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Abstract. This paper introduces Scavenger, the first theorem prover for
pure first-order logic without equality based on the new conflict resolution
calculus. Conflict resolution has a restricted resolution inference rule that
resembles (a first-order generalization of) unit propagation as well as a
rule for assuming decision literals and a rule for deriving new clauses by
(a first-order generalization of) conflict-driven clause learning.

1 Introduction

The outstanding efficiency of current propositional Sat-solvers naturally raises the
question of whether it would be possible to employ similar ideas for automating
first-order logical reasoning. The recent Conflict Resolution calculus (CR) [21]
can be regarded as a crucial initial step to answer this question. From a proof-
theoretical perspective, it generalizes to first-order logic the two main mechanisms
on which modern Sat-solvers are based: unit propagation and conflict-driven
clause learning. The calculus is proven sound (by simulation by a clausal natural
deduction calculus) and refutationally complete (by simulation of the usual
resolution calculus), and it is shown that subderivations in CR are isomorphic
to the implication graphs maintained by Sat-solvers.

This paper goes one step further by defining proof search algorithms for CR.
Familiarity with the propositional CDCL procedure [14] is assumed, even though
it is briefly sketched in Section 2. The main challenge in lifting this procedure to
first-order logic is that, unlike in propositional logic, first-order unit propagation
does not always terminate and true clauses do not necessarily have uniformly
true literals (cf. Section 4). Our solutions to these challenges are discussed in
Section 5 and Section 6, and experimental results are presented in Section 7.

Related Work: Other attempts to lift DPLL [8, 15] or CDCL [14] to first-order logic
include Model Evolution [2, 4, 3, 20], Geometric Resolution [19], Non-Redundant
Clause Learning [1] and the Semantically-Guided Goal Sensitive procedure [13].
A brief summary of these approaches and a comparison with CR can be found
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in [21]. In the terminology of [13], all these approaches can be classified as fine-
grained with respect to the interleaving of proof search and model construction. In
contrast, Semantic Resolution [22, 10] is an example of coarse-grained approach.
Furthermore, many architectures [7, 11, 12, 25, 6] for first-order and higher-order
theorem proving use a Sat-solver as a black box for propositional reasoning,
without attempting to lift it.

2 Propositional CDCL

During search in the propositional case, a Sat-solver keeps a model (a.k.a. trail)
consisting of a (conjunctive) list of decision literals and propagated literals.
Literals of unit clauses are automatically added to the trail, and whenever a
clause has only one literal that is not falsified by the current model, this literal is
added to the model (thereby satisfying that clause). This process is known as
unit-propagation. If unit propagation reaches a conflict (i.e. a situation where the
dual of a literal already contained in the model would have to be added to it),
the Sat-solver backtracks, removing from the model decision literals responsible
for the conflict (as well as propagated literals entailed by the removed decision
literals) and deriving, or learning, a conflict-driven clause consisting1 of duals of
the decision literals responsible for the conflict (or the empty clause, if there were
no decision literals). If unit propagation terminates without reaching a conflict
and all clauses are satisfied by the model, then the input clause set is satisfiable.
If some clauses are still not satisfied, the Sat-solver chooses and assigns another
decision literal, adding it to the trail, and satisfying the clauses that contain it.

3 Conflict Resolution

The inference rules of the conflict resolution calculus CR are shown in Fig. 1.
The unit propagating resolution rule is a chain of restricted resolutions with unit
clauses as left premises and a unit clause as final conclusion. Decision literals are
denoted by square brackets, and the conflict-driven clause learning rule allows to
infer a new clause consisting of negations of instances of decision literals used to
reach a conflict (a.k.a. the empty clause ⊥). A clause learning inference is said
to discharge the decision literals that it uses. As in the resolution calculus, CR
derivations are directed acyclic graphs that are not necessarily tree-like. A CR
refutation is a CR derivation of ⊥ with no undischarged decision literals.

From a natural deduction point of view, a unit propagating resolution rule can
be regarded as a chain of implication eliminations taking unification into account,
whereas decision literals and conflict driven clause learning are reminiscent of,
respectively, assumptions and chains of negation introductions, also generalized
to first-order through unification. Therefore, CR can be considered a first-order
hybrid of resolution and natural deduction.

1 In practice, optimizations (e.g. 1UIP) are used, and more sophisticated clauses, which
are not just disjunctions of duals of the decision literals involved in the conflict, can
be derived. But these optimizations are inessential to the focus of this paper.



