The Efficiency of Automated Theorem Proving by Translation to Less Expressive Logics

Negin Arhami and Geoff Sutcliffe

Department of Computer Science University of Miami

July 23rd, 2014

- 1 Introduction
 - Automated Theorem Proving (ATP) and Thousands of Problems for Theorem Provers (TPTP)
 Research Goals and Road Map
 - Related Conferences and Competitions
 - Related Conferences and Competition
 - Processes and Tools
 - Saffron, a Translator for CNF to DL

 Saffron, a Translator for CNF to DI

- Implementation of Saffron
- Experiments
- Conjunctive Normal Form
- First Order Form
- Typed First Order Form monomorphic
- Typed Flist Order Form polymorphic
- Typed Higher Order Form monomorphic
- 5 Conclusio
 - Contributions and Conclusion
 - Future Work

Developing automatic techniques and computer programs for checking whether the conjecture of a logic problem is a logical consequence

ATP system

A program that automatically checks whether the conjecture a problem is a logical consequence

Translator

A program that soundly translates a problem in one logic to another

Research Goals and Road Map

Thousands of Problems for Theorem Provers (TPTP)

- Comprehensive library of test problems for ATP systems and translators
- Software tools that facilitate using the ATP systems and translators
- General guidelines for evaluating and comparing ATP systems and translators
- TPTP syntaxes for logics

Sources of This Research

- TPTP library of sample problems
- ATP systems in SystemOnTPTP
- Translators in SystemB4TPTP

Conference on Automated Deduction (CADE)

International Joint Conference on Automated Reasoning (IJCAR)

CADE ATP System Competition (CASC)

- Evaluates the performance of ATP systems
 - Number of problems solved within a time limit
 - Average runtime for problems solved
- Main basis for selecting the ATP systems used in the experiments in this research
- Same evaluation scheme used in this research.

- - Research Goals and Road Map
- 2 Processes and Tools

- Implementation of Saffron

- Typed Higher Order Form monomorphic

Processes and Tools

Introduction

Label		Actio	n	Tool
1	TH0	\Rightarrow	Proof	Isabelle-HOT 2013
1.3	TH0	\Rightarrow	TF0	Isabelle-2TF0 2013
1.4	TH0	\Rightarrow	FOF	Isabelle-2FOF 2013
2	TF1	\Rightarrow	Proof	Alt-Ergo 0.94
2.3	TF1	\Rightarrow	TF0	Why3-TF0 0.71
2.4	TF1	\Rightarrow	FOF	Why3-FOF 0.71
3	TF0	\Rightarrow	Proof	Princess 120604
3.4	TF0	\Rightarrow	FOF	Monotonox-2FOF e3c1636
3.5	TF0	\Rightarrow	CNF	Monotonox-2CNF e3c1636
4	FOF	\Rightarrow	Proof	Vampire 3.0
4.5	FOF	\Rightarrow	CNF	ECNF 1.8
5	CNF	\Rightarrow	Proof	Vampire 3.0 or iProver 1.0
5.6	CNF	\Rightarrow	DL	Saffron 1.0
5.7	CNF	\Rightarrow	PL	EGround 1.8
6	DL	\Rightarrow	Proof	HermiT 1.3.8
7	PL	\Rightarrow	Proof	MiniSat 2.2.0

Conclusion

- I Introduction
 - Automated Theorem Proving (ATP) and Thousands of Problems for Theorem Provers (TPTP)
 - Research Goals and Road Map
- Related Conferences and Competitions
- Processes and Tools
- Saffron, a Translator for CNF to DL

 Saffron, a Translator for CNF to DL

Implementation of Saffron

- 4 Experiments
 - Conjunctive Normal Form
 - First Order Form
 - Typed First Order Form monomorphic
 - Typed First Order Form polymorphic
 - Typed Higher Order Form monomorphic
- 5 Conclusio
 - Contributions and Conclusions
 - Future Work

Saffron, a Translator for CNF to DL

Motivation

No translator was available from CNF to DL, which sits between EPR and Propositional Logic in terms of expressivity

Table: CNF and DL Equivalent Symbols

CNF	DL
Constants	Individuals
Predicates with one argument	Classes
Predicates with two arguments	Roles

DL-able Clause

Clause with only constants and unary and binary predicates Clause with a equivalent semantic in DL

Saffron

- Implemented in Prolog
- Translates clause by clause
- Each clause describes a characteristic of an individual, a class, a role, or the default class Thing.
 - Extracts all the constants, unary predicates, and binary predicates, and variables
 - Determines the form of the clause depending on these sets, and the polarities of the literals
- A problem might be fully or partially translated.

