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Abstract This paper defines the (first-order) conflict resolution calculus: an
extension of the resolution calculus inspired by techniques used in modern
Sat-solvers. The resolution inference rule is restricted to (first-order) unit
propagation and the calculus is extended with a mechanism for assuming de-
cision literals and with a new inference rule for clause learning, which is a
first-order generalization of the propositional conflict-driven clause learning
(CDCL) procedure. The calculus is sound (because it can be simulated by
natural deduction) and refutationally complete (because it can simulate reso-
lution), and these facts are proven in detail here.

Keywords Mathematical Logic · Automated Reasoning · Proof Theory ·
Resolution · Natural Deduction · Conflict-Driven Clause Learning

1 Introduction

Modern Sat-solvers are famously effective for solving the decision problem of
satisfiability of propositional formulas, and we may wonder whether the ideas
used in Sat-solvers could be generalized to the first-order case. This paper
addresses this question from a purely proof-theoretical perspective.

We briefly recall the first-order resolution calculus (in Section 2), which is
the theoretical foundation for many current state-of-the-art first-order theo-
rem provers (e.g. [27,30,37]), and the DPLL and CDCL procedures used by
Sat-solvers (in Section 3). The main contribution of this paper (presented in
Section 4) is the conflict resolution calculus CR. It extends the first-order
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resolution calculus with decision literals and a new inference rule for clause
learning and restricts the resolution rule in order to force it to behave like unit
propagation. As discussed in Subsection 4.1, a certain subclass of CR deriva-
tions is isomorphic to the abstract data structure known as conflict graphs or
implication graphs and widely used to describe the procedures of modern Sat-
solvers. Furthermore, as shown in Section 7, whereas the splitting technique
used by modern first-order provers must either be handled at an extra-logical
level or lead to an unacceptable increase in proof size if simulated in the res-
olution calculus, its simulation by CR’s decisions and clause learning is lean
and straightforward. Therefore, the new CR calculus provides a more ade-
quate proof-theoretical foundation for procedures currently implemented by
Sat-solvers and first-order provers.

In CR, it becomes evident that decision literals are analogous to assump-
tions in natural deduction, whereas clause learning resembles natural deduc-
tion’s implication introduction rule. This fact is crucial for the proof of sound-
ness of CR (shown in Section 6) and it illustrates an insightful novelty of
the calculus: while the resolution inference proposed by Robinson [28] can
be regarded as a first-order generalization of modus ponens (a.k.a. natural
deduction’s implication elimination) by taking unification into account, the
clause learning rule proposed here (and inspired by the propositional CDCL
technique) can be considered a first-order generalization of implication intro-
duction, as it discharges decision literals in a way that allows for unification.

Any resolution refutation can be translated into a refutation in CR. There-
fore, CR’s refutational completeness follows easily from the refutational com-
pleteness of the resolution calculus (as proven in Section 5).

A main motivation for the development of the conflict resolution calculus
was that it might eventually serve as a theoretical common ground for existing
first-order provers that try to harness or mimic the power of Sat-solvers (cf.
Section 9)) or as a starting point for the development of new provers, in the
same way that the pure resolution calculus provided the basic foundation
for several generations of automated theorem provers in the last decades. To
achieve this goal, the calculus is presented in a general way, avoiding premature
optimizations and refinements, so that future work may easily build on it and
explore various proof search strategies and implementation techniques.

2 Recalling Resolution

Clauses (denoted c, possibly subscripted) are disjunctions of literals. A literal
is either an atom or a negated atom, and an atom is a n-ary predicate (denoted
P or Q) applied to n terms. A term is either a constant (denoted a or b), a
variable (denoted x, y, v or z) or an n-ary function (denoted f or g) applied to n
terms. Variables in a clause are assumed to be implicitly universally quantified.
A clause having a single literal is called unit. If ` is a literal, ` denotes its dual
(i.e. P = ¬P and ¬P = P ). The nullary atoms > (verum) and ⊥ (falsum)
have special meanings characterized by the following equations: Γ ∨ ⊥ = Γ
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and Γ ∨ > = >. All inference rules operating on clauses are assumed to be
modulo disjunction’s associativity, commutativity and idempotence, modulo
negation’s involutivity and modulo the equations for > and ⊥. The empty
clause is logically equivalent to the clause containing only⊥. Therefore, slightly
abusing notation, it is denoted by ⊥. Substitutions (denoted by σ, possibly
sub- and superscripted) are assumed to implicitly avoid variable capture. The
empty (i.e. identity) substitution is denoted ε.

The inference rules of the resolution calculus are shown in Fig. 1. A reso-
lution proof of a clause c from a set of clauses S is a directed acyclic graph
(DAG) where leaves (i.e. input nodes) are clauses from S, internal nodes are
obtained from their parents through application of the inference rules and the
sink node is the clause c. A resolution refutation of a set of clauses S is a proof
of the empty clause (denoted ⊥) from S. It is assumed that distinct input
clauses do not share variables and that the inference rules implicitly generate
fresh symbols for variables.

Proof DAGs are sometimes displayed as a collection of trees through the
following convention: nodes used as premises more than once are given names
(e.g. ϕ, ψ or ξ) when they are used for the first time, and the names are used
to refer to the nodes whenever they are used again. By naming and referring,
wide proof trees can also be broken down in smaller displayable parts.

Example 1 Consider a proof with the following non-tree form:

It can be displayed as the single tree with names and references below, where
the second (rightmost) occurrence of the name ψ is to be understood as a
reference to the node named ψ by the first (leftmost) occurrence of ψ:

c3

c1 c2
ψ : c4

c6
ψ c5

c7
c8

Or it can also be displayed as the following forest, where the two occurrences
of the name ψ in the rightmost tree are to be understood as references to the
node named ψ in the leftmost tree:

c1 c2
ψ : c4

c3 ψ
c6

ψ c5
c7

c8
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Resolution:

Γ ∨ ` `′ ∨∆
(Γ ∨∆) σ

r(σ)

where σ is a unifier of ` and `′.

Factoring:

` ∨ `′ ∨ Γ
(` ∨ Γ ) σ

f(σ)

where σ is a unifier of ` and `′.

Fig. 1: Resolution Calculus

Given a set of clauses, a resolution prover exhaustively applies the inference
rules, generating more and more clauses. If the initial clause set is unsatisfiable
and a fair clause/rule selection strategy is used, the empty clause is eventually
derived, because resolution is refutationally complete [28]. If the set is satisfi-
able, the prover will either never terminate or will terminate in a state where
the set of initial and derived clauses is saturated with respect to redundancy
criteria (i.e. only redundant clauses would still be derivable) (cf. [34]).

One practical problem in this saturation approach is the vast number of
clauses that are generated. This led to research on refinements of the reso-
lution calculus, aiming at restricting the inference rules in order to generate
fewer clauses, and on efficient ways to detect and delete redundant (e.g. sub-
sumed) clauses. These efforts culminated in the superposition1 calculus [3,4,
33], which extends the resolution calculus with the equality resolution and
paramodulation rules [29] for equality reasoning and refines them with order-
ing restrictions on terms and literals, preserving refutational completeness by
adding either the equality factoring rule or the merging paramodulation and
ordered factoring rules [33].