Unit-Propagating Resolution:
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j (for 1 ≤ k ≤ n and 1 ≤ j ≤ mk) is the

composition of all substitutions used on the j-th patha from `k to ⊥.

a Since a proof DAG is not necessarily tree-like, there may be more than one path
connecting `k to ⊥ in the DAG-like proof.

Fig. 1: The Conflict Resolution Calculus CR

4 Lifting Challenges

First-order logic presents many new challenges for methods based on propagation
and decisions, of which the following can be singled out:

(1) non-termination of unit-propagation: In first-order logic, unit propagation
may never terminate. For example, the clause set {p(a),¬p(X) ∨ p(f(X)), q ∨
r,¬q∨r, q∨¬r,¬q∨¬r} is clearly unsatisfiable, because there is no assignment of
p and q to true or false that would satisfy all the last four clauses. However, unit
propagation would derive the following infinite sequence of units, by successively
resolving ¬p(X) ∨ p(f(X)) with previously derived units, starting with p(a):
{p(f(a)), p(f(f(a))), . . . , p(f(. . . (f(a)) . . .)), . . .}. Consequently, a proof search
strategy that would wait for unit propagation to terminate before making decisions
would never be able to conclude that the given clause set is unsatisfiable.

(2) absence of uniformly true literals in satisfied clauses: While in the propo-
sitional case, a clause that is true in a model always has at least one literal



that is true in that model, this is not so in first-order logic, because shared
variables create dependencies between literals. For instance, the clause set
{p(X) ∨ q(X),¬p(a), p(b), q(a),¬q(b)} is satisfiable, but there is no model where
p(X) is uniformly true (i.e. true for all instances of X) or q(X) is uniformly true.

(3) propagation without satisfaction: In the propositional case, when only one
literal of a clause is not false in the model, this literal is propagated and added
to the model, and the clause necessarily becomes true in the model and does
not need to be considered in propagation anymore, at least until backtracking.
In the first-order case, on the other hand, a clause such as p(X) ∨ q(X) would
propagate the literal q(a) in a model containing ¬p(a), but p(X)∨ q(X) does not
become true in a model where q(a) is true. It must remain available for further
propagations. If, for instance, the literal ¬p(b) is added to the model, the clause
will be used again to propagate q(b).

(4) quasi-falsification without propagation: A clause is quasi-falsified by a model
iff all but one of its literals are false in the model. In first-order logic, in contrast to
propositional logic, it is not even the case that a clause will necessarily propagate
a literal when only one of its literals is not false in the model. For instance, the
clause p(X) ∨ q(X) ∨ r(X) is quasi-falsified in a model containing ¬p(a) and
¬q(b), but no instance of r(X) can be propagated.

The first two challenges affect the search in a conceptual level, and possible
solutions are discussed in Section 5. The last two challenges prevent a direct first-
order generalization of the data structures (e.g. watched literals) that make unit
propagation so efficient in the propositional case. Partial solutions are discussed
in Section 6.

5 First-Order Model Construction and Proof Search

Despite the fundamental differences between propositional and first-order logic
described in the previous section, the first-order algorithms presented aim to
adhere as much as possible to the propositional procedure sketched in the Section
2. As in the propositional case, the model under construction is a (conjunctive)
list of literals, but literals may now contain (universal) variables. If a literal `[X]
is in a model M , then any instance `[t] is said to be true in M . Note that checking
that a literal ` is true in a model M is more expensive in first-order logic than in
propositional logic: whereas in the latter it suffices to check that ` is in M , in
the former it is necessary to find a literal `′ in M and a substitution σ such that
` = `′σ. A literal ` is said to be strongly true in a model M iff ` is in M .

There is a straightforward solution for the second challenge (i.e. the absence of
uniformly true literals in satisfied clauses): a clause is satisfied by a model M iff all
its relevant instances have a literal that is true inM , where an instance is said to be
relevant if it substitutes the clause’s variables by terms that occur in M . Thus, for
instance, the clause p(X)∨q(X) is satisfied by the model [¬p(a), p(b), q(a),¬q(b)],
because both relevant instances p(a) ∨ q(a) and p(b) ∨ q(b) have literals that are



true in the model. However, this solution is clearly costly, because it requires
the generation of many instances. Fortunately, in many (though not all) cases,
a satisfied clause will have a literal that is true in M , in which case the clause
is said to be uniformly satisfied. Checking uniform satisfaction is cheaper than
checking satisfaction. However, a drawback of uniform satisfaction is that the
model construction algorithm may repeatedly attempt to satisfy a clause that
is not uniformly satisfied, by choosing one of its literals as a decision literal.
For instance, the clause p(X) ∨ q(X) is not uniformly satisfied by the model
[¬p(a), p(b), q(a),¬q(b)]. Without knowing that this clause is already satisfied by
the model, the procedure would try to choose either p(X) or q(X) as a decision
literal. But any of these choices is useless decision, because they would lead to a
conflict with resulting conflict-driven clause equal to a previously derived clause
or to a unit clause containing a literal that is part of the current model. A clause
is said to be weakly satisfied by a model M if and only if all its literals are useless
decisions.

