 ^0) Pelletier Problem 52
SYN076 ( -1 +1 _0 ^0) Pelletier Problem 53
SYN077 ( -1 +1 _0 ^0) Pelletier Problem 54
SYN078 ( -1 +1 _0 ^0) Pelletier Problem 56
SYN079 ( -1 +1 _0 ^0) Pelletier Problem 57
SYN080 ( -1 +1 _0 ^0) Pelletier Problem 58
SYN081 ( -1 +1 _0 ^0) Pelletier Problem 59
SYN082 ( -1 +1 _0 ^0) Pelletier Problem 60
SYN083 ( -1 +1 _0 ^0) Pelletier Problem 61
SYN084 ( -2 +1 _0 ^0) Pelletier Problem 62
SYN085 ( -1 +0 _0 ^0) Plaisted problem s(1,10)
SYN086 ( -1 +0 _0 ^0) Plaisted problem s(2,3)
SYN087 ( -1 +0 _0 ^0) Plaisted problem s(3,3)
SYN088 ( -1 +0 _0 ^0) Plaisted problem s(4,10)
SYN089 ( -1 +0 _0 ^0) Plaisted problem t(2,2)
SYN090 ( -1 +0 _0 ^0) Plaisted problem t(3,8)
SYN091 ( -1 +0 _0 ^0) Plaisted problem sym(s(2,3))
SYN092 ( -1 +0 _0 ^0) Plaisted problem sym(s(3,3))
SYN093 ( -1 +0 _0 ^0) Plaisted problem u(t(2,2))
SYN094 ( -1 +0 _0 ^0) Plaisted problem u(t(3,5))
SYN095 ( -1 +0 _0 ^0) Plaisted problem m(t(2,2))
SYN096 ( -1 +0 _0 ^0) Plaisted problem m(t(3,8))
SYN097 ( -1 +0 _0 ^0) Plaisted problem sym(u(t(2,2)))
SYN098 ( -1 +0 _0 ^0) Plaisted problem sym(u(t(3,2)))
SYN099 ( -1 +0 _0 ^0) Plaisted problem sym(m(t(2,3)))
SYN100 ( -1 +0 _0 ^0) Plaisted problem sym(m(t(3,5)))
SYN101 ( -1 +0 _0 ^0) Plaisted problem n(t(2,2),2)
SYN102 ( -1 +0 _0 ^0) Plaisted problem n(t(3,7),7)
SYN103 ( -1 +0 _0 ^0) RPT63 synthetic problem 1 (quasi-uniform distribution)
SYN104 ( -1 +0 _0 ^0) RPT63 synthetic problem 2 (quasi-uniform distribution)
SYN105 ( -1 +0 _0 ^0) RPT63 synthetic problem 3 (quasi-uniform distribution)
SYN106 ( -1 +0 _0 ^0) RPT63 synthetic problem 4 (quasi-uniform distribution)
SYN107 ( -1 +0 _0 ^0) RPT63 synthetic problem 5 (quasi-uniform distribution)
SYN108 ( -1 +0 _0 ^0) RPT63 synthetic problem 6 (quasi-uniform distribution)
SYN109 ( -1 +0 _0 ^0) RPT63 synthetic problem 7 (quasi-uniform distribution)
SYN110 ( -1 +0 _0 ^0) RPT63 synthetic problem 8 (quasi-uniform distribution)
SYN111 ( -1 +0 _0 ^0) RPT63 synthetic problem 9 (quasi-uniform distribution)
SYN112 ( -1 +0 _0 ^0) RPT63 synthetic problem 10 (quasi-uniform distribution)
SYN113 ( -1 +0 _0 ^0) RPT63 synthetic problem 11 (quasi-uniform distribution)
SYN114 ( -1 +0 _0 ^0) RPT63 synthetic problem 12 (quasi-uniform distribution)
SYN115 ( -1 +0 _0 ^0) RPT63 synthetic problem 13 (quasi-uniform distribution)
SYN116 ( -1 +0 _0 ^0) RPT63 synthetic problem 14 (quasi-uniform distribution)
SYN117 ( -1 +0 _0 ^0) RPT63 synthetic problem 15 (quasi-uniform distribution)
SYN118 ( -1 +0 _0 ^0) RPT63 synthetic problem 16 (quasi-uniform distribution)
SYN119 ( -1 +0 _0 ^0) RPT63 synthetic problem 17 (quasi-uniform distribution)
SYN120 ( -1 +0 _0 ^0) RPT63 synthetic problem 18 (quasi-uniform distribution)
SYN121 ( -1 +0 _0 ^0) RPT63 synthetic problem 19 (quasi-uniform distribution)
SYN122 ( -1 +0 _0 ^0) RPT63 synthetic problem 20 (quasi-uniform distribution)
SYN123 ( -1 +0 _0 ^0) RPT63 synthetic problem 21 (quasi-uniform distribution)
SYN124 ( -1 +0 _0 ^0) RPT63 synthetic problem 22 (quasi-uniform distribution)
SYN125 ( -1 +0 _0 ^0) RPT63 synthetic problem 23 (quasi-uniform distribution)
SYN126 ( -1 +0 _0 ^0) RPT63 synthetic problem 24 (quasi-uniform distribution)
SYN127 ( -1 +0 _0 ^0) RPT63 synthetic problem 25 (quasi-uniform distribution)
SYN128 ( -1 +0 _0 ^0) RPT63 synthetic problem 26 (quasi-uniform distribution)
SYN129 ( -1 +0 _0 ^0) RPT63 synthetic problem 27 (quasi-uniform distribution)
SYN130 ( -1 +0 _0 ^0) RPT63 synthetic problem 28 (quasi-uniform distribution)
SYN131 ( -1 +0 _0 ^0) RPT63 synthetic problem 29 (quasi-uniform distribution)
SYN132 ( -1 +0 _0 ^0) RPT63 synthetic problem 30 (quasi-uniform distribution)
SYN133 ( -1 +0 _0 ^0) RPT63 synthetic problem 31 (quasi-uniform distribution)
SYN134 ( -1 +0 _0 ^0) RPT63 synthetic problem 32 (quasi-uniform distribution)
SYN135 ( -1 +0 _0 ^0) RPT63 synthetic problem 33 (quasi-uniform distribution)
SYN136 ( -1 +0 _0 ^0) RPT63 synthetic problem 34 (quasi-uniform distribution)
SYN137 ( -1 +0 _0 ^0) RPT63 synthetic problem 35 (quasi-uniform distribution)
SYN138 ( -1 +0 _0 ^0) RPT63 synthetic problem 36 (quasi-uniform distribution)
SYN139 ( -1 +0 _0 ^0) RPT63 synthetic problem 37 (quasi-uniform distribution)
SYN140 ( -1 +0 _0 ^0) RPT63 synthetic problem 38 (quasi-uniform distribution)
SYN141 ( -1 +0 _0 ^0) RPT63 synthetic problem 39 (quasi-uniform distribution)
SYN142 ( -1 +0 _0 ^0) RPT63 synthetic problem 40 (quasi-uniform distribution)
SYN143 ( -1 +0 _0 ^0) RPT63 synthetic problem 41 (quasi-uniform distribution)
SYN144 ( -1 +0 _0 ^0) RPT63 synthetic problem 42 (quasi-uniform distribution)
SYN145 ( -1 +0 _0 ^0) RPT63 synthetic problem 43 (quasi-uniform distribution)
SYN146 ( -1 +0 _0 ^0) RPT63 synthetic problem 44 (quasi-uniform distribution)
SYN147 ( -1 +0 _0 ^0) RPT63 synthetic problem 45 (quasi-uniform distribution)
SYN148 ( -1 +0 _0 ^0) RPT63 synthetic problem 46 (quasi-uniform distribution)
SYN149 ( -1 +0 _0 ^0) RPT63 synthetic problem 47 (quasi-uniform distribution)
SYN150 ( -1 +0 _0 ^0) RPT63 synthetic problem 48 (quasi-uniform distribution)
SYN151 ( -1 +0 _0 ^0) RPT63 synthetic problem 49 (quasi-uniform distribution)
SYN152 ( -1 +0 _0 ^0) RPT63 synthetic problem 50 (quasi-uniform distribution)
SYN153 ( -1 +0 _0 ^0) RPT63 synthetic problem 51 (quasi-uniform distribution)
SYN154 ( -1 +0 _0 ^0) RPT63 synthetic problem 52 (quasi-uniform distribution)
SYN155 ( -1 +0 _0 ^0) RPT63 synthetic problem 53 (quasi-uniform distribution)
SYN156 ( -1 +0 _0 ^0) RPT63 synthetic problem 54 (quasi-uniform distribution)
SYN157 ( -1 +0 _0 ^0) RPT63 synthetic problem 55 (quasi-uniform distribution)
SYN158 ( -1 +0 _0 ^0) RPT63 synthetic problem 56 (quasi-uniform distribution)
SYN159 ( -1 +0 _0 ^0) RPT63 synthetic problem 57 (quasi-uniform distribution)
SYN160 ( -1 +0 _0 ^0) RPT63 synthetic problem 58 (quasi-uniform distribution)
SYN161 ( -1 +0 _0 ^0) RPT63 synthetic problem 59 (quasi-uniform distribution)
SYN162 ( -1 +0 _0 ^0) RPT63 synthetic problem 60 (quasi-uniform distribution)
SYN163 ( -1 +0 _0 ^0) RPT63 synthetic problem 61 (quasi-uniform distribution)
SYN164 ( -1 +0 _0 ^0) RPT63 synthetic problem 62 (quasi-uniform distribution)
SYN165 ( -1 +0 _0 ^0) RPT63 synthetic problem 63 (quasi-uniform distribution)
SYN166 ( -1 +0 _0 ^0) RPT63 synthetic problem 64 (quasi-uniform distribution)
SYN167 ( -1 +0 _0 ^0) RPT63 synthetic problem 65 (quasi-uniform distribution)
SYN168 ( -1 +0 _0 ^0) RPT63 synthetic problem 66 (quasi-uniform distribution)
SYN169 ( -1 +0 _0 ^0) RPT63 synthetic problem 67 (quasi-uniform distribution)
SYN170 ( -1 +0 _0 ^0) RPT63 synthetic problem 68 (quasi-uniform distribution)
SYN171 ( -1 +0 _0 ^0) RPT63 synthetic problem 69 (quasi-uniform distribution)
SYN172 ( -1 +0 _0 ^0) RPT63 synthetic problem 70 (quasi-uniform distribution)
SYN173 ( -1 +0 _0 ^0) RPT63 synthetic problem 71 (quasi-uniform distribution)
SYN174 ( -1 +0 _0 ^0) RPT63 synthetic problem 72 (quasi-uniform distribution)
SYN175 ( -1 +0 _0 ^0) RPT63 synthetic problem 73 (quasi-uniform distribution)
SYN176 ( -1 +0 _0 ^0) RPT63 synthetic problem 74 (quasi-uniform distribution)
SYN177 ( -1 +0 _0 ^0) RPT63 synthetic problem 75 (quasi-uniform distribution)
SYN178 ( -1 +0 _0 ^0) RPT63 synthetic problem 76 (quasi-uniform distribution)
SYN179 ( -1 +0 _0 ^0) RPT63 synthetic problem 77 (quasi-uniform distribution)
SYN180 ( -1 +0 _0 ^0) RPT63 synthetic problem 78 (quasi-uniform distribution)
SYN181 ( -1 +0 _0 ^0) RPT63 synthetic problem 79 (quasi-uniform distribution)
SYN182 ( -1 +0 _0 ^0) RPT63 synthetic problem 80 (quasi-uniform distribution)
SYN183 ( -1 +0 _0 ^0) RPT63 synthetic problem 81 (quasi-uniform distribution)
SYN184 ( -1 +0 _0 ^0) RPT63 synthetic problem 82 (quasi-uniform distribution)
SYN185 ( -1 +0 _0 ^0) RPT63 synthetic problem 83 (quasi-uniform distribution)
SYN186 ( -1 +0 _0 ^0) RPT63 synthetic problem 84 (quasi-uniform distribution)
SYN187 ( -1 +0 _0 ^0) RPT63 synthetic problem 85 (quasi-uniform distribution)
SYN188 ( -1 +0 _0 ^0) RPT63 synthetic problem 86 (quasi-uniform distribution)
SYN189 ( -1 +0 _0 ^0) RPT63 synthetic problem 87 (quasi-uniform distribution)
SYN190 ( -1 +0 _0 ^0) RPT63 synthetic problem 88 (quasi-uniform distribution)
SYN191 ( -1 +0 _0 ^0) RPT63 synthetic problem 89 (quasi-uniform distribution)
SYN192 ( -1 +0 _0 ^0) RPT63 synthetic problem 90 (quasi-uniform distribution)
SYN193 ( -1 +0 _0 ^0) RPT63 synthetic problem 91 (quasi-uniform distribution)
SYN194 ( -1 +0 _0 ^0) RPT63 synthetic problem 92 (quasi-uniform distribution)
SYN195 ( -1 +0 _0 ^0) RPT63 synthetic problem 93 (quasi-uniform distribution)
SYN196 ( -1 +0 _0 ^0) RPT63 synthetic problem 94 (quasi-uniform distribution)
SYN197 ( -1 +0 _0 ^0) RPT63 synthetic problem 95 (quasi-uniform distribution)
SYN198 ( -1 +0 _0 ^0) RPT63 synthetic problem 96 (quasi-uniform distribution)
SYN199 ( -1 +0 _0 ^0) RPT63 synthetic problem 97 (quasi-uniform distribution)
SYN200 ( -1 +0 _0 ^0) RPT63 synthetic problem 98 (quasi-uniform distribution)
SYN201 ( -1 +0 _0 ^0) RPT63 synthetic problem 99 (quasi-uniform distribution)
SYN202 ( -1 +0 _0 ^0) RPT63 synthetic problem 100 (quasi-uniform distribution)
SYN203 ( -1 +0 _0 ^0) RPT63 synthetic problem 101 (quasi-uniform distribution)
SYN204 ( -1 +0 _0 ^0) RPT63 synthetic problem 102 (quasi-uniform distribution)
SYN205 ( -1 +0 _0 ^0) RPT63 synthetic problem 103 (quasi-uniform distribution)
SYN206 ( -1 +0 _0 ^0) RPT63 synthetic problem 104 (quasi-uniform distribution)
SYN207 ( -1 +0 _0 ^0) RPT63 synthetic problem 105 (quasi-uniform distribution)
SYN208 ( -1 +0 _0 ^0) RPT63 synthetic problem 106 (quasi-uniform distribution)
SYN209 ( -1 +0 _0 ^0) RPT63 synthetic problem 107 (quasi-uniform distribution)
SYN210 ( -1 +0 _0 ^0) RPT63 synthetic problem 108 (quasi-uniform distribution)
SYN211 ( -1 +0 _0 ^0) RPT63 synthetic problem 109 (quasi-uniform distribution)
SYN212 ( -1 +0 _0 ^0) RPT63 synthetic problem 110 (quasi-uniform distribution)
SYN213 ( -1 +0 _0 ^0) RPT63 synthetic problem 111 (quasi-uniform distribution)
SYN214 ( -1 +0 _0 ^0) RPT63 synthetic problem 112 (quasi-uniform distribution)
SYN215 ( -1 +0 _0 ^0) RPT63 synthetic problem 113 (quasi-uniform distribution)
SYN216 ( -1 +0 _0 ^0) RPT63 synthetic problem 1 (skewed distribution)
SYN217 ( -1 +0 _0 ^0) RPT63 synthetic problem 2 (skewed distribution)
SYN218 ( -1 +0 _0 ^0) RPT63 synthetic problem 3 (skewed distribution)
SYN219 ( -1 +0 _0 ^0) RPT63 synthetic problem 4 (skewed distribution)
SYN220 ( -1 +0 _0 ^0) RPT63 synthetic problem 5 (skewed distribution)
SYN221 ( -1 +0 _0 ^0) RPT63 synthetic problem 6 (skewed distribution)
SYN222 ( -1 +0 _0 ^0) RPT63 synthetic problem 7 (skewed distribution)
SYN223 ( -1 +0 _0 ^0) RPT63 synthetic problem 8 (skewed distribution)
SYN224 ( -1 +0 _0 ^0) RPT63 synthetic problem 9 (skewed distribution)
SYN225 ( -1 +0 _0 ^0) RPT63 synthetic problem 10 (skewed distribution)
SYN226 ( -1 +0 _0 ^0) RPT63 synthetic problem 11 (skewed distribution)
SYN227 ( -1 +0 _0 ^0) RPT63 synthetic problem 12 (skewed distribution)
SYN228 ( -1 +0 _0 ^0) RPT63 synthetic problem 13 (skewed distribution)
SYN229 ( -1 +0 _0 ^0) RPT63 synthetic problem 14 (skewed distribution)
SYN230 ( -1 +0 _0 ^0) RPT63 synthetic problem 15 (skewed distribution)
SYN231 ( -1 +0 _0 ^0) RPT63 synthetic problem 16 (skewed distribution)
SYN232 ( -1 +0 _0 ^0) RPT63 synthetic problem 17 (skewed distribution)
SYN233 ( -1 +0 _0 ^0) RPT63 synthetic problem 18 (skewed distribution)
SYN234 ( -1 +0 _0 ^0) RPT63 synthetic problem 19 (skewed distribution)
SYN235 ( -1 +0 _0 ^0) RPT63 synthetic problem 20 (skewed distribution)
SYN236 ( -1 +0 _0 ^0) RPT63 synthetic problem 21 (skewed distribution)
SYN237 ( -1 +0 _0 ^0) RPT63 synthetic problem 22 (skewed distribution)
SYN238 ( -1 +0 _0 ^0) RPT63 synthetic problem 23 (skewed distribution)
SYN239 ( -1 +0 _0 ^0) RPT63 synthetic problem 24 (skewed distribution)
SYN240 ( -1 +0 _0 ^0) RPT63 synthetic problem 25 (skewed distribution)
SYN241 ( -1 +0 _0 ^0) RPT63 synthetic problem 26 (skewed distribution)
SYN242 ( -1 +0 _0 ^0) RPT63 synthetic problem 27 (skewed distribution)
SYN243 ( -1 +0 _0 ^0) RPT63 synthetic problem 28 (skewed distribution)
SYN244 ( -1 +0 _0 ^0) RPT63 synthetic problem 29 (skewed distribution)