Another practical problem is that the resolvent of a clause with n liter-
als and another clause with m literals has n + m − 2 literals. When iterated,
this results in long clauses and, consequently, loss of efficiency. This practical
problem has been solved with a technique known as splitting [35]: if the cur-
rent set of clauses is S ∪ {Γ1 ∨ . . . ∨ Γk} and the sets of variables Vi of Γi are
mutually disjoint, we can split the clause Γ1∨ . . .∨Γk into its variable-disjoint
components and the clause set into the k sets S∪{Γi} (for 1 ≤ i ≤ k). The dis-
jointness ensures that we can check the unsatisfiability of each resulting clause
set separately: S ∪ {Γ1 ∨ . . . ∨ Γk} is unsatisfiable iff S ∪ {Γi} is unsatisfiable
for every variable-disjoint component Γi.

From a proof-theoretical perspective, splitting resembles the β-rule of free-
variable tableaux [2,36]. Therefore, superposition provers that implement split-
ting [37,30,27] can be seen as hybrids combining resolution/superposition and

1 CR is based on resolution instead of superposition, because superposition’s ordering-
based refinements would restrict unit-propagation and the selection of decision literals. In
Sat-solvers unit-propagation is unrestricted (because it is very effective anyway) and the best
literal selection strategies are not based on orderings. By extending unrestricted resolution,
CR remains general enough to admit the strategies used by Sat-solvers.
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tableaux; and hence they lack a theoretical characterization in terms of a sin-
gle pure proof system. This gap between theory and practice is something that
can be remedied with the adoption of the CR calculus (cf. Section 7).

3 Recalling DPLL and CDCL

In the propositional case, Davis, Logemann and Loveland [17] had already no-
ticed that the propositional resolution rule [16] “can easily increase the number
and the lengths of the clauses” and proposed to replace it by a form of split-
ting, which is, however, different from the later notion of splitting described in
Section 2. Instead of splitting a clause into variable-disjoint components, we
select a propositional atom P and split the problem in two subproblems: one
where P is assumed to be true and the other where it is assumed to be false.
Nowadays, the so-called DPLL procedure is presented slightly differently, but
equivalently. We decide to assign the truth value true (or false) to an atom;
then, through unit propagation, other atoms will be assigned truth values as
well. Repeating this process of decisions and propagations, we will either reach
an assignment that satisfies all clauses (if the clause set is satisfiable) or we will
reach a conflict where we are to assign both true and false to an atom. In the
latter case, we backtrack some of our decisions, and try different assignments.

In contrast to saturation-based theorem proving, DPLL-based sat-solving
does not generate any clause at all. But this is, of course, dependent on the
fact that in propositional logic it suffices to consider only two truth-value
assignments for each atom. In a näıve adaptation of this idea to first-order
logic, on the other hand, we would need to consider truth-value assignments
for each instance of an atom containing variables. We would need to generate
possibly several2 instances.

In practice, it is, nevertheless, beneficial to generate some clauses when
backtracking from conflicts. For example, suppose that the backtracking DPPL
procedure decided to assign true to P and Q, and this led to a conflict. It
is then forced to backtrack these decisions and try other decisions. Without
clause learning, it could happen that, after assigning truth values to other
atoms, it would again consider the possibility of assigning true to P and Q,
even though it is clear (from the previous conflict) that P and Q cannot be
both true, independently of later assignments to other atoms. To prevent this
from happening, we can generate and add the clause ¬P ∨ ¬Q to the set of
clauses. Then, whenever the procedure retries assigning, for instance, true to
P it will immediately conclude (by unit propagation) that false should be
assigned to Q. This idea is known as conflict-driven clause learning.

The procedure up to a conflict can be understood as the construction of a
directed graph. Nodes are literals which have been assigned true. A decision
literal (i.e. a literal with truth value assigned by decision) has no incoming

2 By Herbrand’s theorem, a finite number of instances would suffice in the case of an
unsatisfiable clause set. As the logic is undecidable, however, there is no way to know in
advance how many “several” might be.
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edge. A propagated literal (i.e. a literal with truth value assigned by unit
propagation) ` has incoming edges (`i, `) for 0 < i ≤ n if and only if the
clause `1 ∨ . . . ∨ `n ∨ ` was the clause used by unit propagation to assign
a truth value to `. A conflict is indicated by the simultaneous presence of
any literal and its dual in the graph. When a conflict is detected, the graph
can be analyzed to determine clauses that should be learned. Various conflict
analysis algorithms exist [23,24]. The conceptually simplest one recommends
learning a clause that is a disjunction of the negations of the decision literals.
More sophisticated algorithms [39] are capable of learning stronger clauses.
An important benefit of conflict-driven clause learning is that redundant (i.e.
subsumed) clauses are never derived.

The learned clause can be derived by a sequence of resolution steps using
the clauses corresponding to the edges in the graph as premises. When this is
done, a Sat-solver is capable of outputting a propositional resolution refuta-
tion for an unsatisfiable clause set [9]. However, most developers of Sat-solvers
consider the overhead (in both proving time and memory consumption) of do-
ing so unacceptable, especially when in-processing techniques and advanced
techniques for minimizing learned clauses are used. Instead, they prefer to
generate proof certificates in the DRUP or DRAT formats [38], which record
clauses that have been learned, but do not inform which premises are needed
to derive them. A consequence of this lack of information is that checking a
DRUP/DRAT certificate or converting it to a resolution refutation (using the
DRAT-Trim tool) can take as long as solving the problem in the first place.

Example 2 Consider the clause set {P ∨ Q, P ∨ ¬Q, ¬P ∨ Q, ¬P ∨ ¬Q}.
Deciding P and propagating units results in the conflict graph at the left
side below. We backtrack and learn the unit clause ¬P , whose propagation
leads to the conflict graph in the right side below. Since this last conflict does
not depend on any decision literal, no backtracking is possible, and we may
conclude that the clause set is unsatisfiable.

The resolution proofs extracted from these conflict graphs are shown below:

¬P ∨Q ¬P ∨ ¬Q
¬P ∨ ¬P
¬P

P ∨Q P ∨ ¬Q
P ∨ P
P ¬P

⊥
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4 The Conflict Resolution Calculus

As we have seen in the previous two sections, both propositional and first-
order automated deduction have progressed (in different ways) much beyond
their historical common roots in resolution. Techniques such as splitting, con-
flict graphs and conflict-driven clause learning are not so easily explained in
terms of a pure resolution calculus. There is a growing gap between the cur-
rent state-of-the-art in automated deduction and its original proof-theoretical
foundation. In this section, we propose the CR calculus, which modifies the
first-order resolution calculus by incorporating ideas from Sat-solving, in an
attempt to reduce not only the gap between automated deduction and proof
theory but also between the first-order and the propositional cases.

As in resolution, a CR derivation is a directed acyclic graph where nodes
are clauses and internal nodes are obtained from their parents by one of the
inference rules shown in Fig. 2.

Unit-Propagating Resolution:

`1 . . . `n `′1 ∨ . . . ∨ `′n ∨ `
` σ

u(σ)

where σ is a unifier of `k and `′k, for all k ∈ {1, . . . , n}.

Conflict:

` `′

⊥
c(σ)

where σ is a unifier of ` and `′.