Because of the first challenge (i.e. the non-termination of unit-propagation in
the general first-order case), it is crucial to make decisions during unit propagation.
In the given example in the previous section, for instance, deciding q at any
moment would allow the propagation of r and ¬r (respectively due to the 4th
and 6th clauses), triggering a conflict. The learned clause would be ¬q and it
would again trigger a conflict by the propagation of r and ¬r (this time due to
the 3rd and 5th clauses). As this last conflict does not depend on any decision
literal, the empty clause is derived and thus the clause set is refuted.

The question is how to interleave decisions and propagations. One straightfor-
ward approach is to keep track of the propagation depth2 in the implication graph:
any decision literal or literal propagated by a unit clause has propagation depth
0; any other literal has propagation depth k + 1, where k is the maximum prop-
agation depth of its predecessors. Then propagation is performed exhaustively
only up to a propagation depth threshold h. A decision literal is then chosen
and the threshold is incremented. Such eager decisions guarantee that a decision
will eventually be made, even if there is an infinite propagation path. However,
eager decisions may also lead to spurious conflicts generating useless conflict-
driven clauses. For instance, the clause set {1 : p(a), 2 : ¬p(X) ∨ p(f(X)), 3 :
¬p(f(f(f(f(f(f(a))))))), 4 : ¬r(X)∨q(X), 5 : ¬q(g(X))∨¬p(X), 6 : z(X)∨r(X)}
(where clauses have been numbered for easier reference) is unsatisfiable, because
a conflict with no decisions can be obtained by propagating p(a) (by 1), and
then p(f(a)), p(f(f(a))), . . . , p(f(f(f(f(f(f(a))))))), (by 2, repeatedly), which
conflicts with ¬p(f(f(f(f(f(f(a))))))) (by 3). But the former propagation has
depth 6. If the propagation depth threshold is lower than 6, a decision literal
is chosen before that conflict is reached. If r(X) is chosen, for example, in an

2 Because of the isomorphism between implication graphs and subderivations in Conflict
Resolution [21], the propagation depth is equal to the corresponding subderivation’s
height, where initial axiom clauses and learned clauses have height 0 and the height
of the conclusion of a unit-propagating resolution inference is k + 1 where k is the
maximum height of its unit premises.



attempt to satisfy the sixth clause, there are propagations (using r(X) and
clauses 1, 4, 5 and 6) with depth lower than the threshold and reaching a conflict
that generates the clause ¬r(g(a)), which is useless to show unsatisfiability of
the whole clause set. This is not a serious issue, because useless clauses are often
generated in conflicts with non-eager decisions as well. Nevertheless, this example
suggests that the starting threshold and the strategy for increasing the threshold
have to be chosen wisely, since the performance may be sensitive to this choice.

Interestingly, the problem of non-terminating propagation does not manifest in
fragments of first-order logic where infinite unit propagation paths are impossible.
A well-known and large fragment is the effectively propositional (a.k.a. Bernays-
Schönfinkel) class, consisting of sentences with prenex forms that have an ∃∗∀∗
quantifier prefix and no function symbols. For this fragment, a simpler proof
search strategy that only makes decisions when unit propagation terminates, as
in the propositional case, suffices. Infinite unit propagation paths do not occur in
the effectively propositional fragment because there are no function symbols and
hence the term depth3 does not increase arbitrarily. Whenever the term depth is
bounded, infinite unit propagation paths cannot occur, because there are only
finitely many literals with bounded term depth (given the finite set of constant,
function and predicate symbols with finite arity occurring in the clause set).

The insight that term depth is important naturally suggests a different
approach for the general first-order case: instead of limiting the propagation
depth, limit the term depth instead, allowing arbitrarily long propagations as long
as the term depth of the propagated literals are smaller than the current term
depth threshold. A literal is propagated only if its term depth is smaller than the
threshold. New decisions are chosen when the term-depth-bounded propagation
terminates and there are still clauses that are not uniformly satisfied. As before,
eager decisions may lead to spurious conflicts, but bounding propagation by term
depth seems intuitively more sensible than bounding it by propagation depth.