SYN245 ( -1 +0 _0 ^0) RPT63 synthetic problem 30 (skewed distribution)
SYN246 ( -1 +0 _0 ^0) RPT63 synthetic problem 31 (skewed distribution)
SYN247 ( -1 +0 _0 ^0) RPT63 synthetic problem 32 (skewed distribution)
SYN248 ( -1 +0 _0 ^0) RPT63 synthetic problem 33 (skewed distribution)
SYN249 ( -1 +0 _0 ^0) RPT63 synthetic problem 34 (skewed distribution)
SYN250 ( -1 +0 _0 ^0) RPT63 synthetic problem 35 (skewed distribution)
SYN251 ( -1 +0 _0 ^0) RPT63 synthetic problem 36 (skewed distribution)
SYN252 ( -1 +0 _0 ^0) RPT63 synthetic problem 37 (skewed distribution)
SYN253 ( -1 +0 _0 ^0) RPT63 synthetic problem 38 (skewed distribution)
SYN254 ( -1 +0 _0 ^0) RPT63 synthetic problem 39 (skewed distribution)
SYN255 ( -1 +0 _0 ^0) RPT63 synthetic problem 40 (skewed distribution)
SYN256 ( -1 +0 _0 ^0) RPT63 synthetic problem 41 (skewed distribution)
SYN257 ( -1 +0 _0 ^0) RPT63 synthetic problem 42 (skewed distribution)
SYN258 ( -1 +0 _0 ^0) RPT63 synthetic problem 43 (skewed distribution)
SYN259 ( -1 +0 _0 ^0) RPT63 synthetic problem 44 (skewed distribution)
SYN260 ( -1 +0 _0 ^0) RPT63 synthetic problem 45 (skewed distribution)
SYN261 ( -1 +0 _0 ^0) RPT63 synthetic problem 46 (skewed distribution)
SYN262 ( -1 +0 _0 ^0) RPT63 synthetic problem 47 (skewed distribution)
SYN263 ( -1 +0 _0 ^0) RPT63 synthetic problem 48 (skewed distribution)
SYN264 ( -1 +0 _0 ^0) RPT63 synthetic problem 49 (skewed distribution)
SYN265 ( -1 +0 _0 ^0) RPT63 synthetic problem 50 (skewed distribution)
SYN266 ( -1 +0 _0 ^0) RPT63 synthetic problem 51 (skewed distribution)
SYN267 ( -1 +0 _0 ^0) RPT63 synthetic problem 52 (skewed distribution)
SYN268 ( -1 +0 _0 ^0) RPT63 synthetic problem 53 (skewed distribution)
SYN269 ( -1 +0 _0 ^0) RPT63 synthetic problem 54 (skewed distribution)
SYN270 ( -1 +0 _0 ^0) RPT63 synthetic problem 55 (skewed distribution)
SYN271 ( -1 +0 _0 ^0) RPT63 synthetic problem 56 (skewed distribution)
SYN272 ( -1 +0 _0 ^0) RPT63 synthetic problem 57 (skewed distribution)
SYN273 ( -1 +0 _0 ^0) RPT63 synthetic problem 58 (skewed distribution)
SYN274 ( -1 +0 _0 ^0) RPT63 synthetic problem 59 (skewed distribution)
SYN275 ( -1 +0 _0 ^0) RPT63 synthetic problem 60 (skewed distribution)
SYN276 ( -1 +0 _0 ^0) RPT63 synthetic problem 61 (skewed distribution)
SYN277 ( -1 +0 _0 ^0) RPT63 synthetic problem 62 (skewed distribution)
SYN278 ( -1 +0 _0 ^0) RPT63 synthetic problem 63 (skewed distribution)
SYN279 ( -1 +0 _0 ^0) RPT63 synthetic problem 64 (skewed distribution)
SYN280 ( -1 +0 _0 ^0) RPT63 synthetic problem 65 (skewed distribution)
SYN281 ( -1 +0 _0 ^0) RPT63 synthetic problem 66 (skewed distribution)
SYN282 ( -1 +0 _0 ^0) RPT63 synthetic problem 67 (skewed distribution)
SYN283 ( -1 +0 _0 ^0) RPT63 synthetic problem 68 (skewed distribution)
SYN284 ( -1 +0 _0 ^0) RPT63 synthetic problem 69 (skewed distribution)
SYN285 ( -1 +0 _0 ^0) RPT63 synthetic problem 70 (skewed distribution)
SYN286 ( -1 +0 _0 ^0) RPT63 synthetic problem 71 (skewed distribution)
SYN287 ( -1 +0 _0 ^0) RPT63 synthetic problem 72 (skewed distribution)
SYN288 ( -1 +0 _0 ^0) RPT63 synthetic problem 73 (skewed distribution)
SYN289 ( -1 +0 _0 ^0) RPT63 synthetic problem 74 (skewed distribution)
SYN290 ( -1 +0 _0 ^0) RPT63 synthetic problem 75 (skewed distribution)
SYN291 ( -1 +0 _0 ^0) RPT63 synthetic problem 76 (skewed distribution)
SYN292 ( -1 +0 _0 ^0) RPT63 synthetic problem 77 (skewed distribution)
SYN293 ( -1 +0 _0 ^0) RPT63 synthetic problem 78 (skewed distribution)
SYN294 ( -1 +0 _0 ^0) RPT63 synthetic problem 79 (skewed distribution)
SYN295 ( -1 +0 _0 ^0) RPT63 synthetic problem 80 (skewed distribution)
SYN296 ( -1 +0 _0 ^0) RPT63 synthetic problem 81 (skewed distribution)
SYN297 ( -1 +0 _0 ^0) RPT63 synthetic problem 82 (skewed distribution)
SYN298 ( -1 +0 _0 ^0) RPT63 synthetic problem 83 (skewed distribution)
SYN299 ( -1 +0 _0 ^0) RPT63 synthetic problem 84 (skewed distribution)
SYN300 ( -1 +0 _0 ^0) RPT63 synthetic problem 85 (skewed distribution)
SYN301 ( -1 +0 _0 ^0) RPT63 synthetic problem 86 (skewed distribution)
SYN302 ( -1 +0 _0 ^0) Plaisted problem a(3)
SYN303 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN304 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN305 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN306 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN307 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN308 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN309 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN310 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN311 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN312 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN313 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN314 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN315 ( -1 +1 _0 ^0) Church problem 46.2 (1)
SYN316 ( -1 +1 _0 ^0) Church problem 46.2 (2)
SYN317 ( -1 +1 _0 ^0) Church problem 46.2 (3)
SYN318 ( -1 +1 _0 ^0) Church problem 46.2 (4)
SYN319 ( -1 +1 _0 ^0) Church problem 46.2 (5)
SYN320 ( -1 +1 _0 ^0) Church problem 46.3 (1)
SYN321 ( -1 +1 _0 ^0) Church problem 46.3 (2)
SYN322 ( -1 +1 _0 ^0) Church problem 46.4 (1)
SYN323 ( -1 +1 _0 ^0) Church problem 46.4 (2)
SYN324 ( -1 +1 _0 ^0) Church problem 46.9 (1)
SYN325 ( -1 +1 _0 ^0) Church problem 46.9 (2)
SYN326 ( -1 +1 _0 ^0) Church problem 46.12 (1)
SYN327 ( -1 +1 _0 ^0) Church problem 46.12 (2)
SYN328 ( -1 +1 _0 ^0) Church problem 46.12 (3)
SYN329 ( -1 +1 _0 ^0) Church problem 46.14 (1)
SYN330 ( -1 +1 _0 ^0) Church problem 46.14 (2)
SYN331 ( -1 +1 _0 ^0) Church problem 46.14 (3)
SYN332 ( -1 +1 _0 ^0) Church problem 46.14 (4)
SYN333 ( -1 +1 _0 ^0) Church problem 46.14 (5)
SYN334 ( -1 +1 _0 ^0) Church problem 46.14 (6)
SYN335 ( -1 +1 _0 ^0) Church problem 46.14 (7)
SYN336 ( -1 +1 _0 ^0) Church problem 46.15 (1)
SYN337 ( -1 +1 _0 ^0) Church problem 46.15 (2)
SYN338 ( -1 +1 _0 ^0) Church problem 46.15 (3)
SYN339 ( -1 +1 _0 ^0) Church problem 46.15 (4)
SYN340 ( -1 +1 _0 ^0) Church problem 46.15 (5)
SYN341 ( -1 +1 _0 ^0) Church problem 46.15 (6)
SYN342 ( -1 +1 _0 ^0) Church problem 46.15 (7)
SYN343 ( -1 +1 _0 ^0) Church problem 46.16 (2)
SYN344 ( -1 +1 _0 ^0) Church problem 46.16 (3)
SYN345 ( -1 +1 _0 ^0) Church problem 46.16 (4)
SYN346 ( -1 +1 _0 ^0) Church problem 46.17 (2)
SYN347 ( -1 +1 _0 ^0) Church problem 46.17 (3)
SYN348 ( -1 +1 _0 ^0) Church problem 46.17 (4)
SYN349 ( -1 +1 _0 ^0) Church problem 46.17 (5)
SYN350 ( -1 +1 _0 ^0) Church problem 46.18 (2)
SYN351 ( -1 +1 _0 ^0) Church problem 46.18 (3)
SYN352 ( -1 +1 _0 ^0) Church problem 46.18 (4)
SYN353 ( -1 +1 _0 ^0) Church problem 46.18 (5)
SYN354 ( -1 +1 _0 ^0) Church problem 46.20 (1)
SYN355 ( -0 +1 _0 ^1) Peter Andrews Problem X2106
SYN356 ( -0 +1 _0 ^1) Peter Andrews Problem X2107
SYN357 ( -0 +1 _0 ^2) Peter Andrews Problem X2108
SYN358 ( -0 +1 _0 ^1) Peter Andrews Problem X2109
SYN359 ( -0 +1 _0 ^0) Peter Andrews Problem X2110
SYN360 ( -0 +1 _0 ^1) Peter Andrews Problem X2111
SYN361 ( -0 +1 _0 ^1) Peter Andrews Problem X2112
SYN362 ( -0 +1 _0 ^0) Peter Andrews Problem X2113
SYN363 ( -0 +1 _0 ^0) Peter Andrews Problem X2114
SYN364 ( -0 +1 _0 ^1) Peter Andrews Problem X2115
SYN365 ( -0 +1 _0 ^1) Peter Andrews Problem X2116
SYN366 ( -0 +1 _0 ^0) Peter Andrews Problem X2117
SYN367 ( -0 +1 _0 ^1) Peter Andrews Problem X2118
SYN368 ( -0 +1 _0 ^0) Peter Andrews Problem X2119
SYN369 ( -0 +1 _0 ^0) Peter Andrews Problem X2120
SYN370 ( -0 +1 _0 ^0) Peter Andrews Problem X2121
SYN371 ( -0 +1 _0 ^0) Peter Andrews Problem X2122
SYN372 ( -0 +1 _0 ^0) Peter Andrews Problem X2123
SYN373 ( -0 +1 _0 ^0) Peter Andrews Problem X2124
SYN374 ( -0 +1 _0 ^1) Peter Andrews Problem X2125
SYN375 ( -0 +1 _0 ^1) Peter Andrews Problem X2126
SYN376 ( -0 +1 _0 ^0) Peter Andrews Problem X2127
SYN377 ( -0 +1 _0 ^2) Peter Andrews Problem X2128
SYN378 ( -0 +1 _0 ^0) Peter Andrews Problem X2130
SYN379 ( -0 +1 _0 ^0) Peter Andrews Problem X2131
SYN380 ( -0 +1 _0 ^0) Peter Andrews Problem X2132
SYN381 ( -0 +1 _0 ^1) Peter Andrews Problem X2133
SYN382 ( -0 +1 _0 ^1) Peter Andrews Problem X2134
SYN383 ( -0 +1 _0 ^0) Peter Andrews Problem X2135
SYN384 ( -0 +1 _0 ^0) Peter Andrews Problem X2136
SYN385 ( -0 +1 _0 ^0) Peter Andrews Problem X2137
SYN386 ( -0 +1 _0 ^1) Peter Andrews Problem X2138
SYN387 ( -0 +1 _0 ^2) The Law of Excluded Middle
SYN388 ( -0 +1 _0 ^1) Expanded Law of Excluded Middle
SYN389 ( -0 +1 _0 ^1) Pierce's Law
SYN390 ( -0 +1 _0 ^1) Pelletier 11
SYN391 ( -0 +1 _0 ^1) Pelletier 9
SYN392 ( -0 +1 _0 ^1) Pelletier 14
SYN393 ( -0 +1 _0 ^3) Pelletier 12
SYN394 ( -0 +1 _0 ^0) Kalish and Montague Problem 201
SYN395 ( -0 +1 _0 ^0) Kalish and Montague Problem 202
SYN396 ( -0 +1 _0 ^0) Kalish and Montague Problem 203
SYN397 ( -0 +1 _0 ^1) Kalish and Montague Problem 204
SYN398 ( -0 +1 _0 ^0) Kalish and Montague Problem 215
SYN399 ( -0 +1 _0 ^0) Kalish and Montague Problem 223
SYN400 ( -0 +1 _0 ^0) Kalish and Montague Problem 227
SYN401 ( -0 +1 _0 ^0) Kalish and Montague Problem 229
SYN402 ( -0 +1 _0 ^0) Kalish and Montague Problem 230
SYN403 ( -0 +1 _0 ^0) Kalish and Montague Problem 234
SYN404 ( -0 +1 _0 ^0) Kalish and Montague Problem 238
SYN405 ( -0 +1 _0 ^0) Kalish and Montague Problem 239
SYN406 ( -0 +1 _0 ^0) Kalish and Montague Problem 240
SYN407 ( -0 +1 _0 ^1) Kalish and Montague Problem 241
SYN408 ( -0 +1 _0 ^0) Kalish and Montague Problem 244
SYN409 ( -0 +1 _0 ^0) Kalish and Montague Problem 246
SYN410 ( -0 +1 _0 ^0) Kalish and Montague Problem 249
SYN411 ( -0 +1 _0 ^0) Kalish and Montague Problem 250
SYN412 ( -0 +1 _0 ^0) Kalish and Montague Problem 255
SYN413 ( -0 +1 _0 ^0) Kalish and Montague Problem 256
SYN414 ( -0 +1 _0 ^0) Kalish and Montague Problem 265
SYN415 ( -0 +1 _0 ^0) Kalish and Montague Problem 317
SYN416 ( -0 +1 _0 ^2) Pelletier Problem 16
SYN417 ( -0 +1 _0 ^0) Harrison's cute problem
SYN418 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=100, K=3, D=2, P=0, Index=002
SYN419 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=100, K=3, D=2, P=0, Index=078
SYN420 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=110, K=3, D=2, P=0, Index=036
SYN421 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=110, K=3, D=2, P=0, Index=069
SYN422 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=110, K=3, D=2, P=0, Index=097
SYN423 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=150, K=3, D=2, P=0, Index=002
SYN424 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=150, K=3, D=2, P=0, Index=009
SYN425 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=150, K=3, D=2, P=0, Index=030
SYN426 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=150, K=3, D=2, P=0, Index=050
SYN427 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=150, K=3, D=2, P=0, Index=064
SYN428 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=150, K=3, D=2, P=0, Index=084
SYN429 ( -1 +1 _0 ^0) ALC, N=10, R=1, L=150, K=3, D=2, P=0, Index=093
SYN430 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=16, K=3, D=1, P=0, Index=037
SYN431 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=16, K=3, D=1, P=0, Index=042
SYN432 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=20, K=3, D=1, P=0, Index=020
SYN433 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=20, K=3, D=1, P=0, Index=036
SYN434 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=40, K=3, D=1, P=0, Index=037
SYN435 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=40, K=3, D=1, P=0, Index=046
SYN436 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=40, K=3, D=1, P=0, Index=078
SYN437 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=48, K=3, D=1, P=0, Index=082
SYN438 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=48, K=3, D=1, P=0, Index=089
SYN439 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=48, K=3, D=1, P=0, Index=090
SYN440 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=002
SYN441 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=010
SYN442 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=011
SYN443 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=012
SYN444 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=013
