TPTP Axioms File: SWB003+1.ax


%------------------------------------------------------------------------------
% File     : SWB003+1 : TPTP v7.5.0. Released v5.2.0.
% Domain   : Semantic Web
% Axioms   : RDFS Extensional axioms
% Version  : [Sch03] axioms : Especial.
% English  :

% Refs     : [Sch03] Schneider, M. (2011), Email to G. Sutcliffe
% Source   : [Sch03]
% Names    : axioms-rdfsext-standard [Sch03]

% Status   : Satisfiable
% Syntax   : Number of formulae    :    4 (   0 unit)
%            Number of atoms       :   20 (   0 equality)
%            Maximal formula depth :    9 (   9 average)
%            Number of connectives :   16 (   0   ~;   0   |;   8   &)
%                                         (   4 <=>;   4  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of predicates  :    4 (   0 propositional; 1-3 arity)
%            Number of functors    :    4 (   4 constant; 0-0 arity)
%            Number of variables   :   15 (   0 sgn;  15   !;   0   ?)
%            Maximal term depth    :    1 (   1 average)
% SPC      : FOF_SAT_RFO_NEQ

% Comments : Requires SWB003+0.ax
%------------------------------------------------------------------------------
%----rdfs:domain
fof(owl_rdfsext_domain,axiom,(
    ! [P,C] :
      ( iext(uri_rdfs_domain,P,C)
    <=> ( ip(P)
        & ic(C)
        & ! [X,Y] :
            ( iext(P,X,Y)
           => icext(C,X) ) ) ) )).

%----rdfs:range
fof(owl_rdfsext_range,axiom,(
    ! [P,C] :
      ( iext(uri_rdfs_range,P,C)
    <=> ( ip(P)
        & ip(C)
        & ! [X,Y] :
            ( iext(P,X,Y)
           => icext(C,Y) ) ) ) )).

%----rdfs:subClassOf
fof(owl_rdfsext_subclassof,axiom,(
    ! [C1,C2] :
      ( iext(uri_rdfs_subClassOf,C1,C2)
    <=> ( ic(C1)
        & ic(C2)
        & ! [X] :
            ( icext(C1,X)
           => icext(C2,X) ) ) ) )).

%----rdfs:subPropertyOf
fof(owl_rdfsext_subpropertyof,axiom,(
    ! [P1,P2] :
      ( iext(uri_rdfs_subPropertyOf,P1,P2)
    <=> ( ip(P1)
        & ip(P2)
        & ! [X,Y] :
            ( iext(P1,X,Y)
           => iext(P2,X,Y) ) ) ) )).

%------------------------------------------------------------------------------