6 Implementation Details

Scavenger is implemented in Scala and its source code and usage instructions
are available in https://gitlab.com/aossie/Scavenger. Its packrat combi-
nator parsers are able to parse TPTP CNF files without let expressions [24].
Although Scavenger is a first-order prover, every logical expression is converted
to a simply typed lambda expression, implemented by the abstract class E with
concrete subclasses Sym, App and Abs for, respectively, symbols, applications and
abstractions. A trait Var is used to distinguish variables from other symbols.
Scala’s case classes are used to make E behave like an algebraic datatype with
(pattern-matchable) constructors. Simply typed lambda expressions are chosen
despite Scavenger’s current focus on untyped first-order logic, because we intend
to generalize Scavenger to multi-sorted first-order logic and higher-order logic and
support TPTP TFF and THF in the future. Every clause is internally represented

3 The depth of constants and variables is zero and the depth of a complex term is k+ 1
when k is the maximum depth of its proper subterms.



as an immutable two-sided sequent consisting of a set of positive literals in the
succedent and a set of negative literals in the antecedent.

When a problem is unsatisfiable, Scavenger can output a CR refutation,
which is internally represented as a collection of ProofNode objects, which can
be instances of the following immutable classes: UnitPropagatingResolution,
Conflict, ConflictDrivenClauseLearning, Axiom, Decision. The first three
classes correspond directly to the rules shown in Fig. 1. Axiom is used for leaf
nodes containing input clauses, and Decision represents a fictive rule holding
decision literals. Each class is responsible for checking, typically through require

statements, the soundness conditions of its corresponding inference rule. The
Axiom, Decision and ConflictDrivenClauseLearning classes are less than 5
lines of code each. Conflict and UnitPropagatingResolution are respectively
15 and 35 lines of code. The code for analyzing conflicts, traversing the subderiva-
tions (conflict graphs) and finding decisions that contributed to the conflict, is
implemented in a superclass, and is 17 lines long.

The following three variants of Scavenger were implemented:

– EP-Scavenger: This variant aims at the effectively propositional fragment.
Propagation is not bounded, and decisions are made only when propagation
terminates.

– PD-Scavenger: Propagation is bounded by a propagation depth threshold
starting at 0. Input clauses are assigned depth 0. Derived clauses and propa-
gated literals obtained while the depth threshold is k are assigned depth k+1.
The threshold is incremented whenever every input clause that is neither
uniformly satisfied nor weakly satisfied is used to derive a new clause or to
propagate a new literal. If this is not the case, a decision literal is chosen
(and assigned depth k + 1) to uniformly satisfy one of the clauses that is
neither uniformly satisfied nor weakly satisfied.

– TD-Scavenger: Propagation is bounded by a term depth threshold starting at
0 and incrementing with 50% probability whenever propagation terminates
(and choosing a decision literal when the threshold is not incremented). Only
uniform satisfaction of clauses is checked.

The third and fourth challenges discussed in Section 4 are critical for perfor-
mance, because they prevent a direct first-order generalization of data structures
such as watched literals, which enables efficient detection of clauses that are
ready to propagate literals. Without knowing exactly which clauses are ready to
propagate, Scavenger (in its three variants) loops through all clauses with the goal
of using them for propagation. However, actually trying to use a given clause for
propagation is costly. In order to avoid this cost, Scavenger performs two quicker
tests. Firstly, it checks whether the clause is uniformly satisfied (by checking
whether one of its literals belongs to the model). If it is, then the clause is
dismissed. This is an imperfect test, however. Occasionally, some satisfied clauses
will not be dismissed, because (in first-order logic) not all satisfied clauses are
uniformly satisfied. Secondly, for every literal ` of every clause, Scavenger keeps a
set of decision literals and propagated literals that are unifiable with `. A clause c
is quasi-falsified when at most one literal of c has an empty set associated with it.



This is a rough analogue of watched literals for detecting quasi-falsified clauses.
Again, this is an imperfect test, because (in first-order logic) not all quasi-falsified
clauses are ready to propagate. Despite the imperfections of these tests, they do
reduce the number of clauses that need to be considered for propagation, and
they are quick and simple to implement.

Overall, the three variants of Scavenger listed above have been implemented
very concisely. Their main classes are only 168, 342 and 176 lines long, respectively,
and no attempt has been made to increase efficiency at the expense of code
readability.