SYN445 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=015
SYN446 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=016
SYN447 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=017
SYN448 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=019
SYN449 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=026
SYN450 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=029
SYN451 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=030
SYN452 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=034
SYN453 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=044
SYN454 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=046
SYN455 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=056
SYN456 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=057
SYN457 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=060
SYN458 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=062
SYN459 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=073
SYN460 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=077
SYN461 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=081
SYN462 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=083
SYN463 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=092
SYN464 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=093
SYN465 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=68, K=3, D=1, P=0, Index=010
SYN466 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=68, K=3, D=1, P=0, Index=017
SYN467 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=68, K=3, D=1, P=0, Index=023
SYN468 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=68, K=3, D=1, P=0, Index=031
SYN469 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=68, K=3, D=1, P=0, Index=088
SYN470 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=68, K=3, D=1, P=0, Index=095
SYN471 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=72, K=3, D=1, P=0, Index=000
SYN472 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=72, K=3, D=1, P=0, Index=003
SYN473 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=72, K=3, D=1, P=0, Index=005
SYN474 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=72, K=3, D=1, P=0, Index=027
SYN475 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=72, K=3, D=1, P=0, Index=058
SYN476 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=72, K=3, D=1, P=0, Index=068
SYN477 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=72, K=3, D=1, P=0, Index=072
SYN478 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=006
SYN479 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=012
SYN480 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=016
SYN481 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=019
SYN482 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=034
SYN483 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=035
SYN484 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=036
SYN485 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=050
SYN486 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=051
SYN487 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=085
SYN488 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=086
SYN489 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=76, K=3, D=1, P=0, Index=091
SYN490 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=003
SYN491 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=007
SYN492 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=008
SYN493 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=021
SYN494 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=024
SYN495 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=065
SYN496 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=078
SYN497 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=090
SYN498 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=000
SYN499 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=001
SYN500 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=010
SYN501 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=011
SYN502 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=023
SYN503 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=044
SYN504 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=049
SYN505 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=056
SYN506 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=057
SYN507 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=060
SYN508 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=066
SYN509 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=077
SYN510 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=081
SYN511 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=092
SYN512 ( -1 +1 _0 ^0) ALC, N=4, R=1, L=80, K=3, D=1, P=0, Index=099
SYN513 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=105, K=3, D=2, P=0, Index=093
SYN514 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=110, K=3, D=2, P=0, Index=042
SYN515 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=15, K=3, D=2, P=0, Index=016
SYN516 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=15, K=3, D=2, P=0, Index=047
SYN517 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=15, K=3, D=2, P=0, Index=061
SYN518 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=150, K=3, D=2, P=0, Index=008
SYN519 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=175, K=3, D=2, P=0, Index=057
SYN520 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=175, K=3, D=2, P=0, Index=060
SYN521 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=20, K=3, D=2, P=0, Index=049
SYN522 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=20, K=3, D=2, P=0, Index=051
SYN523 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=20, K=3, D=2, P=0, Index=059
SYN524 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=20, K=3, D=2, P=0, Index=086
SYN525 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=20, K=3, D=2, P=0, Index=094
SYN526 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=011
SYN527 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=025
SYN528 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=029
SYN529 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=033
SYN530 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=034
SYN531 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=036
SYN532 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=042
SYN533 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=082
SYN534 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=090
SYN535 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=094
SYN536 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=096
SYN537 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=40, K=3, D=2, P=0, Index=014
SYN538 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=40, K=3, D=2, P=0, Index=022
SYN539 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=40, K=3, D=2, P=0, Index=036
SYN540 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=40, K=3, D=2, P=0, Index=084
SYN541 ( -1 +1 _0 ^0) ALC, N=5, R=1, L=45, K=3, D=2, P=0, Index=096
SYN542 ( -1 +1 _0 ^0) ALC, N=6, R=1, L=54, K=3, D=1, P=0, Index=075
SYN543 ( -1 +1 _0 ^0) ALC, N=6, R=1, L=60, K=3, D=1, P=0, Index=088
SYN544 ( -1 +1 _0 ^0) ALC, N=8, R=1, L=120, K=3, D=2, P=0, Index=027
SYN545 ( -1 +1 _0 ^0) ALC, N=8, R=1, L=120, K=3, D=2, P=0, Index=072
SYN546 ( -1 +1 _0 ^0) ALC, N=8, R=1, L=120, K=3, D=2, P=0, Index=075
SYN547 ( -1 +1 _0 ^0) ALC, N=8, R=1, L=120, K=3, D=2, P=0, Index=078
SYN548 ( -0 +1 _0 ^0) dia box (box (p or box q)<=>box p or box q)
SYN549 ( -0 +1 _0 ^0) dia box(dia(p or dia q) <=> (dia p or dia q))
SYN550 ( -0 +1 _0 ^0) dia box p <=> dia box dia box p
SYN551 ( -0 +3 _0 ^0) Cute Little Problem
SYN552 ( -1 +0 _0 ^0) The E Killer
SYN553 ( -1 +0 _0 ^0) Harrison problem 1630
SYN554 ( -1 +0 _0 ^0) Harrison problem 1667
SYN555 ( -1 +0 _0 ^0) Harrison problem 2162
SYN556 ( -1 +0 _0 ^0) Harrison problem 2167
SYN557 ( -1 +0 _0 ^0) Harrison problem 2313
SYN558 ( -1 +0 _0 ^0) Harrison problem 2379
SYN559 ( -1 +0 _0 ^0) Harrison problem 2418
SYN560 ( -1 +0 _0 ^0) Harrison problem 2529
SYN561 ( -1 +0 _0 ^0) Harrison problem 2539
SYN562 ( -1 +0 _0 ^0) Harrison problem 2559
SYN563 ( -1 +0 _0 ^0) Harrison problem 2755
SYN564 ( -1 +0 _0 ^0) Harrison problem 2888
SYN565 ( -1 +0 _0 ^0) Harrison problem 2889
SYN566 ( -1 +0 _0 ^0) Harrison problem 2967
SYN567 ( -1 +0 _0 ^0) Harrison problem 3022
SYN568 ( -1 +0 _0 ^0) Harrison problem 3076
SYN569 ( -1 +0 _0 ^0) Harrison problem 3088
SYN570 ( -1 +0 _0 ^0) Harrison problem 3089
SYN571 ( -1 +0 _0 ^0) Harrison problem 3108
SYN572 ( -1 +0 _0 ^0) Harrison problem 3112
SYN573 ( -1 +0 _0 ^0) Harrison problem 3208
SYN574 ( -1 +0 _0 ^0) Harrison problem 3263
SYN575 ( -1 +0 _0 ^0) Harrison problem 3265
SYN576 ( -1 +0 _0 ^0) Harrison problem 3280
SYN577 ( -1 +0 _0 ^0) Harrison problem 3300
SYN578 ( -1 +0 _0 ^0) Harrison problem 3328
SYN579 ( -1 +0 _0 ^0) Harrison problem 3330
SYN580 ( -1 +0 _0 ^0) Harrison problem 3332
SYN581 ( -1 +0 _0 ^0) Harrison problem 3466
SYN582 ( -1 +0 _0 ^0) Harrison problem 3467
SYN583 ( -1 +0 _0 ^0) Harrison problem 3468
SYN584 ( -1 +0 _0 ^0) Harrison problem 3511
SYN585 ( -1 +0 _0 ^0) Harrison problem 3538
SYN586 ( -1 +0 _0 ^0) Harrison problem 3571
SYN587 ( -1 +0 _0 ^0) Harrison problem 3572
SYN588 ( -1 +0 _0 ^0) Harrison problem 3577
SYN589 ( -1 +0 _0 ^0) Harrison problem 3578
SYN590 ( -1 +0 _0 ^0) Harrison problem 3582
SYN591 ( -1 +0 _0 ^0) Harrison problem 3583
SYN592 ( -1 +0 _0 ^0) Harrison problem 3584
SYN593 ( -1 +0 _0 ^0) Harrison problem 3632
SYN594 ( -1 +0 _0 ^0) Harrison problem 3633
SYN595 ( -1 +0 _0 ^0) Harrison problem 3634
SYN596 ( -1 +0 _0 ^0) Harrison problem 3669
SYN597 ( -1 +0 _0 ^0) Harrison problem 3670
SYN598 ( -1 +0 _0 ^0) Harrison problem 3756
SYN599 ( -1 +0 _0 ^0) Harrison problem 3757
SYN600 ( -1 +0 _0 ^0) Harrison problem 3759
SYN601 ( -1 +0 _0 ^0) Harrison problem 3799
SYN602 ( -1 +0 _0 ^0) Harrison problem 3811
SYN603 ( -1 +0 _0 ^0) Harrison problem 3812
SYN604 ( -1 +0 _0 ^0) Harrison problem 3820
SYN605 ( -1 +0 _0 ^0) Harrison problem 3825
SYN606 ( -1 +0 _0 ^0) Harrison problem 3826
SYN607 ( -1 +0 _0 ^0) Harrison problem 3827
SYN608 ( -1 +0 _0 ^0) Harrison problem 3828
SYN609 ( -1 +0 _0 ^0) Harrison problem 3829
SYN610 ( -1 +0 _0 ^0) Harrison problem 3830
SYN611 ( -1 +0 _0 ^0) Harrison problem 3831
SYN612 ( -1 +0 _0 ^0) Harrison problem 3832
SYN613 ( -1 +0 _0 ^0) Harrison problem 3862
SYN614 ( -1 +0 _0 ^0) Harrison problem 3878
SYN615 ( -1 +0 _0 ^0) Harrison problem 3879
SYN616 ( -1 +0 _0 ^0) Harrison problem 3901
SYN617 ( -1 +0 _0 ^0) Harrison problem 3908
SYN618 ( -1 +0 _0 ^0) Harrison problem 3944
SYN619 ( -1 +0 _0 ^0) Harrison problem 3992
SYN620 ( -1 +0 _0 ^0) Harrison problem 3996
SYN621 ( -1 +0 _0 ^0) Harrison problem 3998
SYN622 ( -1 +0 _0 ^0) Harrison problem 4012
SYN623 ( -1 +0 _0 ^0) Harrison problem 4027
SYN624 ( -1 +0 _0 ^0) Harrison problem 4028
SYN625 ( -1 +0 _0 ^0) Harrison problem 4030
SYN626 ( -1 +0 _0 ^0) Harrison problem 4045
SYN627 ( -1 +0 _0 ^0) Harrison problem 4072
SYN628 ( -1 +0 _0 ^0) Harrison problem 4091
SYN629 ( -1 +0 _0 ^0) Harrison problem 4093
SYN630 ( -1 +0 _0 ^0) Harrison problem 4095
SYN631 ( -1 +0 _0 ^0) Harrison problem 4139
SYN632 ( -1 +0 _0 ^0) Harrison problem 4144
SYN633 ( -1 +0 _0 ^0) Harrison problem 4216
SYN634 ( -1 +0 _0 ^0) Harrison problem 4217
SYN635 ( -1 +0 _0 ^0) Harrison problem 4218
SYN636 ( -1 +0 _0 ^0) Harrison problem 4219
SYN637 ( -1 +0 _0 ^0) Harrison problem 4261
SYN638 ( -1 +0 _0 ^0) Harrison problem 4262
SYN639 ( -1 +0 _0 ^0) Harrison problem 4292
SYN640 ( -1 +0 _0 ^0) Harrison problem 4294
SYN641 ( -1 +0 _0 ^0) Harrison problem 4296
SYN642 ( -1 +0 _0 ^0) Harrison problem 4297
SYN643 ( -1 +0 _0 ^0) Harrison problem 4298
SYN644 ( -1 +0 _0 ^0) Harrison problem 4318
SYN645 ( -1 +0 _0 ^0) Harrison problem 4319
SYN646 ( -1 +0 _0 ^0) Harrison problem 4391
SYN647 ( -1 +0 _0 ^0) Harrison problem 4392
SYN648 ( -1 +0 _0 ^0) Harrison problem 4401
SYN649 ( -1 +0 _0 ^0) Harrison problem 4403
SYN650 ( -1 +0 _0 ^0) Harrison problem 4422
SYN651 ( -1 +0 _0 ^0) Harrison problem 4423
