## WALDMEISTER:

# A Prover for Unit Equational Deduction 

Bernd Löchner ${ }^{1}$

Thomas Hillenbrand ${ }^{2}$
${ }^{1}$ Technische Universität Kaiserslautern
${ }^{2}$ Max-Planck-Institut für Informatik Saarbrücken

## Unit Equational Logic

- Example: group axiomatization

$$
\mathcal{E}:(x+y)+z=x+(y+z) \quad x+0=x \quad x+(-x)=0
$$

Word problem: Does $\mathcal{E} \models x=--x$ hold?

- Tackle word problem with Knuth-Bendix completion
- idea: equations $I=r$ oriented into rewrite rules $I \rightarrow r$
- aim: $\mathcal{E} \models s=t$ iff $s \downarrow \equiv t \downarrow$
- price: saturation of rules necessary
- Perform fully automated proof search Return proof log in case of success


## Waldmeister Searching for a Proof

```
************************
*********************************************************************
\begin{tabular}{|c|c|c|}
\hline new rule: & 1 & + (x1, 0) -> x 1 \\
\hline new rule: & 2 & +(x1, -(x1) ) -> 0 \\
\hline new rule: & 3 & \(+(+(x 1, x 2), \mathrm{x} 3)->+(x 1,+(x 2, x 3))\) \\
\hline new rule: & 4 & \(+(x 1,+(0, x 2))->+(x 1, x 2)\) \\
\hline new rule: & 5 & +(x1, -(0) ) -> x1 \\
\hline new rule: & 6 & \(+(\mathrm{x} 1,+(-(\mathrm{x} 1), \mathrm{x} 2) \mathrm{l}->+(0, \mathrm{x} 2)\) \\
\hline new rule: & 7 & \(+(0,-(-(x 1)))^{->} \mathrm{x} 1\) \\
\hline new rule: & 8 & \(+(\mathrm{x} 1,-(-(\mathrm{x} 2) \mathrm{)})->+(\mathrm{x} 1, \mathrm{x} 2)\) \\
\hline remove rule: & 7 & \\
\hline new rule: & 9 & \(+(0, x 1)->\mathrm{xl}\) \\
\hline remove rule: & 4 & \\
\hline simplify rhs of rule: & 6 & \\
\hline new rule: & 10 & -(0) -> 0 \\
\hline remove rule: & 5 & \\
\hline new rule: & 11 & \(-(-(x 1))->\mathrm{x} 1\) \\
\hline remove rule: & 8 & \\
\hline joined goal: & 1 C & \(?=-(-(c))\) to c \\
\hline
\end{tabular}
```



```
Proved Goals:
No. 1: c ?= -(-(c)) joined, current: c = c
1 goal was specified, which was proved.
Waldmeister states: Goal proved.
```


## Waldmeister Presenting a Proof

## Consider the following set of axioms:

```
Axiom 1: \(x+0=x\)
Axiom 2: \(x+(-x)=0\)
Axiom 3: \((x+y)+z=x+(y+z)\)
```

This theorem holds true:
Theorem 1: $x=--x$
Proof:

```
Lemma 1: 0 + (--x) = x
    0+(--x)
    = by Axiom 2 RL
    (x+(-x))+(--x)
    = by Axiom 3 LR
    x+((-x)+(--x))
    = by Axiom 2 LR
    x+0
    = by Axiom 1 LR
    X
```

$$
\begin{array}{cc}
\text { Lemma } 2: ~ & x+(--y)=x+y \\
& x+(--y) \\
= & \text { by Axiom } 1 \mathrm{RL} \\
= & (x+0)+(--y) \\
& \text { by Axiom 3 LR } \\
= & x+(0+(--y)) \\
& \text { by Lemma } 1 \mathrm{LR} \\
& x+y
\end{array}
$$

Theorem 1: $x=--x$

```
        x
```

        x
    by Lemma 3 RL
    by Lemma 3 RL
        0+x
        0+x
            by Lemma 2 RL
            by Lemma 2 RL
        0+(--x)
        0+(--x)
    = by Lemma 3 LR
= by Lemma 3 LR
- -x
- -x
x

```
x
```

Lemma 3: $0+x=x$

$$
\begin{array}{cc} 
& 0+x \\
= & \text { by Lemma } 2 \mathrm{RL} \\
= & 0+(--x) \\
\quad \text { by Lemma } 1 \mathrm{LR}
\end{array}
$$

## Key Features

- UEQ subdomain of particular characteristic no disjunctions $\rightsquigarrow$ no combinatorics on formula level redundancy notion centered around rewriting
- Carefully designed main loop \& data structures engineering control parameters instantiated according to algebraic structure specialized redundancy criteria

$$
s=t: \varphi(s=t) \mathrm{min}
$$


$\mathrm{CP}^{>}(s=t, \mathcal{A})$

## Waldmeister in 2006

- Useful: cancellation rule added as simplification plus minor strategy rewrites
- Application scenarios:
- mostly: educational; reference implementation
- theorem proving in algebraic structures
- computer linguistics (sic)
- Ongoing work on WALDMEISTER:
- divide \& conquer proof search?
- continue integration into computer algebra system
- exploration of new strategies


## Web Page at waldmeister.org



## ABOUT WALDMEISTER $\mid$ ALL TIME NEWS

As you might already know, Waldmeister (asperula odorata, woodruff) is an ingredient for a very popular potable. It is also liked as aroma for sodas. But no, the Waldmeister we are talking about here, you cannot use for your potion. Well, maybe you try and make such a potion. If you are a logic-wizzard after drinking from it, please contact us... Because the Waldmeister we are talking about here is a highly efficient theorem prover.

So be welcomed in the world of Waldmeister, which is the world of logical theorems.
Waldmeister is a theorem prover for unit equational logic. Its proof procedure is unfailing Knuth-Bendix completion [BDP89]. Waldmeister's main advantage is that efficiency has been reached in terms of time as well as of space. Within that scope, a complete proof object is constructed at run-time. Read more about the implementation.

## ALL TIME NEWS

## For his book

## A New Kind Of Science

