TPTP Axioms File: KLE002+0.ax


%------------------------------------------------------------------------------
% File     : KLE002+0 : TPTP v7.5.0. Released v3.6.0.
% Domain   : Kleene algebra
% Axioms   : Kleene algebra
% Version  : [Hoe08] axioms.
% English  :

% Refs     : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source   : [Hoe08]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of formulae    :   16 (  13 unit)
%            Number of atoms       :   19 (  12 equality)
%            Maximal formula depth :    5 (   3 average)
%            Number of connectives :    3 (   0 ~  ;   0  |;   0  &)
%                                         (   1 <=>;   2 =>;   0 <=)
%                                         (   0 <~>;   0 ~|;   0 ~&)
%            Number of predicates  :    2 (   0 propositional; 2-2 arity)
%            Number of functors    :    5 (   2 constant; 0-2 arity)
%            Number of variables   :   30 (   0 singleton;  30 !;   0 ?)
%            Maximal term depth    :    4 (   2 average)
% SPC      : 

% Comments :
%------------------------------------------------------------------------------
%----Additive idempotent monoid
fof(additive_commutativity,axiom,(
    ! [A,B] : addition(A,B) = addition(B,A) )).

fof(additive_associativity,axiom,(
    ! [C,B,A] : addition(A,addition(B,C)) = addition(addition(A,B),C) )).

fof(additive_identity,axiom,(
    ! [A] : addition(A,zero) = A )).

fof(additive_idempotence,axiom,(
    ! [A] : addition(A,A) = A )).

%----Multiplicative and commutative monoid
fof(multiplicative_associativity,axiom,(
    ! [A,B,C] : multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C) )).

fof(multiplicative_right_identity,axiom,(
    ! [A] : multiplication(A,one) = A )).

fof(multiplicative_left_identity,axiom,(
    ! [A] : multiplication(one,A) = A )).

%----Distributivity laws
fof(right_distributivity,axiom,(
    ! [A,B,C] : multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)) )).

fof(left_distributivity,axiom,(
    ! [A,B,C] : multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)) )).

%----Annihilation
fof(right_annihilation,axiom,(
    ! [A] : multiplication(A,zero) = zero )).

fof(left_annihilation,axiom,(
    ! [A] : multiplication(zero,A) = zero )).

%----Order
fof(order,axiom,(
    ! [A,B] :
      ( leq(A,B)
    <=> addition(A,B) = B ) )).

%----Finite iteration (star)

%----Unfold laws
fof(star_unfold_right,axiom,(
    ! [A] : leq(addition(one,multiplication(A,star(A))),star(A)) )).

fof(star_unfold_left,axiom,(
    ! [A] : leq(addition(one,multiplication(star(A),A)),star(A)) )).

%----Induction laws
fof(star_induction_left,axiom,(
    ! [A,B,C] :
      ( leq(addition(multiplication(A,B),C),B)
     => leq(multiplication(star(A),C),B) ) )).

fof(star_induction_right,axiom,(
    ! [A,B,C] :
      ( leq(addition(multiplication(A,B),C),A)
     => leq(multiplication(C,star(B)),A) ) )).

%------------------------------------------------------------------------------