SYN652 ( -1 +0 _0 ^0) Harrison problem 4447
SYN653 ( -1 +0 _0 ^0) Harrison problem 4458
SYN654 ( -1 +0 _0 ^0) Harrison problem 4459
SYN655 ( -1 +0 _0 ^0) Harrison problem 4460
SYN656 ( -1 +0 _0 ^0) Harrison problem 4483
SYN657 ( -1 +0 _0 ^0) Harrison problem 4500
SYN658 ( -1 +0 _0 ^0) Harrison problem 4501
SYN659 ( -1 +0 _0 ^0) Harrison problem 4504
SYN660 ( -1 +0 _0 ^0) Harrison problem 4527
SYN661 ( -1 +0 _0 ^0) Harrison problem 4528
SYN662 ( -1 +0 _0 ^0) Harrison problem 4529
SYN663 ( -1 +0 _0 ^0) Harrison problem 4530
SYN664 ( -1 +0 _0 ^0) Harrison problem 4531
SYN665 ( -1 +0 _0 ^0) Harrison problem 4532
SYN666 ( -1 +0 _0 ^0) Harrison problem 4533
SYN667 ( -1 +0 _0 ^0) Harrison problem 4534
SYN668 ( -1 +0 _0 ^0) Harrison problem 4535
SYN669 ( -1 +0 _0 ^0) Harrison problem 4536
SYN670 ( -1 +0 _0 ^0) Harrison problem 4537
SYN671 ( -1 +0 _0 ^0) Harrison problem 4538
SYN672 ( -1 +0 _0 ^0) Harrison problem 4541
SYN673 ( -1 +0 _0 ^0) Harrison problem 4552
SYN674 ( -1 +0 _0 ^0) Harrison problem 4553
SYN675 ( -1 +0 _0 ^0) Harrison problem 4554
SYN676 ( -1 +0 _0 ^0) Harrison problem 4555
SYN677 ( -1 +0 _0 ^0) Harrison problem 4556
SYN678 ( -1 +0 _0 ^0) Harrison problem 4557
SYN679 ( -1 +0 _0 ^0) Harrison problem 4558
SYN680 ( -1 +0 _0 ^0) Harrison problem 4559
SYN681 ( -1 +0 _0 ^0) Harrison problem 4560
SYN682 ( -1 +0 _0 ^0) Harrison problem 4561
SYN683 ( -1 +0 _0 ^0) Harrison problem 4562
SYN684 ( -1 +0 _0 ^0) Harrison problem 4563
SYN685 ( -1 +0 _0 ^0) Harrison problem 4564
SYN686 ( -1 +0 _0 ^0) Harrison problem 4589
SYN687 ( -1 +0 _0 ^0) Harrison problem 4601
SYN688 ( -1 +0 _0 ^0) Harrison problem 4605
SYN689 ( -1 +0 _0 ^0) Harrison problem 4606
SYN690 ( -1 +0 _0 ^0) Harrison problem 4608
SYN691 ( -1 +0 _0 ^0) Harrison problem 4624
SYN692 ( -1 +0 _0 ^0) Harrison problem 4626
SYN693 ( -1 +0 _0 ^0) Harrison problem 4627
SYN694 ( -1 +0 _0 ^0) Harrison problem 4644
SYN695 ( -1 +0 _0 ^0) Harrison problem 4645
SYN696 ( -1 +0 _0 ^0) Harrison problem 4646
SYN697 ( -1 +0 _0 ^0) Harrison problem 4647
SYN698 ( -1 +0 _0 ^0) Harrison problem 4650
SYN699 ( -1 +0 _0 ^0) Harrison problem 4651
SYN700 ( -1 +0 _0 ^0) Harrison problem 4652
SYN701 ( -1 +0 _0 ^0) Harrison problem 4653
SYN702 ( -1 +0 _0 ^0) Harrison problem 4672
SYN703 ( -1 +0 _0 ^0) Harrison problem 4673
SYN704 ( -1 +0 _0 ^0) Harrison problem 4674
SYN705 ( -1 +0 _0 ^0) Harrison problem 4675
SYN706 ( -1 +0 _0 ^0) Harrison problem 4685
SYN707 ( -1 +0 _0 ^0) Harrison problem 4690
SYN708 ( -1 +0 _0 ^0) Harrison problem 4691
SYN709 ( -1 +0 _0 ^0) Harrison problem 4692
SYN710 ( -1 +0 _0 ^0) Harrison problem 4703
SYN711 ( -1 +0 _0 ^0) Harrison problem 4711
SYN712 ( -1 +0 _0 ^0) Harrison problem 4748
SYN713 ( -1 +0 _0 ^0) Harrison problem 4750
SYN714 ( -1 +0 _0 ^0) Harrison problem 4753
SYN715 ( -1 +0 _0 ^0) Harrison problem 4755
SYN716 ( -1 +0 _0 ^0) Harrison problem 4756
SYN717 ( -1 +0 _0 ^0) Harrison problem 4760
SYN718 ( -1 +0 _0 ^0) Harrison problem 4761
SYN719 ( -1 +0 _0 ^0) Harrison problem 4766
SYN720 ( -1 +0 _0 ^0) Synthetic domain theory for EBL
SYN721 ( -1 +1 _0 ^0) Peter Andrews Problem LX1
SYN722 ( -0 +1 _0 ^0) Peter Andrews Problem THM119
SYN723 ( -0 +1 _0 ^0) Peter Andrews Problem THM138
SYN724 ( -1 +1 _0 ^0) Peter Andrews Problem THM31
SYN725 ( -0 +1 _0 ^0) Peter Andrews Problem THM39
SYN726 ( -1 +1 _0 ^0) Peter Andrews Problem THM400
SYN727 ( -1 +1 _0 ^0) Peter Andrews Problem THM68
SYN728 ( -1 +1 _0 ^0) Peter Andrews Problem THM69
SYN729 ( -1 +1 _0 ^0) Peter Andrews Problem THM72
SYN730 ( -0 +1 _0 ^0) Peter Andrews Problem THM75
SYN731 ( -1 +1 _0 ^1) Peter Andrews Problem X2150
SYN732 ( -0 +1 _0 ^1) Peter Andrews Problem X3411
SYN733 ( -0 +1 _0 ^0) Peter Andrews Problem Y2141
SYN734 ( -1 +0 _0 ^0) PSAT - K=4 C=20 V=4 D=1.2
SYN735 ( -1 +0 _0 ^0) PSAT - K=4 C=20 V=4 D=1.8
SYN736 ( -1 +0 _0 ^0) PSAT - K=4 C=20 V=4 D=2.1
SYN737 ( -1 +0 _0 ^0) PSAT - K=4 C=20 V=4 D=2.7
SYN738 ( -1 +0 _0 ^0) PSAT - K=4 C=20 V=8 D=1.8
SYN739 ( -1 +0 _0 ^0) PSAT - K=4 C=20 V=8 D=2.5
SYN740 ( -1 +0 _0 ^0) PSAT - K=4 C=30 V=4 D=1.8
SYN741 ( -1 +0 _0 ^1) PSAT - K=4 C=30 V=4 D=2.3
SYN742 ( -1 +0 _0 ^0) PSAT - K=4 C=30 V=4 D=2.6
SYN743 ( -1 +0 _0 ^0) PSAT - K=4 C=30 V=8 D=1.3
SYN744 ( -1 +0 _0 ^0) PSAT - K=4 C=30 V=8 D=1.4
SYN745 ( -1 +0 _0 ^0) PSAT - K=4 C=30 V=8 D=2.2
SYN746 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=4 D=2.1
SYN747 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=4 D=2.3
SYN748 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=4 D=2.6
SYN749 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=8 D=1.4
SYN750 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=8 D=2.1
SYN751 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=8 D=2.3
SYN752 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=8 D=2.5
SYN753 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=8 D=2.7
SYN754 ( -1 +0 _0 ^0) PSAT - K=4 C=40 V=8 D=2.8
SYN755 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=4 D=1.1
SYN756 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=4 D=1.7
SYN757 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=4 D=1.8
SYN758 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=4 D=2.1
SYN759 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=4 D=2.3
SYN760 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=4 D=2.4
SYN761 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=4 D=2.6
SYN762 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=4 D=2.8
SYN763 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=8 D=1.1
SYN764 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=8 D=2.1
SYN765 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=8 D=2.3
SYN766 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=8 D=2.5
SYN767 ( -1 +0 _0 ^0) PSAT - K=4 C=50 V=8 D=2.8
SYN768 ( -1 +0 _0 ^0) PSAT inverse problem - K=4 C=20 V=4 D=1.6
SYN769 ( -1 +0 _0 ^0) PSAT inverse problem - K=4 C=20 V=4 D=2.1
SYN770 ( -1 +0 _0 ^0) PSAT inverse problem - K=4 C=20 V=4 D=2.5
SYN771 ( -1 +0 _0 ^0) PSAT inverse problem - K=4 C=20 V=4 D=2.7
SYN772 ( -1 +0 _0 ^0) PSAT inverse problem - K=4 C=20 V=8 D=1.6
SYN773 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=20 V=8 D=2.6
SYN774 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=4 D=1.6
SYN775 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=4 D=1.8
SYN776 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=4 D=2.1
SYN777 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=4 D=2.3
SYN778 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=4 D=2.5
SYN779 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=4 D=2.7
SYN780 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=8 D=2.2
SYN781 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=8 D=2.3
SYN782 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=8 D=2.5
SYN783 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=30 V=8 D=2.8
SYN784 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=4 D=1.1
SYN785 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=4 D=1.4
SYN786 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=4 D=2.2
SYN787 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=4 D=2.3
SYN788 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=4 D=2.5
SYN789 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=4 D=2.8
SYN790 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=8 D=1.7
SYN791 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=8 D=1.8
SYN792 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=8 D=2.2
SYN793 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=8 D=2.4
SYN794 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=8 D=2.5
SYN795 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=40 V=8 D=2.7
SYN796 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=4 D=1.2
SYN797 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=4 D=1.8
SYN798 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=4 D=2.1
SYN799 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=4 D=2.2
SYN800 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=4 D=2.4
SYN801 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=4 D=2.6
SYN802 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=4 D=2.8
SYN803 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=8 D=1.2
SYN804 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=8 D=1.4
SYN805 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=8 D=1.6
SYN806 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=8 D=2.1
SYN807 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=8 D=2.3
SYN808 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=8 D=2.4
SYN809 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=8 D=2.6
SYN810 ( -1 +0 _0 ^0) PSAT inverse - K=4 C=50 V=8 D=2.8
SYN811 ( -1 +0 _0 ^0) QBF - K=4 C=10 V=4 D=6.1
SYN812 ( -1 +0 _0 ^0) QBF - K=4 C=10 V=8 D=6.3
SYN813 ( -1 +0 _0 ^0) QBF - K=4 C=20 V=4 D=4.2
SYN814 ( -1 +0 _0 ^0) QBF - K=4 C=20 V=4 D=6.4
SYN815 ( -1 +0 _0 ^0) QBF - K=4 C=20 V=8 D=4.1
SYN816 ( -1 +0 _0 ^0) QBF - K=4 C=20 V=8 D=4.2
SYN817 ( -1 +0 _0 ^0) QBF - K=4 C=20 V=8 D=4.3
SYN818 ( -1 +0 _0 ^0) QBF - K=4 C=20 V=8 D=6.2
SYN819 ( -1 +0 _0 ^0) QBF - K=4 C=30 V=4 D=4.2
SYN820 ( -1 +0 _0 ^0) QBF - K=4 C=30 V=4 D=4.4
SYN821 ( -1 +0 _0 ^0) QBF - K=4 C=30 V=8 D=4.1
SYN822 ( -1 +0 _0 ^0) QBF - K=4 C=30 V=8 D=4.3
SYN823 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=10 V=4 D=4.2
SYN824 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=10 V=8 D=4.1
SYN825 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=10 V=8 D=6.3
SYN826 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=10 V=8 D=6.6
SYN827 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=20 V=4 D=4.5
SYN828 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=20 V=8 D=4.7
SYN829 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=20 V=8 D=6.2
SYN830 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=20 V=8 D=6.4
SYN831 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=20 V=8 D=6.6
SYN832 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=20 V=8 D=6.8
SYN833 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=4 D=4.3
SYN834 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=4 D=4.5
SYN835 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=4 D=4.6
SYN836 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=4 D=4.8
SYN837 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=4 D=6.8
SYN838 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=8 D=4.5
SYN839 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=8 D=6.2
SYN840 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=8 D=6.4
SYN841 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=8 D=6.6
SYN842 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=30 V=8 D=6.8
SYN843 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=4 D=4.2
SYN844 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=4 D=4.4
SYN845 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=4 D=4.8
SYN846 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=4 D=6.1
SYN847 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=4 D=6.3
SYN848 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=4 D=6.5
SYN849 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=4 D=6.8
SYN850 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=8 D=4.1
SYN851 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=8 D=4.6
SYN852 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=8 D=6.2
SYN853 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=8 D=6.4
SYN854 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=8 D=6.6
SYN855 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=40 V=8 D=6.8
SYN856 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=4 D=4.2
SYN857 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=4 D=4.6
SYN858 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=4 D=6.1
SYN859 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=4 D=6.5
SYN860 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=4 D=6.7
SYN861 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=8 D=4.1
SYN862 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=8 D=4.3
SYN863 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=8 D=4.4