Conflict-Driven Clause Learning:

[`1]
i
1

.... (σ1
1 , . . . , σ

1
m1

)

[`n]
i
n

.... (σn
1 , . . . , σ

n
mn

)
....
⊥

(`1σ1
1 ∨ . . . ∨ `1σ1

m1
) ∨ . . . ∨ (`nσn

1 ∨ . . . ∨ `nσn
mn

)
cli

where σk
j (for 1 ≤ k ≤ n and 1 ≤ j ≤ mk) is the

composition of all substitutions used on the j-th patha from `k to ⊥.

a Since a proof is generally a DAG and not necessarily a tree, there may be more than
one path connecting `k to ⊥ in the DAG-like proof.

Fig. 2: The Conflict Resolution Calculus CR
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The conflict rule is just a restriction of the resolution rule. The unit-
propagating resolution3 rule is essentially a sequence of applications of the
resolution rule where the left premises must always be unit clauses; the con-
clusion clause must be unit as well, and its literal is called a propagated literal.

The main innovation lies in the conflict-driven clause learning rule. The
literals within brackets are the decision literals that have been assumed. The
superscript index i indicates that this assumption is discharged by the cl in-
ference with index i. It is not required that a cl inference discharge all decision
literals above it. Some decision literals may be left undischarged, to be dis-
charged by future cl inferences. The vertical dots denote any derivation of ⊥
using the decision literals, input clauses and previously derived clauses. The
conclusion clause of this rule is the learned clause. In contrast to the proposi-
tional case, the learned clause must be a disjunction of duals of instances of the
discharged decision literals4, because variables occurring in the discharged de-
cision literals may be instantiated by unifications performed during the proof.
Since the derivation of ⊥ need not be tree-like, we may need to consider several
instances of each decision literal.

A CR derivation is a CR proof if and only if all its decision literals have
been discharged. A CR refutation is a CR proof of ⊥.

Example 3 Consider the following clause set:

{P (z) ∨Q, P (y) ∨ ¬Q, ¬P (a) ∨Q, ¬P (b) ∨ ¬Q}

It admits the CR refutation shown in Fig. 3. A shorter refutation would be
possible if we had taken, for instance, Q as a decision literal. But taking P (x)
as a decision literal instead, as done in the refutation in Fig. 3, we can see how
conflict driven clause learning behaves in the first-order case, when decision
literals can contain variables, that can be instantiated during the process of
propagation. In one path from ψ1 to ⊥ just above the cl1 inference, the uni-
fication performed by the unit-propagating resolution inference instantiates x
with a, whereas in the other path x is instantiated with b. Therefore, the cl1

inference learns the clause ¬P (a)∨¬P (b), which is the disjunction of the duals
of all the instances of the decision literal P (x). This is in contrast with (and a
generalization of) the propositional case, where instances did not need to be
considered. As in the propositional case, the decisions and unit propagations
can be represented graphically, as shown in the bottom of Fig. 3 as well.

3 This rule is also known as unit-resulting resolution [25,26]. Here we use the name unit-
propagating resolution instead in order to make the connection with the technique of unit-
propagation more explicit.

4 As mentioned in Section 3, modern Sat-solvers implement optimized clause learning
procedures that may also contain duals of propagated literals. A modification of CR’s cl
inference rule to cover more sophisticated clause learning procedures is briefly discussed in
Subsection 4.2.
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ψ1 : [P (x)]1 ξ1 : ¬P (a) ∨Q
u({x\a})

Q

ψ1 ¬P (b) ∨ ¬Q
u({x\b})

¬Q
c(ε)

⊥
cl1

ϕ1 : ¬P (a) ∨ ¬P (b)

ψ2 : [¬P (a)]2 P (z) ∨Q
u({z\a})

Q

ψ2 ξ2 : P (y) ∨ ¬Q
u({y\a})

¬Q
c(ε)

⊥
cl2

ϕ2 : P (a)

ϕ2 ϕ1
u(ε)

¬P (b) ξ2
u({y\b})

¬Q
ϕ2 ξ1

u(ε)
Q

c(σ)
⊥

Fig. 3: CR Refutation and conflict graphs for the clause set from Example 3.

Unlike the Resolution calculus, CR does not need a primitive factor-
ing rule. This rule can be simulated by a sequence of decisions, one unit-
propagation, one conflict and one conflict-driven clause learning. In this way,
we can prove the following lemma.

Lemma 1 Resolution’s factoring rule is admissible in CR.

Proof Let ϕ′ be a CR derivation of `∨`′∨`1∨. . .∨`m and consider constructing
ϕ by applying the factoring inference to the conclusion of ϕ′, as shown below:

.... ϕ
′

` ∨ `′ ∨ `1 ∨ . . . ∨ `m
(` ∨ `1 ∨ . . . ∨ `m) σ

f(σ)
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ψ : [`σ]
1
1 ψ [`1]

1
2 . . . [`m−1]

1
m

.

.

.

.
ϕ′

` ∨ `′ ∨ `1 ∨ . . . ∨ `m

`m σ
u(σ)

[`m]

1
m+1

⊥
c(σ)

(` ∨ `1 ∨ . . . ∨ `m) σ
cl1

where σ is a unifier of ` and `′.

Fig. 4: Simulation of a Factoring Inference in CR

This is admissible because, instead of using the factoring inference, we could
have used the sequence of CR inferences shown in Fig. 4.

The simulation of factoring depends on a sufficiently high degree of freedom
in the choice of decision literals. We must be allowed (as indeed we are in CR)
to assume a decision literal (`σ) that is the dual of a common instance of `
and `′.

4.1 An Isomorphism between Conflict Graphs and Single-Conflict
Sub-Derivations in Conflict Resolution

By comparing the conflict graphs and CR derivations in Example 3, it is no-
ticeable that there is a straightforward isomorphism between conflict graphs
and CR sub-derivations with a single conflict inference. Every decision literal
in a conflict graph appears as a decision literal in the corresponding CR deriva-
tion. Every propagated literal in the conflict graph appears as a propagated
literal derived by a unit-propagating resolution inference, and the clause asso-
ciated to the incoming edges of the propagated literal is exactly the non-unit
clause used as the rightmost premise of the unit-propagating inference. Finally,
the conflict in the conflict graph is a conflict inference in the corresponding
CR derivation.

In contrast, the correspondence between resolution derivations and conflict
graphs is imperfect. As illustrated in Example 2, we have a map from conflict
graphs to resolution derivations; however, this map is not an isomorphism,
simply because it is not even surjective. Furthermore, there is a mismatch
between the conflict graph operations (i.e. decisions, propagations and conflict)
and the operations of the resolution calculus (i.e. the resolution and factoring
inference rules). In other words, no map from conflict graphs to resolution
derivations could be an isomorphism, because the algebraic structure cannot
be preserved. From this algebraic point of view, we may conjecture that the
popular belief that (propositional) resolution is the underlying proof system
of modern Sat-solvers (which actually implement the CDCL procedure based
on conflict graphs) is mistaken. We also speculate that the mismatch is the
theoretical explanation for the overhead experienced in the transformation of
conflict graphs to resolution derivations (as discussed in the end of Section 3).
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First UIP Conflict-Driven Clause Learning:

[`′1]
i
1 [`′h]

i
1

....
`1.... (σ1

1 , . . . , σ
1
m1

)

[`n]
i
n

.... (σn
1 , . . . , σ

n
mn

)
....
⊥

(`1σ1
1 ∨ . . . ∨ `1σ1

m1
) ∨ . . . ∨ (`nσn

1 ∨ . . . ∨ `nσn
mn

)
uipcli

where:
– σk

j (for 1 ≤ k ≤ n and 1 ≤ j ≤ mk) is the composition of all substitutions used on the
j-th path from `k to ⊥ ;

– The propagated literal `1 must be a UIP : all paths from `′g (for 1 ≤ g ≤ h) to ⊥ must
pass through `1.