- - Research Goals and Road Map

- Implementation of Saffron
- Experiments
- Conjunctive Normal Form
- First Order Form
- Typed First Order Form monomorphic
- Typed First Order Form polymorphic
- Typed Higher Order Form monomorphic

Overview of The Experiment

Introduction

Conjunctive Normal Form

Paths from 150 CNF Problems from CASC-J6

Path	Tools	#	Solved	Time
CNF	Vampire	150	123 (82%)	2.2
CNF.DL	Saffron⊳HermiT	150	0 (0%)	0.0

Paths from 262 CNF Completely DL-able Problems

Path	Tools	#	Solved	Time
CNF	iProver	262	129 (49%)	2.2
CNF.PL	EGround⊳MiniSAT	165	102 (61%)	0.0
CNF.DL	Saffron⊳HermiT	262	69 (26%)	0.1

Paths from 262 CNF Completely DL-able Problems in Parallel

CPUs	Path	Unique	Solved	Time
1	CNF	129	129	2.2
2	CNF.DL	46	175	0.6

Introduction

First Order Form

Paths from 500 FOF Problems

Paths	Tools	#	Solved	Time
FOF	Vampire	500	396 (79%)	3.1
FOF.CNF	ECNF⊳(Vampire or iProver)	445	294 (58%)	1.5
FOF.CNF.DL	ECNF⊳Saffron⊳HermiT	441	20 (4%)	0.5
FOF.CNF.PL	ECNF⊳EGround⊳MiniSAT	13	13 (100%)	0.1

Paths from 500 FOF Problems in Parallel

CPUs	Path	Unique	Solved	Time
1	FOF	396	396	3.0
2	FOF.CNF	16	412	2.4
3	FOF.CNF.DL	13	425	2.1

Typed First Order Form - monomorphic

Experiments

00000000

Typed First Order Form - monomorphic

Paths from 97 TF0 Problems

Paths	Tools	#	Solved	Time
TF0.FOF	Monotonox-2FOF⊳Vampire	88	36 (40%)	1.4
TF0.FOF.CNF	Monotonox-2FOF⊳ECNF ⊳Vampire	88	31 (35%)	1.0
TF0.CNF	Monotonox-2CNF⊳Vampire	96	24 (25%)	1.8
TF0	Princess	97	12 (12%)	12.0
TF0.FOF.CNF.DL	Monotonox-2FOF⊳ECNF ⊳Saffron⊳HermiT	10	5 (50%)	0.2
TF0.CNF.DL	Monotonox-2CNF⊳Saffron ⊳HermiT	15	2 (13%)	0.2
TF0.CNF.PL	Monotonox-2CNF⊳EGround ⊳MiniSAT	3	0 (0%)	0.0
TF0.FOF.CNF.PL	Monotonox-2FOF⊳ECNF ⊳EGround⊳MiniSAT	3	0 (0%)	0.0

Paths from

Introduction

Typed First Order Form - monomorphic in Parallel

Paths from 97 TF0 Problems in Parallel

CPUs	Path	Unique	Solved	Time
1	TF0.FOF	36	36	1.4
2	TF0.FOF.CNF.DL	5	41	1.2
3	TF0	2	43	1.3
4	TF0.CNF.DL	1	44	1.3