SYN864 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=8 D=4.5
SYN865 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=8 D=4.7
SYN866 ( -1 +0 _0 ^0) QBF, Ladn - K=4 C=50 V=8 D=4.8
SYN867 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=10 V=4 D=6.1
SYN868 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=10 V=4 D=6.4
SYN869 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=20 V=4 D=4.1
SYN870 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=20 V=4 D=4.4
SYN871 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=20 V=4 D=4.6
SYN872 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=20 V=8 D=6.3
SYN873 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=30 V=4 D=4.2
SYN874 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=30 V=4 D=4.6
SYN875 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=30 V=4 D=4.8
SYN876 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=30 V=4 D=6.3
SYN877 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=4 D=4.2
SYN878 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=4 D=4.5
SYN879 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=4 D=4.7
SYN880 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=4 D=6.1
SYN881 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=4 D=6.5
SYN882 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=4 D=6.6
SYN883 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=4 D=6.7
SYN884 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=8 D=4.2
SYN885 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=8 D=4.4
SYN886 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=8 D=4.6
SYN887 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=8 D=4.7
SYN888 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=40 V=8 D=6.1
SYN889 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=4 D=4.1
SYN890 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=4 D=4.3
SYN891 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=4 D=4.5
SYN892 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=4 D=4.7
SYN893 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=4 D=6.1
SYN894 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=4 D=6.3
SYN895 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=4 D=6.5
SYN896 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=4 D=6.7
SYN897 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=8 D=4.1
SYN898 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=8 D=4.3
SYN899 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=8 D=4.5
SYN900 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=8 D=4.7
SYN901 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=8 D=6.1
SYN902 ( -1 +0 _0 ^0) QBF, SSS - K=4 C=50 V=8 D=6.4
SYN903 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=10 V=4 D=6.4
SYN904 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=10 V=8 D=4.5
SYN905 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=10 V=8 D=6.3
SYN906 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=20 V=4 D=4.5
SYN907 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=20 V=4 D=6.4
SYN908 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=20 V=8 D=6.6
SYN909 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=30 V=4 D=6.2
SYN910 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=30 V=8 D=4.3
SYN911 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=40 V=4 D=6.3
SYN912 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=40 V=8 D=4.4
SYN913 ( -1 +0 _0 ^0) QBF converse PDL, SSS - K=4 C=50 V=4 D=4.6
SYN914 ( -1 +0 _0 ^0) Show that 11 > 10
SYN915 ( -1 +1 _0 ^1) TRUE
SYN916 ( -1 +1 _0 ^1) FALSE
SYN917 ( -0 +1 _0 ^0) Combined problems from Smullyan
SYN918 ( -0 +1 _0 ^0) From Smullyan
SYN919 ( -0 +1 _0 ^0) From Smullyan
SYN920 ( -0 +1 _0 ^0) From Smullyan
SYN921 ( -0 +1 _0 ^0) From Smullyan
SYN922 ( -0 +1 _0 ^0) From Smullyan
SYN923 ( -0 +1 _0 ^0) From Smullyan
SYN924 ( -0 +1 _0 ^0) From Smullyan
SYN925 ( -0 +1 _0 ^0) From Smullyan
SYN926 ( -0 +1 _0 ^0) From Smullyan
SYN927 ( -0 +1 _0 ^0) From Smullyan
SYN928 ( -0 +1 _0 ^0) From Smullyan
SYN929 ( -0 +1 _0 ^0) From Smullyan
SYN930 ( -0 +1 _0 ^0) From Smullyan
SYN931 ( -0 +1 _0 ^0) From Smullyan
SYN932 ( -0 +1 _0 ^0) From Smullyan
SYN933 ( -0 +1 _0 ^0) From Smullyan
SYN934 ( -0 +1 _0 ^0) From Smullyan
SYN935 ( -0 +1 _0 ^0) From Smullyan
SYN936 ( -0 +1 _0 ^0) From Smullyan
SYN937 ( -0 +1 _0 ^0) From Smullyan
SYN938 ( -0 +1 _0 ^0) Combined syntactic from Shults
SYN939 ( -0 +1 _0 ^0) Syntactic from Shults
SYN940 ( -0 +1 _0 ^0) Syntactic from Shults
SYN941 ( -0 +1 _0 ^0) Syntactic from Shults
SYN942 ( -0 +1 _0 ^0) Syntactic from Shults
SYN943 ( -0 +1 _0 ^0) Syntactic from Shults
SYN944 ( -0 +1 _0 ^0) Syntactic from Shults
SYN945 ( -0 +1 _0 ^0) Syntactic from Shults
SYN946 ( -0 +1 _0 ^0) Syntactic from Shults
SYN947 ( -0 +1 _0 ^0) Syntactic from Shults
SYN948 ( -0 +1 _0 ^0) Syntactic from Shults
SYN949 ( -0 +1 _0 ^0) Syntactic from Shults
SYN950 ( -0 +1 _0 ^0) Syntactic from Shults
SYN951 ( -0 +1 _0 ^0) Syntactic from Shults
SYN952 ( -0 +1 _0 ^0) Syntactic from Shults
SYN953 ( -0 +1 _0 ^0) Syntactic from Shults
SYN954 ( -0 +1 _0 ^0) Syntactic from Shults
SYN955 ( -0 +1 _0 ^0) Syntactic from Shults
SYN956 ( -0 +1 _0 ^0) Syntactic from Shults
SYN957 ( -0 +1 _0 ^0) Syntactic from Shults
SYN958 ( -0 +1 _0 ^0) Syntactic from Shults
SYN959 ( -0 +1 _0 ^0) Syntactic from Shults
SYN960 ( -0 +1 _0 ^0) Syntactic from Shults
SYN961 ( -0 +1 _0 ^0) Syntactic from Shults
SYN962 ( -0 +1 _0 ^0) Syntactic from Shults
SYN963 ( -0 +1 _0 ^0) Syntactic from Shults
SYN964 ( -0 +1 _0 ^0) Syntactic from Shults
SYN965 ( -0 +1 _0 ^0) Syntactic from Shults
SYN966 ( -0 +1 _0 ^0) Syntactic from Shults
SYN967 ( -0 +1 _0 ^0) Syntactic from Shults
SYN968 ( -0 +1 _0 ^0) Syntactic from Shults
SYN969 ( -0 +1 _0 ^0) Syntactic from Shults
SYN970 ( -0 +1 _0 ^0) Syntactic from Shults
SYN971 ( -0 +1 _0 ^0) Syntactic from Shults
SYN972 ( -0 +1 _0 ^0) Syntactic from Shults
SYN973 ( -0 +1 _0 ^0) Syntactic from Shults
SYN974 ( -0 +1 _0 ^0) Syntactic from Shults
SYN975 ( -0 +1 _0 ^0) Syntactic from Shults
SYN976 ( -0 +1 _0 ^0) Syntactic from Shults
SYN977 ( -0 +1 _0 ^1) Syntactic from Shults
SYN978 ( -0 +1 _0 ^1) Syntactic from Shults
SYN979 ( -0 +1 _0 ^0) Syntactic from Shults
SYN980 ( -0 +1 _0 ^0) Syntactic from Shults
SYN981 ( -0 +1 _0 ^0) Syntactic from Shults
SYN982 ( -1 +0 _0 ^0) Problem that's Horn but resists hyper-resolution
SYN983 ( -0 +0 _0 ^1) Factoring application over conjunction
SYN984 ( -0 +0 _0 ^1) Factoring application over conjunction with lambda
SYN985 ( -0 +0 _0 ^1) Factoring application over conjunction with abstraction
SYN986 ( -0 +7 _0 ^0) Orevkov formula - size 0
SYN987 ( -0 +0 _0 ^2) All things are true
SYN988 ( -0 +0 _0 ^2) All things are false
SYN989 ( -0 +0 _0 ^3) All things are true or false
SYN990 ( -0 +0 _0 ^1) Simple test for satisfiability
SYN991 ( -0 +0 _0 ^1) Inconsistency of axioms that says all relations are reflexive
SYN992 ( -0 +0 _0 ^1) There exists a reflexive relation
SYN993 ( -0 +0 _0 ^1) Skolemization test 1
SYN994 ( -0 +0 _0 ^1) Skolemization test 2
SYN995 ( -0 +0 _0 ^1) Every function has a fixed point
SYN996 ( -0 +0 _0 ^1) Test for naive Skolemization
SYN997 ( -0 +0 _0 ^1) Test for validity of axiom of choice
SYN998 ( -0 +0 _0 ^1) Leibniz equality is reflexive
SYN999 ( -0 +0 _0 ^1) Leibniz equality is symmetric
-------------------------------------------------------------------------------
Domain SYO = Syntactic Continued
824 problems (615 abstract), 50 CNF, 51 FOF, 7 TFF, 716 THF
-------------------------------------------------------------------------------
SYO001 ( -0 +0 _0 ^1) Leibniz equality is transitive
SYO002 ( -0 +0 _0 ^1) Leibniz equality obeys the congruence property under functions
SYO003 ( -0 +0 _0 ^1) Leibniz equality obeys the congruence property under predicates
SYO004 ( -0 +0 _0 ^1) Relating Leibniz equality to primitive equality
SYO005 ( -0 +0 _0 ^1) The trivial direction of functional extensionality
SYO006 ( -0 +0 _0 ^1) The trivial direction of Boolean extensionality
SYO007 ( -0 +0 _0 ^1) The non-trivial direction of Boolean extensionality
SYO008 ( -0 +0 _0 ^1) The non-trivial direction of functional extensionality
SYO009 ( -0 +0 _0 ^1) Eta-equality using Leibniz equality
SYO010 ( -0 +0 _0 ^1) Something requiring Xi but not Eta
SYO011 ( -0 +0 _0 ^1) Invalid formula in model classes not requiring f
SYO012 ( -0 +0 _0 ^1) Formula valid with Boolean extentionality 1
SYO013 ( -0 +0 _0 ^1) Formula valid with Boolean extentionality 2
SYO015 ( -0 +0 _0 ^1) A is not equal to not A
SYO016 ( -0 +0 _0 ^1) Formula valid in MBb, but not in model classes not requiring b
SYO017 ( -0 +0 _0 ^1) Formula valid in MBb, but not in model classes not requiring b
SYO018 ( -0 +0 _0 ^1) Formula requiring b and Eta
SYO019 ( -0 +0 _0 ^1) De Morgan by equivalance
SYO020 ( -0 +0 _0 ^1) De Morgan by Leibnitz
SYO021 ( -0 +0 _0 ^1) De Morgan by equality
SYO022 ( -0 +0 _0 ^1) De Morgan lambda terms by Leibnitz
SYO023 ( -0 +0 _0 ^1) De Morgan lambda terms by Leibnitz
SYO024 ( -0 +0 _0 ^1) De Morgan by connectives and Leibnitz
SYO025 ( -0 +0 _0 ^1) De Morgan by connectives and equality
SYO026 ( -0 +0 _0 ^1) Four functions from truth values to truth values
SYO027 ( -0 +0 _0 ^1) Something is true
SYO028 ( -0 +0 _0 ^1) Not all things are false
SYO029 ( -0 +0 _0 ^1) There is an identity unary connective
SYO030 ( -0 +0 _0 ^1) Not every unary connective is the identity
SYO031 ( -0 +0 _0 ^1) Not every unary connective is the identity
SYO032 ( -0 +0 _0 ^1) There is a disjunction connective
SYO033 ( -0 +0 _0 ^1) There is a universal quantifer
SYO034 ( -0 +0 _0 ^1) Formula not making use of projection
SYO035 ( -0 +0 _0 ^1) Higher-order unification does not always provide projection terms
SYO037 ( -0 +0 _0 ^1) Injective Cantor theorem
SYO038 ( -5 +0 _0 ^5) Boolos' Curious Inference, size f(2,f(3,4))
SYO039 ( -0 +0 _0 ^2) Unsatisfiable basic formula 1
SYO040 ( -0 +0 _0 ^2) Unsatisfiable basic formula 2
SYO041 ( -0 +0 _0 ^2) Unsatisfiable basic formula 3
SYO042 ( -0 +0 _0 ^2) Unsatisfiable basic formula 4
SYO043 ( -0 +0 _0 ^2) Unsatisfiable basic formula 5
SYO044 ( -0 +0 _0 ^1) Simple textbook example 1
SYO045 ( -0 +0 _0 ^1) Simple textbook example 2
SYO046 ( -0 +0 _0 ^1) Simple textbook example 3
SYO047 ( -0 +0 _0 ^1) Simple textbook example 4
SYO048 ( -0 +0 _0 ^1) Simple textbook example 5
SYO049 ( -0 +0 _0 ^1) Simple textbook example 6
SYO050 ( -0 +0 _0 ^2) Simple textbook example 7
SYO051 ( -0 +0 _0 ^2) Simple textbook example 8
SYO052 ( -0 +0 _0 ^2) Simple textbook example 9
SYO053 ( -0 +0 _0 ^2) Simple textbook example 10
SYO054 ( -0 +0 _0 ^2) Simple textbook example 11
SYO055 ( -0 +0 _0 ^2) Simple textbook example 12
SYO056 ( -0 +0 _0 ^2) Simple textbook example 13
SYO057 ( -0 +0 _0 ^2) Simple textbook example 14
SYO058 ( -0 +0 _0 ^1) ILTP problem SYJ101+1
SYO059 ( -0 +0 _0 ^1) ILTP problem SYJ102+1
SYO060 ( -0 +0 _0 ^1) ILTP problem SYJ103+1
SYO061 ( -0 +0 _0 ^1) ILTP Problem SYJ104+1
SYO062 ( -0 +0 _0 ^3) ILTP Problem SYJ105+1.002
SYO063 ( -0 +0 _0 ^1) ILTP Problem SYJ106+1
SYO064 ( -0 +0 _0 ^4) ILTP Problem SYJ107+1.001
SYO065 ( -0 +0 _0 ^4) ILTP Problem SYJ201+1.001
SYO066 ( -0 +0 _0 ^4) ILTP Problem SYJ202+1.001
SYO067 ( -0 +0 _0 ^4) ILTP Problem SYJ203+1.001
SYO068 ( -0 +0 _0 ^4) ILTP Problem SYJ204+1.001
SYO069 ( -0 +0 _0 ^4) ILTP Problem SYJ205+1.001
SYO070 ( -0 +0 _0 ^4) ILTP Problem SYJ211+1.001
SYO071 ( -0 +0 _0 ^4) ILTP Problem SYJ207+1.001
SYO072 ( -0 +0 _0 ^4) ILTP Problem SYJ208+1.001
SYO073 ( -0 +0 _0 ^4) ILTP Problem SYJ209+1.001
SYO074 ( -0 +0 _0 ^4) ILTP Problem SYJ210+1.001
SYO076 ( -0 +0 _0 ^1) TPS problem THM114
SYO077 ( -0 +0 _0 ^1) TPS problem THM64
SYO078 ( -0 +0 _0 ^1) TPS problem THM49
SYO079 ( -0 +0 _0 ^1) TPS problem THM50-A
SYO080 ( -0 +0 _0 ^1) TPS problem THM200
SYO081 ( -0 +0 _0 ^1) TPS problem THM137
SYO082 ( -0 +0 _0 ^1) TPS problem BAFFLER-VARIANT
SYO083 ( -0 +0 _0 ^1) TPS problem THM62
SYO084 ( -0 +0 _0 ^1) TPS problem THM75
SYO085 ( -0 +0 _0 ^1) TPS problem COM-DMG02
SYO086 ( -0 +0 _0 ^1) TPS problem THM50-11
SYO087 ( -0 +0 _0 ^1) TPS problem THM50-13
SYO088 ( -0 +0 _0 ^1) TPS problem ARR-COM-DMG5
