## TPTP Axioms File: MED001+1.ax

```%------------------------------------------------------------------------------
% File     : MED001+1 : TPTP v7.5.0. Released v3.2.0.
% Domain   : Medicine
% Axioms   : "Completed" Physiology Diabetes Mellitus type 2
% Version  : [HLB05] axioms : Especial.
% English  : Completed theory of diabetes mellitus type 2 mechanisms

% Refs     : [HLB05] Hommersom et al. (2005), Automated Theorem Proving for
%          : [Hom06] Hommersom (2006), Email to G. Sutcliffe
% Source   : [Hom06]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of formulae    :   22 (   0 unit)
%            Number of atoms       :  114 (   0 equality)
%            Maximal formula depth :   12 (   6 average)
%            Number of connectives :  137 (  45 ~  ;  21  |;  30  &)
%                                         (   0 <=>;  41 =>;   0 <=)
%                                         (   0 <~>;   0 ~|;   0 ~&)
%            Number of predicates  :   19 (   0 propositional; 1-2 arity)
%            Number of functors    :    0 (   0 constant; --- arity)
%            Number of variables   :   51 (   0 singleton;  48 !;   3 ?)
%            Maximal term depth    :    1 (   1 average)
% SPC      :

%------------------------------------------------------------------------------
fof(xorstep1,axiom,(
! [X0] :
( s0(X0)
| s1(X0)
| s2(X0)
| s3(X0) ) )).

fof(xorstep2,axiom,(
! [X0] :
( ~ s0(X0)
| ~ s1(X0) ) )).

fof(xorstep3,axiom,(
! [X0] :
( ~ s0(X0)
| ~ s2(X0) ) )).

fof(xorstep4,axiom,(
! [X0] :
( ~ s0(X0)
| ~ s3(X0) ) )).

fof(xorstep5,axiom,(
! [X0] :
( ~ s1(X0)
| ~ s2(X0) ) )).

fof(xorstep6,axiom,(
! [X0] :
( ~ s1(X0)
| ~ s3(X0) ) )).

fof(xorstep7,axiom,(
! [X0] :
( ~ s2(X0)
| ~ s3(X0) ) )).

fof(normo,axiom,(
! [X0] :
( ! [X1] :
( ~ gt(X0,X1)
=> conditionnormo(X1) )
=> ( ( ! [X1] :
( ~ gt(X0,X1)
=> bsecretioni(X1) )
& bcapacitysn(X0)
& qilt27(X0)
& ! [X1] :
( gt(X0,X1)
=> conditionhyper(X1) ) )
| ( ! [X1] :
( ~ gt(X0,X1)
=> ~ releaselg(X1) )
& bcapacitysn(X0)
& ~ qilt27(X0)
& ! [X1] :
( gt(X0,X1)
=> conditionhyper(X1) ) )
| ( ( ! [X1] :
( ~ gt(X0,X1)
=> ~ releaselg(X1) )
| ! [X1] :
( ~ gt(X0,X1)
=> uptakepg(X1) ) )
& bcapacityne(X0)
& ! [X1] :
( ~ gt(X0,X1)
=> bsecretioni(X1) )
& ! [X1] :
( gt(X0,X1)
=> conditionhyper(X1) ) )
| ( ! [X1] :
( ~ gt(X0,X1)
=> uptakelg(X1) )
& ! [X1] :
( ~ gt(X0,X1)
=> uptakepg(X1) )
& bcapacityex(X0)
& ! [X1] :
( gt(X0,X1)
=> conditionhyper(X1) ) ) ) ) )).

fof(step1,axiom,(
! [X0] :
( ( s1(X0)
& qilt27(X0) )
=> drugsu(X0) ) )).

fof(step2,axiom,(
! [X0] :
( ( s1(X0)
& ~ qilt27(X0) )
=> drugbg(X0) ) )).

fof(step3,axiom,(
! [X0] :
( s2(X0)
=> ( drugbg(X0)
& drugsu(X0) ) ) )).

fof(step4,axiom,(
! [X0] :
( s3(X0)
=> ( ( drugi(X0)
& ( drugsu(X0)
| drugbg(X0) ) )
| drugi(X0) ) ) )).

fof(bgcomp,axiom,(
! [X0] :
( drugbg(X0)
=> ( ( s1(X0)
& ~ qilt27(X0) )
| s2(X0)
| s3(X0) ) ) )).

fof(sucomp,axiom,(
! [X0] :
( drugsu(X0)
=> ( ( s1(X0)
& qillt27(X0) )
| s2(X0)
| s3(X0) ) ) )).

fof(insulincomp,axiom,(
! [X0] :
( drugi(X0)
=> s3(X0) ) )).

fof(insulin_completion,axiom,(
! [X0] :
( ( ! [X1] :
( ~ gt(X0,X1)
=> uptakelg(X1) )
| ! [X1] :
( ~ gt(X0,X1)
=> uptakepg(X1) ) )
=> ! [X1] :
( ~ gt(X0,X1)
=> drugi(X1) ) ) )).

fof(uptake_completion,axiom,(
! [X0,X1] :
( ~ gt(X0,X1)
=> ( ~ releaselg(X1)
=> uptakelg(X1) ) ) )).

fof(su_completion,axiom,(
! [X0] :
( ! [X1] :
( ~ gt(X0,X1)
=> bsecretioni(X1) )
=> ( ! [X1] :
( ~ gt(X0,X1)
=> drugsu(X1) )
& ~ bcapacityex(X0) ) ) )).

fof(bg_completion,axiom,(
! [X0] :
( ! [X1] :
( ~ gt(X0,X1)
=> ~ releaselg(X1) )
=> ! [X1] :
( ~ gt(X0,X1)
=> drugbg(X1) ) ) )).

fof(trans_ax1,axiom,(
! [X0] :
( ( s0(X0)
& ~ ! [X1] :
( ~ gt(X0,X1)
=> conditionnormo(X1) ) )
=> ? [X1] :
( ~ gt(X0,X1)
& s1(X1)
& ! [X2] :
( gt(X1,X2)
=> conditionhyper(X2) ) ) ) )).

fof(trans_ax2,axiom,(
! [X0] :
( ( s1(X0)
& ~ ! [X1] :
( ~ gt(X0,X1)
=> conditionnormo(X1) ) )
=> ? [X1] :
( ~ gt(X0,X1)
& s2(X1)
& ! [X2] :
( gt(X1,X2)
=> conditionhyper(X2) )
& ( bcapacityne(X1)
| bcapacityex(X1) ) ) ) )).

fof(trans_ax3,axiom,(
! [X0] :
( ( s2(X0)
& ~ ! [X1] :
( ~ gt(X0,X1)
=> conditionnormo(X1) ) )
=> ? [X1] :
( ~ gt(X0,X1)
& s3(X1)
& ! [X2] :
( gt(X1,X2)
=> conditionhyper(X2) )
& bcapacityex(X1) ) ) )).

%------------------------------------------------------------------------------
```