– `1 must be a first UIP : there should be no other UIP on a path from `1 to ⊥.

Fig. 5: First UIP Clause Learning

Perhaps a calculus such as CR, that enjoys a better correspondence to conflict
graphs, could enable proof production with less overhead.

4.2 Clause Learning Optimizations

Learning clauses that contain only duals of decision literals is the simplest
conflict-driven clause learning (CDCL) strategy. It is the strategy explained in
Section 4.4.1 of the Handbook of Satisfiability [24]. Therefore, CR’s clause
learning rule mimics (and generalizes to the first-order case) the simplest
CDCL mechanism. To mimic more sophisticated and empirically more effective
CDCL mechanisms, such as the first UIP [39], it suffices to define a modifi-
cation of CR’s cl rule that allows learning clauses containing instances of
the dual of a propagated literal that satisfies the conditions to be a first unit
implication point (UIP). A precise definition of these conditions is possible,
because the isomorphism discussed in Section 4.1 allows a translation of the
usual definition5 of UIP in terms of conflict graphs (cf. Section 4.4.3 of the
Handbook of Satisfiability) to the terminology of CR proofs, as done in the
uipcl rule shown in Figure 5. For the sake of simplicity and generality, how-
ever, the remaining sections of this paper focus on conflict resolution with the
simpler cl inference rule, which is sufficient for this paper’s goals.

5 The usual definition of UIP in terms of conflict graphs also relies on the notion of
decision level of assigned literals and requires that the propagated literal be assigned at the
current decision level. Therefore, our definition is slightly more general. This is intentional.
The notion of decision level, which keeps track of the order in which decision literals were
assigned, is beyond the purely proof-theoretical scope of this paper, as it relates to particular
proof search and backtracking procedures.
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5 Refutational Completeness

A proof system P is refutationally complete if and only if any unsatisfiable
clause set has a refutation in P. Instead of proving refutational completeness
for CR directly, we will prove it indirectly, showing that CR can simulate
another refutationally complete proof system. A proof system P simulates
another proof system Q if and only if there is a map transforming any Q-
derivation of c from S to P-derivation of c from S.

This indirect approach to proving completeness can be traced back at least
to Gentzen’s work [19], who applied it to his natural deduction and sequent
calculi. In our case, the target proof system for the simulation is resolution, and
the key idea of the simulation is that every resolution step that is not a unit-
propagating resolution inference can be simulated by several decisions, two
unit-propagating resolution inferences, one conflict inference and one conflict-
driven clause learning inference.

Theorem 1 CR simulates Resolution.

Proof Let ψ be a Resolution derivation of a clause c from a set of clauses S.
We show that there is a CR derivation ϕ of c from S, proceeding by induction:

– Base Case: ψ is just a single node c. In this case, ϕ is just the single node
c as well.

– Induction Case 1: ψ ends with a factoring inference ρ. In this case, let ψ′

be the sub-derivation whose conclusion c′ is the premise of ρ. By induction
hypothesis, there is a CR derivation ϕ′ of c′ from S. And then ϕ can be
constructed as the CR derivation of c from S obtained from ϕ′ by applying
the admissible factoring inference rule to its conclusion in the same way
as ρ in ψ or by simulating factoring as shown in Fig. 4. In any case, the
conclusion of ϕ is c, as desired.

– Induction Case 2: ψ ends with a resolution inference. In this case, ψ is of
the following form:

.... ψ1

`1 ∨ . . . ∨ `n ∨ `

.... ψ2

`′ ∨ `′1 ∨ . . . ∨ `′m
(`1 ∨ . . . ∨ `n ∨ `′1 ∨ . . . ∨ `′m) σ

r(σ)

By induction hypothesis, we have a CR derivation ϕ1 of `1 ∨ . . . ∨ `n ∨ `
from S and a CR derivation ϕ2 of `′ ∨ `′1 ∨ . . . ∨ `′m from S. Then a CR
derivation ϕ of (`1 ∨ . . .∨ `n ∨ `′1 ∨ . . .∨ `′m) σ can be constructed as shown
in Fig. 6.

Corollary 1 CR is refutationally complete.

Proof Let C be an unsatisfiable clause set. As resolution is a refutationally
complete calculus [28], there is a resolution refutation ψ of C. By Theorem 1,
ψ can be transformed to a CR refutation ϕ of C.
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[`1]1 . . . [`n]1

.... ϕ1

`1 ∨ . . . ∨ `n ∨ `
`

u(ε)
[`′1]1 . . . [`′m]1

.... ϕ2

`′ ∨ `′1 ∨ . . . ∨ `′m
`′

u(ε)

⊥
c(σ)

(`1 ∨ . . . ∨ `n ∨ `′1 ∨ . . . ∨ `′m) σ
cl1

Fig. 6: Simulation of a Resolution Inference in CR

A mere restriction of resolution to unit-propagating resolution would have
resulted in a refutationally incomplete calculus. The unsatisfiable clause sets
from Examples 2 and 3, for instance, would not be refutable. By incorporat-
ing decision literals, as well as the conflict rule and the conflict-driven clause
learning rule, we regain refutational completeness.

An interesting insight learned from the completeness proof is the following
corollary.

Corollary 2 CR with the additional restriction that every decision literal
must be the dual of a most general common instance of a non-empty subset of
literals occurring in a single clause is still a refutationally complete calculus.

Proof Only duals of literals occurring in resolved clauses are needed as decision
literals to simulate resolution by CR in the proof of Theorem 1, and only duals
of literals occurring in the factored clause and the dual of a common instance
of the factored literals are needed to simulate factoring by CR in the proof
of Theorem 1. Therefore, the same proof would still succeed for CR with the
additional restriction that decision literals must be common instances of a
non-empty subset of literals occurring in a single clause. Moreover, resolution
is still refutationally complete when the unifiers in the resolution and factoring
inferences are required to be most general unifiers. Consequently, it suffices to
consider most general common instances as decision literals.

This corollary is useful for proof search, because it entails that a decision
literal does not need to be arbitrarily guessed. It can be picked from a finite
set of alternatives. An effective implementation of CR is, therefore, possible.

The fact that we need two unit-propagating resolution inferences, one con-
flict and one conflict-driven clause learning to simulate a single resolution
inference (as shown in Fig. 6) may lead us to think that CR is more bureau-
cratic and more inefficient than resolution. However, efficiency of proof search
is not directly correlated with proof length. In CR much fewer clauses are
generated by unit-propagating resolution than by unrestricted resolution and
the clause sizes are reduced through decisions and propagations. Moreover, in
any case, any resolution proof search, as well as any resolution proof, can be
simulated in the CR calculus with only a (small) linear increase in length (i.e.
number of inferences) and size (i.e. number of literals).
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Theorem 2 For every resolution refutation ψ, there exists a CR refutation
ϕ such that length(ϕ) ∈ O(length(ψ)) and size(ϕ) ∈ O(size(ψ)).