SYO089 ( -0 +0 _0 ^1) TPS problem DMG7
SYO090 ( -0 +0 _0 ^1) TPS problem DMG8
SYO091 ( -0 +0 _0 ^1) TPS problem THM50Q
SYO092 ( -0 +0 _0 ^1) TPS problem Y2141
SYO093 ( -0 +0 _0 ^1) TPS problem THM63
SYO094 ( -0 +0 _0 ^1) TPS problem THM55A
SYO095 ( -0 +0 _0 ^1) TPS problem THM81
SYO096 ( -0 +0 _0 ^1) TPS problem LX1
SYO098 ( -0 +0 _0 ^1) TPS problem THM65
SYO099 ( -0 +0 _0 ^1) TPS problem THM78
SYO101 ( -0 +0 _0 ^1) TPS problem THM83
SYO102 ( -0 +0 _0 ^1) TPS problem THM101
SYO103 ( -0 +0 _0 ^1) TPS problem THM147
SYO104 ( -0 +0 _0 ^1) TPS problem TTTP2129
SYO105 ( -0 +0 _0 ^1) TPS problem X2201TEST
SYO107 ( -0 +0 _0 ^1) TPS problem THM66
SYO108 ( -0 +0 _0 ^1) TPS problem THM79
SYO109 ( -0 +0 _0 ^1) TPS problem THM271
SYO111 ( -0 +0 _0 ^1) TPS problem THM80
SYO112 ( -0 +0 _0 ^1) TPS problem THM53
SYO113 ( -0 +0 _0 ^1) TPS problem THM350
SYO114 ( -0 +0 _0 ^1) TPS problem THM119
SYO118 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO119 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO120 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO121 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO122 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO123 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO124 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO125 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO126 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO128 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO129 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO130 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO131 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO132 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO133 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO134 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO135 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO136 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO137 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO138 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO139 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO140 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO141 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO142 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO143 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO144 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO145 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO146 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO147 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO148 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO149 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO150 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO151 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO152 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO153 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO154 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO155 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO156 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO157 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO158 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO159 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO160 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO161 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO163 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO164 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO165 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO166 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO167 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO168 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO169 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO170 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO171 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO173 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO174 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO175 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO176 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO178 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO179 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO180 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO181 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO182 ( -0 +0 _0 ^1) TPS problem from BASIC-FO-THMS
SYO183 ( -0 +0 _0 ^2) TPS problem CT2
SYO184 ( -0 +0 _0 ^1) TPS problem CT9
SYO185 ( -0 +0 _0 ^1) TPS problem CT17
SYO186 ( -0 +0 _0 ^1) TPS problem CT11
SYO187 ( -0 +0 _0 ^1) TPS problem CT10
SYO188 ( -0 +0 _0 ^1) TPS problem CT19
SYO189 ( -0 +0 _0 ^1) TPS problem CT5
SYO190 ( -0 +0 _0 ^1) TPS problem CT15
SYO191 ( -0 +0 _0 ^1) TPS problem CT14
SYO192 ( -0 +0 _0 ^1) TPS problem CT12
SYO193 ( -0 +0 _0 ^1) TPS problem CT20
SYO194 ( -0 +0 _0 ^1) TPS problem CT23
SYO195 ( -0 +0 _0 ^1) TPS problem CT25
SYO196 ( -0 +0 _0 ^1) TPS problem CT21
SYO197 ( -0 +0 _0 ^1) TPS problem CT18
SYO198 ( -0 +0 _0 ^1) TPS problem CT8
SYO199 ( -0 +0 _0 ^1) TPS problem CT7
SYO200 ( -0 +0 _0 ^1) TPS problem CT4
SYO202 ( -0 +0 _0 ^1) TPS problem CT22
SYO203 ( -0 +0 _0 ^1) TPS problem PROP-2003-3-13
SYO204 ( -0 +0 _0 ^1) TPS problem CT313
SYO205 ( -0 +0 _0 ^1) TPS problem CT27
SYO206 ( -0 +0 _0 ^1) TPS problem CT265
SYO207 ( -0 +0 _0 ^1) TPS problem CT26
SYO208 ( -0 +0 _0 ^1) TPS problem CT31
SYO209 ( -0 +0 _0 ^1) TPS problem CT29
SYO210 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-PROP-THMS
SYO211 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-PROP-THMS
SYO212 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-PROP-THMS
SYO213 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-PROP-THMS
SYO214 ( -0 +0 _0 ^1) TPS problem THM12
SYO215 ( -0 +0 _0 ^1) TPS problem THM26
SYO216 ( -0 +0 _0 ^1) TPS problem THM107
SYO217 ( -0 +0 _0 ^1) TPS problem THM174
SYO218 ( -0 +0 _0 ^1) TPS problem THM7B
SYO219 ( -0 +0 _0 ^1) TPS problem THM6
SYO220 ( -0 +0 _0 ^1) TPS problem THM47A
SYO221 ( -0 +0 _0 ^1) TPS problem BLEDSOE6
SYO222 ( -0 +0 _0 ^1) TPS problem THM115A
SYO223 ( -0 +0 _0 ^1) TPS problem LING2
SYO224 ( -0 +0 _0 ^1) TPS problem LING1
SYO225 ( -0 +0 _0 ^1) TPS problem THM126-CORRECTED
SYO226 ( -0 +0 _0 ^1) TPS problem THM47B
SYO227 ( -0 +0 _0 ^1) TPS problem BLEDSOE4-W-AX
SYO228 ( -0 +0 _0 ^1) TPS problem THM126-EXPANDED
SYO229 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO230 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO231 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO232 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO233 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO234 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO235 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO236 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO237 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO238 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO239 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO240 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO241 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO242 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO243 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO244 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO245 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO246 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO247 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO248 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO249 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO250 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-EQ-THMS
SYO252 ( -0 +0 _0 ^1) TPS problem THM123B
SYO253 ( -0 +0 _0 ^1) TPS problem THM124
SYO255 ( -0 +0 _0 ^1) TPS problem BLEDSOE3
SYO256 ( -0 +0 _0 ^1) TPS problem THM121
SYO257 ( -0 +0 _0 ^1) TPS problem THM84
SYO258 ( -0 +0 _0 ^1) TPS problem BLEDSOE-FENG-6
SYO259 ( -0 +0 _0 ^1) TPS problem THM125B
SYO260 ( -0 +0 _0 ^1) TPS problem THM125A
SYO261 ( -0 +0 _0 ^1) TPS problem BLEDSOE-FENG-SV-I1
SYO262 ( -0 +0 _0 ^1) TPS problem THM19SK1
SYO263 ( -0 +0 _0 ^1) TPS problem THM125D
SYO264 ( -0 +0 _0 ^1) TPS problem THM125C
SYO265 ( -0 +0 _0 ^1) TPS problem X5210
SYO266 ( -0 +0 _0 ^1) TPS problem THM44
SYO267 ( -0 +0 _0 ^1) TPS problem THM111
SYO268 ( -0 +0 _0 ^1) TPS problem X5308
SYO269 ( -0 +0 _0 ^1) TPS problem THM112D
SYO270 ( -0 +0 _0 ^1) TPS problem THM85
SYO271 ( -0 +0 _0 ^1) TPS problem X5500
SYO272 ( -0 +0 _0 ^1) TPS problem THM301A
SYO274 ( -0 +0 _0 ^1) TPS problem THM48-EXPD
SYO275 ( -0 +0 _0 ^1) TPS problem THM300A
SYO276 ( -0 +0 _0 ^1) TPS problem BLEDSOE-FENG-SV-I2
SYO277 ( -0 +0 _0 ^1) TPS problem THM47D
SYO278 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO279 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO280 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO281 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO282 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO284 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO285 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO286 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO287 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO288 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO289 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO290 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO291 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO292 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO293 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO294 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO295 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO296 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO297 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO298 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO299 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO300 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO301 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO302 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO303 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO304 ( -0 +0 _0 ^1) TPS problem from UNKNOWN
SYO305 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO306 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO307 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO308 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO309 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO310 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO311 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO312 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO313 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO314 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO315 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO316 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO317 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO318 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO323 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO324 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO325 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO326 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO327 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO328 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO329 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO330 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO331 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO332 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO333 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO334 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO335 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO336 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO337 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO338 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO339 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO340 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO341 ( -0 +0 _0 ^1) TPS problem from BASIC-HO-THMS
SYO344 ( -0 +0 _0 ^1) TPS problem THM618
SYO345 ( -0 +0 _0 ^1) TPS problem THM615