Introduction

Typed First Order Form - polymorphic

Paths	Tools		#	Solved	Time
TF1.FOF.CNF	Why3-FOF⊳ECNF⊳Vampire		987	348 (35%)	0.8
TF1.TF0.FOF	Why3-TF0⊳Monotonox-2FOF		957	329 (34%)	0.9
	⊳Vampire				
TF1.FOF	Why3-FOF⊳Vampire		987	317 (32%)	0.8
TF1	Alt-Ergo		987	312 (31%)	1.0
TF1.TF0.CNF	Why3-TF0⊳Monotonox-2CNF		957	276 (28%)	1.7
	⊳Vampire				
TF1.TF0	Why3-TF0⊳Princess		987	33 (3%)	12.6
TF1.TF0.	Why3-TF0⊳Monotonox-2FOF		48	16 (33%)	0.8
FOF.CNF	⊳ECNF ⊳Vampire				
TF1.TF0.	Why3-TF0⊳Monotonox-2FOF		957	2 (0%)	0.1
FOF.CNF.DL	⊳ECNF ⊳Saffron⊳HermiT				
TF1.TF0.CNF.	Why3-TF0⊳Monotonox-2CNF		957	2 (0%)	0.5
DL	⊳Saffron⊳HermiT				
TF1.FOF.	Why3-FOF⊳ECNF		957	0 (0%)	0.0
CNF.DL	⊳Saffron⊳HermiT				
TF1.*.CNF.PL	∗⊳EGround⊳MiniSAT	- ← □	→ 0 < 🗇 →	0 (0%)	≥0.0 ≥ €
					18 / 25

Paths from

Introduction

Typed First Order Form - polymorphic in Parallel

Paths from 987 TF1 Problems in Parallel

CPUs	Path	Unique	Solved	Time
1	TF1.FOF.CNF	348	348	0.8
2	TF1	23	371	0.6
3	TF1.TF0.FOF	9	380	0.5
4	TF1.FOF	5	385	0.5

Typed Higher Order Form - monomorphic

Paths from 200 TH0 Problems

Paths	Tools	#	Solved	Time
TH0.FOF	Isabelle-2FOF⊳Vampire	196	78 (39%)	9.0
TH0	Isabelle-HOT	200	78 (39%)	11.9
TH0.TF0.FOF	lsabelle-2TF0⊳Isabelle-	192	77 (40%)	11.4
	2FOF⊳Vampire			
TH0.TF0.CNF	Isabelle-2TF0⊳Monotonox-	194	52 (26%)	5.7
	2CNF⊳Vampire			
TH0.TF0	Isabelle-2TF0⊳Princess	196	24 (12%)	14.9
TH0.TF0.FOF.CNF	Isabelle-2TF0⊳Isabelle-	192	0 (0%)	0.0
	2FOF⊳ECNF ⊳Vampire			
TH0.FOF.CNF	Isabelle-2FOF⊳ECNF⊳Vampire	193	0 (0%)	0.0
TH0.*.CNF.PL	∗⊳EGround⊳MiniSAT	0	0 (0%)	0.0
TH0.*.CNF.DL	∗⊳Saffron⊳HermiT	0	0 (0%)	0.0

Experiments

Paths from

Typed Higher Order Form - monomorphic in Parallel

Paths from 200 TH0 Problems in Parallel

CPUs	Path	Unique	Solved	Time
1	TH0.FOF	78	78	8.8
2	TH0	33	111	9.4
3	TH0.TF0.FOF	2	113	9.4
4	TH0.TF0.CNF	1	114	8.1

- 1 Introduction
 - Automated Theorem Proving (ATP) and Thousands of Problems for Theorem Provers (TPTP)
 - Research Goals and Road Map
 - Related Conferences and Competition
- Processes and Tools
 - Saffron, a Translator for CNF to DL

 Saffron, a Translator for CNF to DI

- Implementation of Saffron
- Experiments
- Conjunctive Normal Form
- First Order Form
- Typed First Order Form monomorphic
- Typed First Order Form polymorphic
- Typed Higher Order Form monomorphic
- 5 Conclusion
 - Contributions and Conclusions
 - Future Work

Contributions and Conclusions

Experiment

- More TF0 and TF1 problems solved by translation
- Generally more problems solved by translation to FOF or CNF
- More CNF (with only DL-able clauses), FOF and TH0 problems solved through paths in parallel

Saffron

- A new tool offering new possibilities for reasoning by translation to DL
- Significant numbers of uniquely solved CNF, FOF, and TF0 problems through DL-based paths
- Saffron and HermiT combined into an ATP system called SafHer, now available in the SystemOnTPTP interface
- Possibility that DL might provide a valuable alternative to using a ATP system such as iProver for solving EPR problems in the HWV domain of the TPTP

Experiments

Future Work

- Use of other ATP systems, to determine the extent to which these results are dependent on the particular ATP systems used
- Use of other ATP systems might result in different unique solutions, which would it possible to effectively use more CPUs for alternative processing options.

Thank You