Proof Given ψ, let ϕ be obtained from ψ by simulating all its inferences as
described in the proof of Theorem 1. Then, if ψ has n resolutions and m
factorings, ϕ has n+m clause learning inferences, n+m conflicts and 2n+m
unit propagations. Hence, length(ϕ) = 4n+3m ∈ O(n+m) = O(length(ψ)). If
ψ has a total of h′ literals occurring in all its h leaf clauses, n′ literals occurring
in conclusions of all its n resolution inferences and m′ literals occurring in
conclusions of all its m factoring inferences, then ϕ has h′ literals occurring
in its leaf clauses, n′ + m′ literals occurring in conclusions of clause learning
inferences, 2(n + m) literals occurring in premises of conflict inferences, n′

literals occurring as decision literals for unit propagations in the simulations
of resolution inferences and m′ literals occurring as decision literals for unit
propagations in the simulations of factoring inferences. Hence, size(ϕ) = h′ +
(n′ + m′) + 2(n + m) + n′ + m′ = h′ + 2(n′ + m′) + 2(n + m). Since every
resolution inference in ψ has at least one literal in its conclusion, except for
the last one deriving the empty clause, n ≤ n′+1. Moreover, since the number
of literals in the conclusion of every factoring inference is at least 1, m ≤ m′.
Therefore, size(ϕ) ≤ h′ + 2(n′ +m′) + 2(n′ + 1 +m′) = h′ + 4(n′ +m′) + 2 ≤
4(h′ + n′ +m′) + 2 ∈ O(size(ψ)).

6 Soundness

To prove soundness, we exploit the key observation that decision literals re-
semble natural deduction’s assumptions and conflict-driven clause learning re-
sembles implication/negation introduction, decision literals are discharged by
conflict-driven clause learning as assumptions are discharged by implication
or negation introduction. Therefore, natural deduction is an excellent candi-
date for proving soundness indirectly by simulation. However, typical natural
deduction rules (cf. Appendix) operate on general formulas, which are not nec-
essarily in clause form, and this makes a direct simulation technically difficult.
In order to overcome this challenge, we define an intermediary clausal natural
deduction calculus (abbreviated as CND) with inference rules that operate on
clauses, as shown in Fig. 7.

The clausal natural deduction calculus CND can be simulated by any
standard non-clausal natural deduction calculus extended with a classical rule
for double negation elimination (e.g. the calculus shown in the Appendix).
The key idea is to use the well-known classical equivalence A ∨ B ≡ (¬̇A →
B) (where ¬̇A is an abbreviation for A → ⊥), in order to transform the
clauses in a CND proof into formulas containing only implication, which are
therefore suitable for a minimal non-clausal natural deduction calculus. When
transforming a CND proof into a standard non-clausal natural deduction
proof, sequences of implication introduction/elimination rules may have to be
added to the natural deduction proof, in order to reorder literals (because
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Implication Elimination (Modus Ponens):

` ` ∨ Γ
Γ

→E

Implication Introduction:

[`]i
....
Γ

` ∨ Γ
→i

I

[`] is an assumption discharged by the implication introduction.

Universal Quantification Elimination:

Γ
Γσ
∀E

Universal Quantification Introduction:

Γ{x1\α1, . . . , xn\αn}
Γ

∀I

αk must be a distinct eigen-variable:
it should occur neither in Γ nor in any undischarged assumption.

Fig. 7: The Clausal Natural Deduction Calculus CND

associativity and commutativity of disjunction is implicitly taken into account
by CND’s inference rules, but must be handled explicitly in a standard natural
deduction calculus). The classical rule of double negation elimination is needed
in order to handle the involutivity of classical negation, which is implicit in
CND6. A more detailed proof of this simulation is omitted because it would
be tedious and space-consuming. Soundness of CND is a corollary of the
simulation, since natural deduction is sound.

Remembering that all clausal rules are assumed to be modulo negation’s
involutivity and modulo the neutrality of ⊥ w.r.t. disjunction, the rules for
negation introduction and elimination shown in Fig. 8 are admissible in CND,
since they are just special cases of, respectively, implication introduction and
elimination, when Γ = ⊥. We are now ready to prove the following theorem.

Theorem 3 CND simulates CR.

Proof Given a CR derivation ψ of a clause c from a set of clauses S, we must
construct a CND derivation ϕ of c from S (modulo variable renaming). We

6 CND is a calculus for classical logic: the law of excluded middle can be easily derived
with a single application of implication introduction. Interestingly, its classicality is implicit
in the use of involutive negation and the equivalence involving disjunctions and implications.
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Negation Elimination:

` `
⊥
¬E

Negation Introduction:

[`]i
....
⊥
`
¬iI

Fig. 8: CND’s Admissible Rules for Negation

first expand ψ into a tree-like proof ψ′: for each clause c′ with several children
c1, . . . , cn (where n > 1), we create n copies c1, . . . , cn of c′ and use each ck (for
1 ≤ k ≤ n) as a parent for ck. The variables in each copy are renamed to fresh
variables and all substitutions in the proof are updated accordingly, in order
to maintain the property that distinct clauses in ψ′ do not share variables (cf.
Section 2). Now that ψ′ is tree-like, we may compute its global substitution σ∗

(i.e. the composition (in topological order) of all the substitutions used in the
proof)7.

We now do a recursive top-down traversal of ψ′ and for each sub-derivation
η deriving a clause c′ from S with decision literals [`1], . . . , [`n], we construct
a corresponding sub-derivation ξ deriving c′ σ∗ from S with assumptions
[`1 σ

∗], . . . , [`n σ
∗]:

– Base Case 1: η has just a leaf node containing a decision literal [`]. In this
case, ξ is the leaf node containing the assumption [` σ∗].

– Base Case 2: η has just a leaf node containing a clause Γ . In this case, ξ
is:

Γ
Γ σ∗

∀E

– Induction Case 1: η ends with a unit-propagating resolution inference, as
shown below:

.... η1
`1 . . .

.... ηn
`n

.... η
′

`′1 ∨ . . . ∨ `′n ∨ `
` σ

u(σ)

By induction hypothesis, there are CND derivations ξ1, . . . , ξn, ξ′ of,
respectively, `1 σ

∗, . . . , `n σ∗, (`′1 ∨ . . . ∨ `′n ∨ `) σ∗. We then construct ξ

7 Since we assume that distinct clauses in ψ′ do not share variables and ψ′ is tree-like,
we do not need to worry about variable clashes in the composition of all substitutions. The
topological order is needed because a variable x introduced by a substitution σ1 may be in
the domain of another substitution σ2 occurring below σ1. In this case, the topologically
ordered composition is σ1σ2 (i.e. apply first σ1 and then σ2).
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by applying implication elimination n times, as shown below:

.... ξn
`n σ

∗

....

.... ξ1
`1 σ

∗

.... ξ
′

(`′1 ∨ . . . ∨ `′n ∨ `) σ∗

(`′2 ∨ . . . ∨ `′n ∨ `) σ∗
→E

...

→E

` σ∗
→E

– Induction Case 2: η ends with a conflict inference. This case is analogous
to the case above. But, instead of n implication elimination inferences, a
single negation elimination inference suffices.