SYO346 ( -0 +0 _0 ^1) TPS problem THM621
SYO347 ( -0 +0 _0 ^1) TPS problem THM620
SYO348 ( -0 +0 _0 ^1) TPS problem E1EXT
SYO349 ( -0 +0 _0 ^1) TPS problem THM617
SYO350 ( -0 +0 _0 ^1) TPS problem E1FUNC
SYO351 ( -0 +0 _0 ^1) TPS problem E6EXT
SYO352 ( -0 +0 _0 ^1) TPS problem E5EXT
SYO353 ( -0 +0 _0 ^1) TPS problem E1LEIBEQ1
SYO354 ( -0 +0 _0 ^1) TPS problem E4EXT
SYO355 ( -0 +0 _0 ^1) TPS problem THM613
SYO356 ( -0 +0 _0 ^1) TPS problem E1LEIBEQ2
SYO357 ( -0 +0 _0 ^1) TPS problem E2LEIBEQ2
SYO358 ( -0 +0 _0 ^1) TPS problem E2LEIBEQ1
SYO359 ( -0 +0 _0 ^1) TPS problem EXT1
SYO360 ( -0 +0 _0 ^1) TPS problem EDEC1
SYO361 ( -0 +0 _0 ^1) TPS problem THM47
SYO362 ( -0 +0 _0 ^1) TPS problem THM631A
SYO363 ( -0 +0 _0 ^1) TPS problem EDEC2
SYO364 ( -0 +0 _0 ^1) TPS problem EDEC
SYO365 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO366 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO367 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO368 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO369 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO370 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO371 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO372 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO373 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO374 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO375 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO376 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO377 ( -0 +0 _0 ^1) TPS problem from EXTENSIONALITY
SYO378 ( -0 +0 _0 ^1) TPS problem from QUANTDEPTH-THMS
SYO379 ( -0 +0 _0 ^1) TPS problem from QUANTDEPTH-THMS
SYO380 ( -0 +0 _0 ^1) TPS problem X-2002-12-17-B
SYO381 ( -0 +0 _0 ^1) TPS problem X-2002-12-17
SYO382 ( -0 +0 _0 ^1) TPS problem THM407
SYO383 ( -0 +0 _0 ^1) TPS problem THM409-1
SYO384 ( -0 +0 _0 ^1) TPS problem THM408
SYO385 ( -0 +0 _0 ^1) TPS problem THM409-2
SYO386 ( -0 +0 _0 ^1) TPS problem THM409-3
SYO387 ( -0 +0 _0 ^1) TPS problem THM409-4
SYO388 ( -0 +0 _0 ^1) TPS problem THM409-5
SYO389 ( -0 +0 _0 ^1) TPS problem from MISC
SYO390 ( -0 +0 _0 ^1) TPS problem UNKNOWN
SYO391 ( -0 +0 _0 ^1) TPS problem from MISC
SYO392 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 01
SYO393 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 02
SYO394 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 03
SYO395 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 04
SYO396 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 05
SYO397 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 06
SYO398 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 07
SYO399 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 08
SYO400 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 09
SYO401 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 10
SYO402 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 11
SYO403 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 12
SYO404 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 13
SYO405 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 14
SYO406 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 15
SYO407 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 16
SYO408 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 17
SYO409 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 18
SYO410 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 19
SYO411 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 20
SYO412 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 21
SYO413 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 22
SYO414 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 23
SYO415 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 24
SYO416 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 25
SYO417 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 26
SYO418 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 27
SYO419 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 28
SYO420 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 29
SYO421 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 30
SYO422 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 31
SYO423 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 32
SYO424 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 33
SYO425 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 34
SYO426 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 35
SYO427 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 36
SYO428 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 37
SYO429 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 38
SYO430 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 39
SYO431 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 40
SYO432 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 41
SYO433 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 42
SYO434 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 43
SYO435 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 44
SYO436 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 45
SYO437 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 46
SYO438 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 47
SYO439 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 48
SYO440 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 49
SYO441 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 50
SYO442 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 51
SYO443 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 52
SYO444 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 53
SYO445 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 54
SYO446 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 55
SYO447 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 56
SYO448 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 57
SYO449 ( -0 +0 _0 ^1) Ted Sider's modal proposition logic theorem 58
SYO450 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 01
SYO451 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 02
SYO452 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 03
SYO453 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 04
SYO454 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 05
SYO455 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 06
SYO456 ( -0 +0 _0 ^5) Ted Sider's propositional modal logic wff 07
SYO457 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 08
SYO458 ( -0 +0 _0 ^5) Ted Sider's propositional modal logic wff 09
SYO459 ( -0 +0 _0 ^5) Ted Sider's propositional modal logic wff 10
SYO460 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 11
SYO461 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 12
SYO462 ( -0 +0 _0 ^5) Ted Sider's propositional modal logic wff 13
SYO463 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 14
SYO464 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 15
SYO465 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 16
SYO467 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 18
SYO468 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 19
SYO469 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 20
SYO470 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 21
SYO471 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 22
SYO472 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 23
SYO473 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 24
SYO474 ( -0 +0 _0 ^6) Ted Sider's propositional modal logic wff 25
SYO475 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 01
SYO476 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 02
SYO477 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 03
SYO478 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 04
SYO479 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 05
SYO480 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 06
SYO481 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 07
SYO482 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 08
SYO483 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 09
SYO484 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 10
SYO485 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 11
SYO486 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 12
SYO487 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 13
SYO488 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 14
SYO489 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 15
SYO490 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 16
SYO491 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 17
SYO492 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 18
SYO493 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 19
SYO494 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 20
SYO495 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 21
SYO496 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 22
SYO497 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 23
SYO498 ( -0 +0 _0 ^1) Ted Sider's S5 quantified modal logic wff 24
SYO499 ( -0 +0 _0 ^1) Explosive confrontation
SYO500 ( -0 +0 _0 ^8) Two function variant of the Kaminski equation
SYO501 ( -0 +0 _0 ^1) An unsatisfiable normal set with embedded formulas
SYO502 ( -0 +0 _0 ^1) Rules sym and con handle positive equations at i
SYO503 ( -0 +0 _0 ^1) Tableau with two branches
SYO504 ( -0 +0 _0 ^1) Hoeschele p.21
SYO505 ( -0 +0 _0 ^1) Explosive confrontation
SYO506 ( -0 +0 _0 ^1) (if (X = Y) then X else Y) = Y
SYO507 ( -0 +0 _0 ^1) Example 4.1
SYO509 ( -0 +0 _0 ^1) Existence of choice functions for binary relations
SYO511 ( -0 +0 _0 ^1) Two different choice operators at type i
SYO512 ( -0 +0 _0 ^1) Choice operator used to obtain functions from total relations
SYO513 ( -0 +0 _0 ^1) There is a choice operator at type o
SYO514 ( -0 +0 _0 ^1) A choice operator at type oo
SYO515 ( -0 +0 _0 ^1) A choice operator at type oo
SYO516 ( -0 +0 _0 ^1) Every functional relation corresponds to a function
SYO517 ( -0 +0 _0 ^1) A description operator at type i
SYO518 ( -0 +0 _0 ^1) There is an if-then-else operator at type i
SYO520 ( -0 +0 _0 ^1) A simple problem with a choice operator
SYO521 ( -0 +0 _1 ^0) There are more than two integers
SYO522 ( -0 +0 _1 ^0) Functions are either odd or even
SYO523 ( -0 +0 _1 ^0) Injective pigeon hole function
SYO524 ( -0 +0 _1 ^0) Monotone function
SYO525 ( -0 +6 _0 ^0) Linear can be exponential
SYO526 ( -0 +0 _0 ^1) The BQFQFE problem
SYO527 ( -0 +0 _0 ^1) Skolem Property on two types
SYO528 ( -0 +0 _0 ^1) There can be 4 distinct choice operators on type $o
SYO529 ( -0 +0 _0 ^1) There cannot be 5 distinct choice operators on type $o
SYO530 ( -0 +0 _0 ^1) Binary choice on individuals
SYO531 ( -0 +0 _0 ^1) Binary choice on individuals 2
SYO532 ( -0 +0 _0 ^1) Binary choice on individuals 3
SYO533 ( -0 +0 _0 ^1) Binary choice on individuals 4
SYO534 ( -0 +0 _0 ^1) 3-ary choice on individuals
SYO535 ( -0 +0 _0 ^1) Choice on relations between individuals and functions
SYO536 ( -0 +0 _0 ^1) Choice on relations between functions and individuals
SYO537 ( -0 +0 _0 ^1) Choice on binary relations between functions
SYO538 ( -0 +0 _0 ^1) If-then-else on $i defined from choice on $i
SYO539 ( -0 +0 _0 ^1) Range of if-then-else on $i defined from choice on $i
SYO540 ( -0 +0 _0 ^1) Property of if-then-else on $i defined from choice on $i
SYO541 ( -0 +0 _0 ^1) If-then-else on $i>$i defined from choice on $i>$i
SYO542 ( -0 +0 _0 ^1) If-then-else on $i>$i defined from choice on $i>$i
SYO543 ( -0 +0 _0 ^1) If-then-else on $i>$i defined from choice on $i>$i
SYO544 ( -0 +0 _0 ^1) Case operator from ($o>$o) to $i defined from choice on $i
SYO545 ( -0 +0 _0 ^1) Property of case from ($o>$o) to $i defined from choice on $i
SYO546 ( -0 +0 _0 ^1) Property of case from ($o>$o) to $i defined from choice on $i
SYO547 ( -0 +0 _0 ^1) Choice Complement
SYO548 ( -0 +0 _0 ^1) hoice complement
SYO549 ( -0 +0 _0 ^1) The eta double negation problem
SYO550 ( -0 +0 _0 ^1) The identity function on individuals exists
SYO551 ( -0 +0 _0 ^1) The identity function on functions from $i to $i exists
SYO552 ( -0 +0 _0 ^1) The first projection exists
SYO553 ( -0 +0 _0 ^1) The second projection exists.