Scavenger still has no sophisticated backtracking and restarting mechanism,
as propositional Sat-solvers do. When Scavenger reaches a conflict, it restarts
almost completely: all derived conflict-driven clauses are kept, but the model
under construction is reset to the empty model.

7 Experiments

Experiments were conducted4 in the StarExec cluster [23] to evaluate Scavenger’s
performance on TPTP v6.4.0 benchmarks in CNF form and without equality.
For comparison, all 29 provers available in StarExec’s TPTP community and
capable of reasoning on the selected benchmarks were evaluated as well. For each
job pair, the timeouts were 300 CPU seconds and 600 Wallclock seconds.

Fig. 2: Performance on Unsat. Eff. Propositional CNF Problems without Equality

4 Raw experimental data are available at https://doi.org/10.5281/zenodo.293187.



Fig 2 shows how many of the 572 unsatisfiable effectively propositional
problems each prover can solve within a given amount of time. As expected, TD-
Scavenger outperforms PD-Scavenger, supporting the intuition that term depth is
a more natural criterion for bounding unit propagation, and EP-Scavenger tends
to be slightly faster than TD-Scavenger, although TD-Scavenger surprisingly
solved one problem more than EP-Scavenger. For a first implementation, the
best variants of Scavenger show an acceptable performance. Capable of solving
350 problems within the 300s time limit, TD-Scavenger outperformed LEO-II,
ZenonModulo and Geo-III, and solved only 1 problem less than SOS-2.0 and 12
less than Otter-3.3. Although Otter-3.3 has long ceased to be a state-of-the-art
prover and has been replaced by Prover9, the fact that Scavenger solves almost
as many problems as Otter-3.3 is encouraging, because Otter-3.3 is a mature
prover with 15 years of development, implementing (in the C language) several
refinements of proof search for resolution and paramodulation (e.g. orderings,
set of support, splitting, demodulation, subsumption) [16, 17], whereas Scavenger
is a yet unrefined and concise implementation (in Scala) of a comparatively
straightforward search strategy for proofs in the Conflict Resolution calculus,
completed in slightly more than 3 months.

Figure 3 shows the performance on all 1606 unsatisfiable (not necessarily
effectively propositional) problems. All variants of Scavenger outperformed PEPR,
GrAnDe, DarwinFM, Paradox, ZenonModulo and LEO-II; and EP-Scavenger
additionally outperformed Geo-III. Solving 891 problems, EP-Scavenger was
significantly better than PD-Scavenger (782) and TD-Scavenger (695). This
suggests that non-termination of unit-propagation is an uncommon issue in
practice: EP-Scavenger is still able to solve many problems, even though it
does not care to bound propagation, whereas the other two variants solve fewer
problems because of the overhead of bounding propagation even when it is not
necessary. Nevertheless, there were 28 problems solved only by PD-Scavenger and
26 problems solved only by TD-Scavenger (among Scavenger’s variants).

8 Conclusions and Future Work

Scavenger is the first theorem prover based on the new Conflict Resolution
calculus. The experiments show that its performance is promising, albeit not yet
competitive.

A comparison of the performance of the three variants of Scavenger shows
that it is non-trivial to interleave decisions within possibly non-terminating unit-
propagations, and further research is needed to determine (possibly in a problem
dependent way) optimal initial depth thresholds and threshold incrementation
strategies. Alternatively, entirely different criteria could be explored for deciding
to make an eager decision before propagation is over. For instance, decisions
could be made if a fixed or dynamically adjusted amount of time elapses.

The performance bottleneck that needs to be most urgently addressed in future
work is backtracking and restarting. Currently, all variants of Scavenger restart
after every conflict, keeping derived conflict-driven clauses but throwing away the



Fig. 3: Performance on Unsatisfiable CNF Problems without Equality

model construct so far. They must reconstruct models from scratch after every
conflict. This requires a lot of repeated re-computation, and therefore a significant
performance boost could be expected through a more sensible backtracking
strategy. There might also be room to improve Scavenger’s rough first-order
analogue for the watched literals data structure, even though the first-order
challenges make it unlikely that something as good as the propositional watched
literals data structure could ever be developed. Furthermore Scavenger currently
uses no term indexing [18] and its unification algorithm is implemented naively.
Scavenger inherits from the proof compression system Skeptik [5] many data
structures that had been implemented aiming at convenient proof manipulation
instead of efficient theorem proving.

Scavenger’s already acceptable performance despite the implementation im-
provement possibilities just discussed above indicates that automated theorem
proving based on the Conflict Resolution calculus is feasible. However, much work
remains to be done to determine whether this approach will eventually become
competitive with today’s fastest provers.
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