– Induction Case 3: η ends with a conflict-driven clause learning inference.
In this case, the corresponding subproof in ψ used to have the following
form:

[`1]
i
1

.... (σ1
1 , . . . , σ

1
m1

)

[`n]
i
n

.... (σn
1 , . . . , σ

n
mn

)
....
⊥

(`1σ
1
1 ∨ . . . ∨ `1σ1

m1
) ∨ . . . ∨ (`nσ

n
1 ∨ . . . ∨ `nσn

mn
)

cli

But due to the expansion to a tree, the subproof η in ψ′ has the form shown
below, where there is a copy [`jk] of a decision literal [`k] for every path j
that existed from [`k] to ⊥ in ψ. The copies have fresh variables, but are

identical modulo variable renaming. For every k and j, the substitution σj′

k

is essentially identical to σj
k, except for the use of different variable names.

[`11]i
.... σ

1′

1 . . .

[`m1
1 ]i
.... σ

1′

m1 . . .

[`1n]i
.... σ

n′

1 . . .

[`mn
n ]i
.... σ

n′

mn
....
⊥

(`1σ
1′

1 ∨ . . . ∨ `1σ1′

m1
) ∨ . . . ∨ (`nσ

n′

1 ∨ . . . ∨ `nσn′

mn
)

cli

By induction hypothesis, there is a derivation ξ′ with the form:

[`11 σ
∗]

.... . . .

[`m1
1 σ∗]

.... . . .

[`1n σ
∗]

.... . . .

[`mn
n σ∗]

....
....
⊥

And then a derivation ξ can be constructed by applying the implication
introduction rule k times, where k is the number of assumptions [`11 σ

∗],
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[P (a)]2 ¬P (a) ∨Q →E
Q

[P (b)]1 ¬P (b) ∨ ¬Q →E
¬Q ¬E⊥ ¬1I¬P (b)

→2
Iϕ1 : ¬P (a) ∨ ¬P (b)

[¬P (a)]3
P (z) ∨Q

∀E
P (a) ∨Q →E

Q

[¬P (a)]3
P (y) ∨ ¬Q

∀E
P (a) ∨ ¬Q →E

¬Q ¬E⊥ ¬3Iϕ2 : P (a)

ϕ2 ϕ1 →E
¬P (b)

P (v) ∨ ¬Q
∀E

P (b) ∨ ¬Q →E
¬Q

ϕ′2 ¬P (a) ∨Q
→E

Q ¬E⊥

where ϕ′2 is a reference to a copy of ϕ2.

Fig. 9: CND Refutation Simulating the CR Refutation from Fig. 3.

. . . , [`m1
1 σ∗], . . . , [`1n σ

∗], . . . , [`mn
n σ∗] to be discharged, as depicted below:

[`11 σ
∗]1

.... . . .

[`mnn σ∗]k
....

....
⊥

(`11σ
∗ ∨ . . . ∨ `m1

1 σ∗) ∨ . . . ∨ (`1nσ
∗ ∨ . . . ∨ `mnn σ∗)

→1
I , . . . ,→

k
I

Since σ∗ is the composition of all substitutions in ψ′, including every σj′

k ,

we have that σj′

k σ
∗ = σ∗. Therefore, the conclusion of ξ is identical to:

((`1σ
1′

1 ∨ . . . ∨ `1σ1′

m1
) ∨ . . . ∨ (`nσ

n′

1 ∨ . . . ∨ `nσn′

mn
)) σ∗

At the end of the top-down traversal, we have a CND proof ϕ of c σ∗ from
S. Since σ∗ is the global substitution of all substitutions used in ψ′ and ψ′

derives c, we have that c σ∗ = c. Therefore, ϕ is a CND proof of c from S, as
desired.

Example 4 To illustrate the transformation of CR derivations into CND
derivations used in the proof of Theorem 3, Fig. 9 shows the CND derivation
obtained by transforming the CR derivation shown in Fig. 3.

Corollary 3 CR is sound.

Proof Let ϕ be an arbitrary CR proof of c from S. Then, by Theorem 3, there
is a CND proof of c from S. Since the natural deduction calculus CND is
sound, c is entailed by S. Therefore, CR is sound.
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7 Simulation of Splitting

Suppose that a prover refutes the set of clauses S ∪{Γ1 ∨ . . .∨Γk} (where the
sets of variables Vi of Γi are mutually disjoint), by splitting it into the k sets
S ∪ {Γi} (for 1 ≤ i ≤ k) and finding a Resolution refutation ψi for each set
S ∪ {Γi}. One way to combine these proofs into a single resolution refutation
of S ∪ {Γ1 ∨ . . . ∨ Γk} would be to use the following recursive method:

– For i = 1: construct ψ′1 by replacing every leaf occurrence of Γ1 in ψ1 by
Γ1 ∨ . . . ∨ Γk, propagating the added literals downwards and factoring the
added literals when possible; then ψ′1 is not a refutation, but a derivation
of Γ2 ∨ . . . ∨ Γk.

– For i from 2 to k: construct ψ′i by replacing every leaf occurrence of Γi in
ψi by the subproof ψ′i−1 deriving Γi ∨ . . . ∨ Γk; as before, propagate the
added literals downwards and factor them when possible, so that ψ′i is a
proof of Γi+1 ∨ . . . ∨ Γk, if i < k, or ⊥, otherwise.

However, this method is undesirable, because it requires a substantial modifi-
cation of the component proofs ψi. The modified subproofs are larger (because
of all the additional literals), and this may hinder readability of the proof by
humans and reduce the efficiency of automatic proof checking.

A pragmatic approach is to disregard the attempt to output a single refu-
tation for the original problem and simply output all the separate proofs for
the split problems instead. Keeping track of all splittings is important, partic-
ularly in the more general case where splitting is done recursively (i.e. where
each set S ∪ {Γi} can be split further). This seems to be the approach taken
by many automated theorem provers. Splittings performed during the proof
search are recorded in the proof file in an extra-logical way, which may even
violate informal semantic requirements of the TPTP proof format8.

In CR, splitting can be simulated in such a way that the refutations for the
split sub-problems can be combined without the drawbacks that are incurred
when this is done in Resolution. Suppose that ϕi are refutations9 of S ∪ {Γi}.
Then a refutation ϕ of S ∪ {Γ1 ∨ . . . ∨ Γk} can be constructed by combining
all the ϕi (for 1 ≤ i ≤ k) using the following recursive method:

– For i = 1: construct ϕ′1 by replacing every leaf occurrence of Γ1 in ϕ1 by
the following CR subproof (where `1i , . . . , `

ni
i are duals of the literals in

Γi):

[`11]1

[`21]1 . . . [`n1
1 ]1 . . . [`1k]k . . . [`

nk
k ]k Γ1 ∨ . . . ∨ Γk

`11

u(ε)

⊥
c(ε)

Γ1
cl1

8 TPTP’s general proof format [31] requires that the conclusion of an inference rule be
a logical consequence of (or equi-satisfiable to) its premises. This limitation prevents an
easy representation of natural deduction’s implication introduction rule, tableaux’s β rule
or splitting. CR’s conflict-driven clause learning is also affected by this limitation.