SYO554 ( -0 +0 _0 ^1) Teucke's example
SYO555 ( -0 +0 _0 ^1) If-then-else defined from choice is independent of choice
SYO556 ( -0 +0 _0 ^1) Relationship between if-then-else and choice on $
SYO557 ( -0 +0 _0 ^1) Exists on $i can be expressed in terms of choice on $
SYO558 ( -0 +0 _0 ^1) Forall on $i can be expressed in terms of choice on $
SYO559 ( -0 +0 _0 ^1) Choice on $o>$o applied to choice on $o cannot be negatio
SYO560 ( -0 +0 _0 ^1) Choice on $o>$o applied to choice on $o is identity or constant
SYO561 ( -0 +1 _2 ^0) Distinct objects
SYO562 ( -0 +0 _1 ^0) If-then-else
SYO564 ( -0 +0 _0 ^1) Barcan scheme instance. (Ted Sider's qml wwf 1)
SYO565 ( -0 +0 _0 ^1) Fitting and Mendelsohn problem
SYO566 ( -0 +0 _0 ^1) Girle problem
SYO567 ( -0 +0 _0 ^1) Girle problem
SYO568 ( -0 +0 _0 ^1) Girle problem
SYO569 ( -0 +0 _0 ^1) Fitting and Mendelsohn problem
SYO570 ( -0 +0 _0 ^1) Forbes problem
SYO571 ( -0 +0 _0 ^1) Quantified modal logics wwfs. problem 9.
SYO572 ( -0 +0 _0 ^1) Quantified modal logics wwfs. problem 13.
SYO573 ( -0 +0 _0 ^1) Quantified modal logics wwfs. problem 15.
SYO574 ( -0 +0 _0 ^1) Modal Propositional Logic Theorems. problem 37
SYO575 ( -0 +0 _0 ^1) Modal Propositional Logic Theorems. problem 50
SYO576 ( -0 +0 _0 ^1) Mixed Modal Propositional Logic WFFs. problem 7
SYO577 ( -0 +0 _0 ^1) Mixed Modal Propositional Logic WFFs. problem 19
SYO578 ( -0 +1 _0 ^0) Small buttercup theorem
SYO579 ( -0 +1 _0 ^0) Small buttercup non-theorem
SYO580 ( -0 +1 _0 ^0) Big buttercup theorem
SYO581 ( -0 +1 _0 ^0) Big buttercup non-theorem
SYO582 ( -0 +1 _0 ^0) Hard buttercup non-theorem
SYO583 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
SYO584 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
SYO585 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
SYO586 ( -1 +1 _0 ^0) QBFLib problem from the k_branch_n family
SYO587 ( -1 +1 _0 ^0) QBFLib problem from the k_branch_p family
SYO588 ( -1 +1 _0 ^0) QBFLib problem from the k_branch_p family
SYO589 ( -1 +1 _0 ^0) QBFLib problem from the k_branch_p family
SYO590 ( -1 +1 _0 ^0) QBFLib problem from the k_d4_n family
SYO591 ( -1 +1 _0 ^0) QBFLib problem from the k_d4_p family
SYO592 ( -1 +1 _0 ^0) QBFLib problem from the k_d4_p family
SYO593 ( -1 +1 _0 ^0) QBFLib problem from the k_dum_n family
SYO594 ( -1 +1 _0 ^0) QBFLib problem from the k_dum_p family
SYO595 ( -1 +1 _0 ^0) QBFLib problem from the k_ph_n family
SYO596 ( -1 +1 _0 ^0) QBFLib problem from the k_ph_n family
SYO597 ( -1 +1 _0 ^0) QBFLib problem from the k_ph_p family
SYO598 ( -1 +1 _0 ^0) QBFLib problem from the k_ph_p family
SYO599 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
SYO600 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
SYO601 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
SYO602 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
SYO603 ( -1 +1 _0 ^0) QBFLib problem from an unknown family
SYO604 ( -0 +1 _0 ^0) RM3 problem 3
SYO605 ( -0 +1 _0 ^0) RM3 problem 4
SYO606 ( -0 +1 _0 ^0) RM3 problem 5
SYO607 ( -0 +1 _0 ^0) RM3 problem 6
SYO608 ( -0 +1 _0 ^0) RM3 problem 7
SYO609 ( -0 +1 _0 ^0) RM3 problem 8
SYO610 ( -0 +1 _0 ^0) RM3 problem 9
SYO611 ( -1 +0 _0 ^0) C(1,0)
SYO612 ( -1 +0 _0 ^0) C(1,5)
SYO613 ( -1 +0 _0 ^0) C(1,10)
SYO614 ( -1 +0 _0 ^0) C(2,0)
SYO615 ( -1 +0 _0 ^0) C(2,5)
SYO616 ( -1 +0 _0 ^0) C(2,10)
SYO617 ( -1 +0 _0 ^0) C(3,0)
SYO618 ( -1 +0 _0 ^0) C(3,5)
SYO619 ( -1 +0 _0 ^0) C(3,10)
SYO620 ( -1 +0 _0 ^0) C(4,0)
SYO621 ( -1 +0 _0 ^0) C(4,5)
SYO622 ( -1 +0 _0 ^0) C(4,10)
SYO623 ( -1 +0 _0 ^0) C(5,5)
SYO624 ( -1 +0 _0 ^0) C(6,6)
SYO625 ( -1 +0 _0 ^0) C(7,7)
SYO626 ( -1 +0 _0 ^0) C(8,8)
SYO627 ( -1 +0 _0 ^0) C(9,9)
SYO628 ( -1 +0 _0 ^0) C(10,10)
SYO629 ( -1 +0 _0 ^0) ECSClauseSet1
SYO630 ( -1 +0 _0 ^0) ECSClauseSet5
SYO631 ( -1 +0 _0 ^0) ECSClauseSet10
SYO632 ( -1 +0 _0 ^0) NDClauseSet1
SYO633 ( -1 +0 _0 ^0) NDClauseSet5
SYO634 ( -1 +0 _0 ^0) NDClauseSet10
SYO635 ( -0 +1 _0 ^0) Goldfarb
SYO636 ( -0 +1 _0 ^0) Quine
SYO637 ( -0 +1 _0 ^0) BoergerS33
SYO638 ( -0 +1 _0 ^0) Hilbert
SYO639 ( -0 +1 _0 ^0) Addkpairs34
SYO640 ( -0 +1 _0 ^0) Itmul0
SYO641 ( -0 +1 _0 ^0) Notref3
SYO642 ( -0 +1 _0 ^0) Decider test 037
SYO643 ( -0 +1 _0 ^0) Decider test 126
SYO644 ( -0 +1 _0 ^0) Decider test 128
SYO645 ( -0 +1 _0 ^0) Decider test 158
-------------------------------------------------------------------------------
Domain TOP = Topology
131 problems (48 abstract), 24 CNF, 107 FOF, 0 TFF, 0 THF
-------------------------------------------------------------------------------
TOP001 ( -2 +0 _0 ^0) Topology generated by a basis forms a topological space, part 1
TOP002 ( -2 +0 _0 ^0) Topology generated by a basis forms a topological space, part 2
TOP003 ( -2 +0 _0 ^0) Topology generated by a basis forms a topological space, part 3
TOP004 ( -2 +0 _0 ^0) Topology generated by a basis forms a topological space, part 4
TOP005 ( -2 +0 _0 ^0) Topology generated by a basis forms a topological space, part 5
TOP006 ( -1 +0 _0 ^0) Topology generated by a basis forms a topological space
TOP007 ( -1 +0 _0 ^0) Property 1 of topological spaces
TOP008 ( -1 +0 _0 ^0) The subspace topology gives rise to a topological space
TOP009 ( -1 +0 _0 ^0) If Y is open in X, and A is open in Y, then A is open in X
TOP010 ( -1 +0 _0 ^0) A finer topology induces a finer subspace topology
TOP011 ( -1 +0 _0 ^0) An alternative definition of top_of_basis
TOP012 ( -1 +0 _0 ^0) Intersections and finite unions of closed sets are closed
TOP013 ( -1 +0 _0 ^0) Properties of interior and closure
TOP014 ( -1 +0 _0 ^0) Properties of open & interior and closed & closure
TOP015 ( -1 +0 _0 ^0) The interior and the boundary of a set are disjoint
TOP016 ( -1 +0 _0 ^0) The union of the interior and the boundary is the closure
TOP017 ( -1 +0 _0 ^0) If the boundary of A is empty, A is both open and closed
TOP018 ( -1 +0 _0 ^0) Propoerty of limits points and connected sets
TOP019 ( -1 +0 _0 ^0) The closure of a connected set is connected
TOP020 ( -0 +1 _0 ^0) Property of a Hausdorff topological space
TOP021 ( -0 +1 _0 ^0) Locally compact tological space
TOP022 ( -0 +1 _0 ^0) Homotopy groups
TOP023 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T01
TOP024 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T02
TOP025 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T03
TOP026 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T07
TOP027 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T08
TOP028 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T10
TOP029 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T13
TOP030 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T15
TOP031 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T17
TOP032 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T19
TOP033 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T21
TOP034 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T23
TOP035 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T24
TOP036 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T28
TOP037 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T30
TOP038 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T31
TOP039 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T32
TOP040 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T33
TOP041 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T34
TOP042 ( -0 +4 _0 ^0) Maximal Kolmogorov Subspaces of a Topological Space T35
TOP043 ( -0 +4 _0 ^0) The Tichonov Theorem T24
TOP044 ( -0 +4 _0 ^0) Compactness of Lim-inf Topology T01
TOP045 ( -0 +4 _0 ^0) Compactness of Lim-inf Topology T06
TOP046 ( -0 +4 _0 ^0) Compactness of Lim-inf Topology T07
TOP047 ( -0 +4 _0 ^0) Compactness of Lim-inf Topology T08
TOP048 ( -0 +4 _0 ^0) Compactness of Lim-inf Topology T27