TPTP Axioms File: MED001+1.ax


%------------------------------------------------------------------------------
% File     : MED001+1 : TPTP v7.5.0. Released v3.2.0.
% Domain   : Medicine
% Axioms   : "Completed" Physiology Diabetes Mellitus type 2
% Version  : [HLB05] axioms : Especial.
% English  : Completed theory of diabetes mellitus type 2 mechanisms

% Refs     : [HLB05] Hommersom et al. (2005), Automated Theorem Proving for
%          : [Hom06] Hommersom (2006), Email to G. Sutcliffe
% Source   : [Hom06]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of formulae    :   22 (   0 unit)
%            Number of atoms       :  114 (   0 equality)
%            Maximal formula depth :   12 (   6 average)
%            Number of connectives :  137 (  45 ~  ;  21  |;  30  &)
%                                         (   0 <=>;  41 =>;   0 <=)
%                                         (   0 <~>;   0 ~|;   0 ~&)
%            Number of predicates  :   19 (   0 propositional; 1-2 arity)
%            Number of functors    :    0 (   0 constant; --- arity)
%            Number of variables   :   51 (   0 singleton;  48 !;   3 ?)
%            Maximal term depth    :    1 (   1 average)
% SPC      : 

% Comments : Requires MED001+0.ax
%------------------------------------------------------------------------------
fof(xorstep1,axiom,(
    ! [X0] :
      ( s0(X0)
      | s1(X0)
      | s2(X0)
      | s3(X0) ) )).

fof(xorstep2,axiom,(
    ! [X0] :
      ( ~ s0(X0)
      | ~ s1(X0) ) )).

fof(xorstep3,axiom,(
    ! [X0] :
      ( ~ s0(X0)
      | ~ s2(X0) ) )).

fof(xorstep4,axiom,(
    ! [X0] :
      ( ~ s0(X0)
      | ~ s3(X0) ) )).

fof(xorstep5,axiom,(
    ! [X0] :
      ( ~ s1(X0)
      | ~ s2(X0) ) )).

fof(xorstep6,axiom,(
    ! [X0] :
      ( ~ s1(X0)
      | ~ s3(X0) ) )).

fof(xorstep7,axiom,(
    ! [X0] :
      ( ~ s2(X0)
      | ~ s3(X0) ) )).

fof(normo,axiom,(
    ! [X0] :
      ( ! [X1] :
          ( ~ gt(X0,X1)
         => conditionnormo(X1) )
     => ( ( ! [X1] :
              ( ~ gt(X0,X1)
             => bsecretioni(X1) )
          & bcapacitysn(X0)
          & qilt27(X0)
          & ! [X1] :
              ( gt(X0,X1)
             => conditionhyper(X1) ) )
        | ( ! [X1] :
              ( ~ gt(X0,X1)
             => ~ releaselg(X1) )
          & bcapacitysn(X0)
          & ~ qilt27(X0)
          & ! [X1] :
              ( gt(X0,X1)
             => conditionhyper(X1) ) )
        | ( ( ! [X1] :
                ( ~ gt(X0,X1)
               => ~ releaselg(X1) )
            | ! [X1] :
                ( ~ gt(X0,X1)
               => uptakepg(X1) ) )
          & bcapacityne(X0)
          & ! [X1] :
              ( ~ gt(X0,X1)
             => bsecretioni(X1) )
          & ! [X1] :
              ( gt(X0,X1)
             => conditionhyper(X1) ) )
        | ( ! [X1] :
              ( ~ gt(X0,X1)
             => uptakelg(X1) )
          & ! [X1] :
              ( ~ gt(X0,X1)
             => uptakepg(X1) )
          & bcapacityex(X0)
          & ! [X1] :
              ( gt(X0,X1)
             => conditionhyper(X1) ) ) ) ) )).

fof(step1,axiom,(
    ! [X0] :
      ( ( s1(X0)
        & qilt27(X0) )
     => drugsu(X0) ) )).

fof(step2,axiom,(
    ! [X0] :
      ( ( s1(X0)
        & ~ qilt27(X0) )
     => drugbg(X0) ) )).

fof(step3,axiom,(
    ! [X0] :
      ( s2(X0)
     => ( drugbg(X0)
        & drugsu(X0) ) ) )).

fof(step4,axiom,(
    ! [X0] :
      ( s3(X0)
     => ( ( drugi(X0)
          & ( drugsu(X0)
            | drugbg(X0) ) )
        | drugi(X0) ) ) )).

fof(bgcomp,axiom,(
    ! [X0] :
      ( drugbg(X0)
     => ( ( s1(X0)
          & ~ qilt27(X0) )
        | s2(X0)
        | s3(X0) ) ) )).

fof(sucomp,axiom,(
    ! [X0] :
      ( drugsu(X0)
     => ( ( s1(X0)
          & qillt27(X0) )
        | s2(X0)
        | s3(X0) ) ) )).

fof(insulincomp,axiom,(
    ! [X0] :
      ( drugi(X0)
     => s3(X0) ) )).

fof(insulin_completion,axiom,(
    ! [X0] :
      ( ( ! [X1] :
            ( ~ gt(X0,X1)
           => uptakelg(X1) )
        | ! [X1] :
            ( ~ gt(X0,X1)
           => uptakepg(X1) ) )
     => ! [X1] :
          ( ~ gt(X0,X1)
         => drugi(X1) ) ) )).

fof(uptake_completion,axiom,(
    ! [X0,X1] :
      ( ~ gt(X0,X1)
     => ( ~ releaselg(X1)
       => uptakelg(X1) ) ) )).

fof(su_completion,axiom,(
    ! [X0] :
      ( ! [X1] :
          ( ~ gt(X0,X1)
         => bsecretioni(X1) )
     => ( ! [X1] :
            ( ~ gt(X0,X1)
           => drugsu(X1) )
        & ~ bcapacityex(X0) ) ) )).

fof(bg_completion,axiom,(
    ! [X0] :
      ( ! [X1] :
          ( ~ gt(X0,X1)
         => ~ releaselg(X1) )
     => ! [X1] :
          ( ~ gt(X0,X1)
         => drugbg(X1) ) ) )).

fof(trans_ax1,axiom,(
    ! [X0] :
      ( ( s0(X0)
        & ~ ! [X1] :
              ( ~ gt(X0,X1)
             => conditionnormo(X1) ) )
     => ? [X1] :
          ( ~ gt(X0,X1)
          & s1(X1)
          & ! [X2] :
              ( gt(X1,X2)
             => conditionhyper(X2) ) ) ) )).

fof(trans_ax2,axiom,(
    ! [X0] :
      ( ( s1(X0)
        & ~ ! [X1] :
              ( ~ gt(X0,X1)
             => conditionnormo(X1) ) )
     => ? [X1] :
          ( ~ gt(X0,X1)
          & s2(X1)
          & ! [X2] :
              ( gt(X1,X2)
             => conditionhyper(X2) )
          & ( bcapacityne(X1)
            | bcapacityex(X1) ) ) ) )).

fof(trans_ax3,axiom,(
    ! [X0] :
      ( ( s2(X0)
        & ~ ! [X1] :
              ( ~ gt(X0,X1)
             => conditionnormo(X1) ) )
     => ? [X1] :
          ( ~ gt(X0,X1)
          & s3(X1)
          & ! [X2] :
              ( gt(X1,X2)
             => conditionhyper(X2) )
          & bcapacityex(X1) ) ) )).

%------------------------------------------------------------------------------