9 It is assumed (without loss of generality) that, for every i, Γi is actually used in ϕi.
Otherwise, if Γj were not used in ϕj for some j, ϕj would already be a refutation of S, and
it would not be necessary to split Γ1 ∨ . . . ∨ Γk.
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– For i from 2 to k: construct ϕ′i by replacing every leaf occurrence of Γi in
ϕi by the following subproof:

.... ϕ
′
i−1

⊥
Γi

cli

The desired refutation ϕ of S ∪ {Γ1 ∨ . . . ∨ Γk} is then ϕ′k.
This method of simulating splitting in CR requires no internal modification

of the proofs ϕi: the modified proofs ϕ′i (2 ≤ i ≤ k) are just ϕi with a few cl
inferences on top. Hence, there is no loss in readability, and the only overhead
for automatic proof checking is caused by the need to check the additional
cl inferences. If the leaf clause Γi occurs only once10, a single cl inference
suffices, in fact. Therefore, the increase in proof size and the overhead for
proof checking are negligible.

The simulation described here shows that splitting can be seen as a macro-
rule that performs, for a variable-disjoint component Γi, batch decisions as-
suming the duals of all literals not in Γi. The first-order mechanism of decisions
and conflict-drive clause learning provided by CR is, however, more general,
because it allows splitting even when the components are not variable-disjoint.

8 CR with Sequent Notation

The proof of CR’s soundness in Section 6 demonstrates that there is a lot in
common between CR and natural deduction. In the same way that natural
deduction can be presented with a sequent notation, in which assumptions are
listed in the antecedent of the sequent (i.e. at the left side of the turnstile
symbol), CR can also be presented with a sequent notation, with decision
literals kept at the antecedent11. This is shown in Fig. 10.

With the sequent notation, it is easier to state the inference rule for conflict-
driven clause learning. All the substitutions that should be applied to the
literals whose duals will be part of the learned clause have already been applied
to the literals in the antecedent. There is no need to look at the substitutions
that have been used in the paths above. On the other hand, the presentation
with sequent notation is much more redundant and bureaucratic. Whereas
in the standard presentation, the use of decision literals is a powerful way
to reduce the size of clauses (as in the simulation of splitting), this beneficial
effect is lost in the presentation with the sequent notation, because the decision
literals are carried along in the antecedents.

10 It may be reused many times, since ϕi does not need to be tree-like.
11 Although antecedents of sequents and a Sat-solver’s trail resemble each other, as both

store decision literals, they are not quite the same thing. Whereas a Sat-solver’s trail is
typically a global structure, each sequent’s antecedent is local and stores only the decisions
that have been necessary to derive the sequent’s succedent.
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Decision:

`i ` `i

Initial:

` c

if c is an input clause

Unit-Propagating Resolution:

∆1 ` `1 . . . ∆n ` `n ∆ ` `′1 ∨ . . . ∨ `′n ∨ `
∆1 σ, . . . ,∆n σ,∆ σ ` ` σ

u(σ)

where σ is a unifier of `k and `′k, for all k ∈ {1, . . . , n}.

Conflict:

∆1 ` ` ∆2 ` `′
∆1 σ,∆2 σ ` ⊥

c(σ)

where σ is a unifier of ` and `′.

Conflict-Driven Clause Learning:

∆, `i1σ
1
1 , . . . , `

i
1σ

1
m1
, . . . , `inσ

n
1 , . . . , `

i
nσ

n
mn
` ⊥

∆ ` (`1σ1
1 ∨ . . . ∨ `1σ1

m1
) ∨ . . . ∨ (`nσn

1 ∨ . . . ∨ `nσn
mn

)
cli

Fig. 10: CR with Sequent Notation

For example, if we have the clause ¬`1 ∨ . . . ∨ ¬`n ∨ `, then assuming the
duals of the first n literals and resolving them with the clause through unit-
propagation would result in the unit clause ` in the standard presentation.
With sequent notation, on the other hand, we would obtain `1, . . . , `n ` `.
While this may be conceptually convenient, because it reminds us explicitly
that the unit clause ` holds only under the assumptions `1, . . . , `n, we have no
reduction in size if we also count the antecedent’s size.

In fact, because the proof may be a non-tree-like DAG, and decision lit-
erals may be instantiated by different substitutions along different paths of
the DAG, several instances of the decision literal will accumulate in the an-
tecedent. The number of instances may be in the worst case exponential in the
height of the derivation. Although, in this case, the number of instances will
be exponential both in the conclusion of a cl inference in the standard presen-
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tation of CR and in the succedent of the conclusion of a cl inference in CR
with sequent notation, in the latter the exponential blow-up is also present in
the antecedent of the premise (and possibly in the antecedents of many other
sequents occurring above the premise as well). This is particularly important
during proof search, when not all inferences lead to a conflict and, therefore, we
do not want to accumulate (possibly exponentially many) instances of literals
unnecessarily along the derivation. The standard presentation of CR (without
sequent notation) avoids this accumulation; the derivation records only unin-
stantiated decision literals and a linear (w.r.t. the length of the derivation)
number of unifiers that will only ever be combined and applied to instantiate
the decision literals if a conflict is reached.

Moreover, the size of a single instance of a decision literal may be, in the
worst case, exponential in the number of substitutions applied to the literal.
Consider, for example, a decision literal of the form p(x) and the following
sequence of unifiers: σ1 = {x −→ f1(x1, x1)}, σ2 = {x1 −→ f2(x2, x2)},
σn = {xn−1 −→ fn(xn, xn)}. In the standard CR (without sequent notation),
the substitutions are only applied to a decision literal if a conflict is reached
and a conflict-driven clause learning inference is performed. In CR with se-
quent notation, on the other hand, substitutions are applied eagerly whenever
a resolution or conflict inference is performed. Therefore, CR with sequent
notation is more vulnerable to exponential blow-ups in instantiations.

9 Related Work

The seminal work of Baumgartner [5] was probably the first lifting of DPLL
to the first-order case, and it soon led to further work by Baumgartner and
Tinelli [7,6] on the Model Evolution (ME) procedure. It was later extended
with a lemma learning rule [8], while retaining a traditional DPLL flavor (dis-
tinct from the conflict graph approach). In model evolution, decision literals
do not contain standard variables, but parameters, which are variables with
special semantics and behavior in the case of backtracking and clause learning.
CR may be considered simpler, because it does not introduce the notion of
parameter; however, in contrast to model evolution, for CR the problem of
interpreting decision literals as a model has not been investigated yet.

In the model search procedure of de Nivelle’s Geometric Resolution (GR)
[18] implemented in the Geo prover, the literals chosen when geometric formu-
las of disjunctive or existential form are applied can be regarded as decision
literals, or as propagated literals in the case of disjunctive geometric formu-
las with a single disjunct. However, in contrast to CR, such propagated and
decision literals are always ground. Although the model search procedure in
Geometric Resolution does resemble a CDCL procedure on first-order clauses
of geometric form, the calculus lacks an assumption mechanism and a conflict-
driven clause learning rule. Instead, learned clauses (called closing lemmas in
[18]) are derived through a series of applications of special resolution rules.



Conflict Resolution 23

More recently, Alagi and Weidenbach [1] proposed the Non-Redundant
Clause Learning (NRCL) procedure, which generalizes CDCL to the Bernays-
Schönfinkel fragment of first-order logic. They introduce the notion of blocked
decisions and clauses, which restricts the decisions that can be made and thus
allows them to prove that the learned clause is non-redundant (whereas in
CR they might not be). They also introduce the notion of constrained literals,
which allow more compact representation of the model. In CR, such optimiza-
tions and restrictions are intentionally avoided, in favor of a simple calculus
focused on the core aspects of generalizing decisions and conflict-driven clause
learning to full first-order logic.

Bonacina and Plaisted [10,11,12] proposed the (first-order) Semantically-
Guided Goal Sensitive (SGGS) procedure inspired by CDCL. As they observe,
there is a symmetry between positive and negative literals in the propositional
case (i.e. in the sense that when a decision literal ` is false, ` is true) which
appears to be lost in the first-order case (i.e. because when ` is false, we cannot
conclude that ` is true; we can only conclude that ` σ is true for some σ). One
of the main challenges in lifting conflict-driven clause learning to first-order
lies precisely in computing and dealing with the substitution σ when a decision
literal ` leads to a conflict and a clause containing ` σ must be learned. Instead
of addressing this challenge, they circumvent it by introducing the notion of
uniform falsity, according to which ` must be true when ` is uniformly false.
With this notion, clause learning is still essentially propositional and it is not
triggered at every conflict (in the standard non-uniform sense of conflict). For
instance, a conflict between R(x) and ¬R(b) does not lead to clause learning
but must be repaired by revising R(x) to x 6= b . R(x) instead.

The variety of approaches attempting to generalize CDCL to first-order
logic shows that this is not a trivial task. The most pragmatically successful
approaches so far have harnessed the power of Sat-solvers in first-order (or
even higher-order) logic not by generalizing their underlying procedures but
simply by employing them as black-boxes inside a theorem prover [15,21,22,
32,13]. Claessen’s Equinox [15], for instance, is inspired by the modularity and
extensibility of the architecture of SMT-solvers, but employs instead a modu-
lar approach that can handle full quantification. In Korovin’s iProver [21,22],
instead of generating the resolvent of two clauses c1 and c2 with a most general
unifier σ, the instances c1σ and c2σ are generated, and after grounding with
an arbitrary constant, sent to an incremental Sat-solver. Voronkov’s AVATAR

[32] abstracts variable disjoint components of clauses by propositional vari-
ables and sends the abstracted propositional clause set to a Sat-solver. If the
Sat-solver returns a model, AVATAR tries to refute (through its internal super-
position prover) the clause set obtained by unabstracting the model’s proposi-
tional literals. If it succeeds, a new abstracted propositional clause, consisting
of duals of (a subset of) the model’s literals is sent to the Sat-solver. This pro-
cedure is repeated until the Sat-solver cannot produce a model anymore, in
which case the original clause set is unsatisfiable, or the superposition prover
fails to refute the clause set unabstracted from the model, in which case the
original clause set is either satisfiable or of unknown status. Because AVATAR
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abstracts variable disjoint components of clauses and the unabstracted models
produced by the Sat-solver are sets of such isolated components, its procedure
is sometimes described as a form of splitting guided by a Sat-solver. However,
this form of splitting is substantially different from the splitting discussed in
Section 7. While there the resolution or superposition prover generates a refu-
tation of S ∪ {Γ k

i } for each split component Γ k
i of a single clause ck of the

form Γ k
1 ∨ . . .∨Γ k

n , in AVATAR the superposition prover has to find a refutation

for a set of split components {Γ j1

i1
, . . . , Γ jm

im
} stemming from different clauses

cjk (for 1 ≤ k ≤ m). Insofar as CR might be a better calculus than resolution
for proofs produced by Sat-solvers (as discussed in Subsection 4.1), CR could
be used as the underlying calculus for a proof format for the reasoning per-
formed by the Sat-solver within AVATAR, but not for the reasoning performed
by its superposition prover. There are at least two ways to combine CR within
AVATAR’s architecture. A first-order prover based on CR could be used inside
AVATAR instead of a Sat-solver; this would eliminate the need for propositional
abstraction, and would allow AVATAR-style splitting into components that are
not necessarily variable disjoint. Alternatively, AVATAR’s superposition prover
could be replaced by a CR prover; this would have the aesthetic advantage
that the Sat-solver and the CR prover would share the same style of reason-
ing. However, to fully replace a superposition prover, CR would have to be
extended with equational reasoning.

10 Conclusion

The development of the Conflict Resolution calculus CR was initially moti-
vated by the recent success of CDCL and by the desire to generalize its main
ideas to first-order logic. However, CR can also be seen as the convergence of
two ideas that actually precede CDCL by several decades. The first one is the
assumption mechanism introduced by Gentzen [19] in his natural deduction
calculus. The second one is Robinson’s generalization of the resolution rule
to first-order logic through unification [28]. CR extends resolution as natural
deduction extends Hilbert-style proof systems: decision literals are essentially
assumptions, and conflict driven clause learning corresponds to (several ap-
plications of) natural deduction’s implication introduction rule. And whereas
Robinson used unification to generalize resolution, CR uses unification to gen-
eralize conflict-driven clause learning.

From a historical perspective, what we are seeing today is similar to what
happened between 1960 and 1965. In 1960, Davis and Putnam [16] defined the
propositional resolution rule, which can be regarded as an efficient machine-
oriented variant of modus ponens (implication elimination). The first-order
case was then handled by grounding/instantiating the first-order problem and
using the propositional resolution rule. In 1965, Robinson’s direct generaliza-
tion [28] of the resolution rule to the first-order case enabled a breakthrough in
first-order automated theorem proving. Nowadays, we have a powerful proposi-
tional conflict driven clause learning rule, which can be regarded as an efficient
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machine-oriented variant of implication introduction. The first-order case is
being handled by essentially grounding/instantiating the problem in various
ways and using the propositional rule. If history repeats itself, we might see
another breakthrough when clause learning is directly lifted to the first-order
case through unification, as done in the CR calculus proposed here.

A well-defined proof system is just a first step towards the development
of a proof search procedure that could be implemented as an effective theo-
rem prover. There is much more to the effectiveness of a modern Sat-solver
than just the ideas of decision literals, conflict-driven clause learning and unit-
propagation. Sat-solvers use restarts, strategies for selecting decision literals
and data-structures that allow efficient unit-propagation, fast conflict graph
analysis and fast backtracking. Adapting these proof search strategies and im-
plementation techniques to the Conflict Resolution calculus CR is beyond the
scope of this paper, but is a crucial direction for future work.

Another essential direction for further development would be the extension
of CR with a special treatment of equality, since equality is a very common and
important relation for applications and it is well-known that naive automated
reasoning with axiomatizations of equality theory is ineffective. A seemingly
straightforward approach would be to add (refinements of) the paramodulation
rule to CR; alternatively, recent ongoing works [20] generalizing congruence
closure algorithms to the first-order case could enable a possibly more effective
approach, similar to what is done by SMT-solvers in the propositional case.
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Appendix - Classical Natural Deduction

A typical non-clausal natural deduction calculus for quantified minimal logic
extended with a classical rule for double negation elimination is shown in
Fig. 11.

Implication Elimination (Modus Ponens):

A A→ B
B

→E

Implication Introduction:

[A]i
.
...
B

A→ B
→i

I

Universal Quantification Elimination:

A

A{x\t}
∀E

Universal Quantification Introduction:

A{x\α}
A

∀I

α must be an eigen-variable:
it should occur neither in A nor in any undischarged assumption.

Double Negation Elimination:

(A→ ⊥)→ ⊥
A

¬̇¬̇E

Fig. 11: A Non-Clausal Natural Deduction Calculus
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